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CHAPTER 1

Introduction

1.1 Overview

Traditionally, logic verification is done by simulation. In simulation, a test vec-
tor is applied to the logic model, and the results of the simulation are exam-
ined. Both the generation of the test vectors and the examination of the results
can be done either automatically using a special-purpose tool, or by hand.

Coverage is one of the major problems associated with simulation. Since we
cannot exhaustively simulate all possible sequences of input vectors, we need a
way to decide when enough input vectors have been applied in order to give us
reasonable confidence that our design functions as intended.

Formal verification is a novel technique for logic verification of hardware
designs. It attempts to address the problem of coverage by mathematically
proving that a design is correct with respect to its specification. There are many
approaches to formal verification. RuleBase, a formal verification tool devel-
oped by IBM, uses an approach known as “model checking”, which is equiva-
lent to exhaustive simulation of the circuit for every possible input sequence.
In model checking, the specification consists of a set of properties to be

RuleBase: a Formal Verification Tool
Provided by special agreement with IBM



9 CHAPTER 1

proved. For example, “if signal x is asserted, then within three clocks, signal y
will be de-asserted”, or “signals z and w will never be asserted together”. If the
property is true, the designer is notified. If the property is false, a counter-
example is provided. The counter-example is a waveform that shows a simula-
tion sequence that proves that the property is false.

The main advantage of model checking over simulation is that it frees the
designer from the need to generate test vectors. Model checking checks the
properties specified for every possible input sequence. However, most chips are
not designed to accept every possible input sequence, so if a given property
fails for an illegal input sequence, it is of no interest. Thus, we need a way in
which to specify all the legal input sequences to the formal verification tool.
We can do this by specifying a model of the expected environment. This model
describes the legal input sequences to the design under test.

One of the practical problems of model checking is known as “the size prob-
lem”. Because of the size problem, complete model checking runs can verify
designs that have a few hundred state variables (latches or flip-flops). This is
not enough to be useful in real hardware designs.

The RuleBase formal verification tool solves the size problem by renouncing
the proof of truth that is possible with model checking on small designs. By
renouncing the proof of truth, RuleBase can verify designs that contain up to a
few thousand state variables. Although an answer of “true” to a specification is
no longer a firm indication that the design is correct, an answer of “false” with
a counter-example is an indication of a bug in the design (or specification or
environment). This way, RuleBase can be used to obtain much better verifica-
tion than is possible using simulation alone, even for designs that are too large
for complete model checking.

One of the ways of dealing with the size problem is to reduce the design under
verification. Reduction is accomplished by analyzing the environment descrip-
tion provided by the user as well as the specification to be checked, and elimi-
nating any logic that has no bearing on the specification under the

environment. Using the techniques of reduction in combination with renounce-

IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



Introduction 10

ment of the proof of truth is known as over-reduction. For instance, instead of
describing the complete environment of the design under test, the user may
choose to describe a subset of that environment. RuleBase uses the environ-
ment to reduce the design to a size that is suitable for model checking. Then,
another subset of possible behaviors can be described. Thus, the user has com-
plete control over the reduction process. An answer of “true” for a specifica-
tion under a specific environment indicates that in this specific environment,

the specification is true, but it does not indicate anything about the truth or fal-
sity of the specification under other environments.

1.1.1 About This Document

The remainder of this document is structured as follows:

» CHAPTER 2: Getting Started — explains how to access RuleBase, how to set up
a verification environment, and how to prepare a design for formal verification.

» CHAPTER 3: Tutorial — provides a hands-on introduction to RuleBase in the
form of a tutorial. The tutorial presents a small design of a buffer and shows how to
verify it under RuleBase.

* CHAPTER 4: Describing the Environment —explains how to specify environ-
ment behavior and discusses arrays, non-determinism, fairness, clocks, and more.

» CHAPTER 5: Sugar — The RuleBase Specification Languagedescribes both
CTL and Sugar, and the models on which they operate.

« CHAPTER 6: Sugar — Formula Examples -includes a list of useful formula
patterns, mainly for novice users.

e CHAPTER 7: Managing Rules, Modes, and Environments suggests how to
manage verification projects.

» CHAPTER 8: Size Problems and Solutions discusses the techniques used to
extend the design size limit as far as possible.

» CHAPTER 9: Debugging Aids —describes various debugging aids that are part
of the RuleBase tool.

» CHAPTER 10: Graphical User Interface: Tool Controls and Options —

describes the tool controls and options available, and how to set them from the
graphical user interface.

RuleBase: a Formal Verification Tool
Provided by special agreement with IBM



11 CHAPTER 1

« CHAPTER 11: Design for Formal Verification — presents some practical design
guidelines to aid in formal verification.

e CHAPTER 12: Coverage Methodology -describes some ways to approach the
problem of completely covering the block when proof of truth is not possible
because of size problems.

« CHAPTER 13: Advanced Verification Engines (RuleBase Premium) —
describes additional verification engines that are included in the RuleBase Pre-
mium version.

 APPENDIXAPPENDIX T: Option tables — describes different settings and
options which can be adjusted in order to enhance RuleBase’s performance.

IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



CHAPTER 2

Getting Started

2.1 Accessing RuleBase
Before running RuleBase for the first time, perform the following:

Note: The instructions below are for csh users; if you are using another shell,
use the appropriate replacements.

 In your home directory, in the fileshrg add the following lines:
setenv RBROOT <directory>
alias rb “$RBROOT/guirb.bat”
where <directory> is the full path to the directory in which RuleBase binary
files are installed.

« To bring these settings into effect, ergeurce .cshrc

« Check to make sure you have access to $RBROOT.
If you do not, call the local RuleBase focal point, or contact us (see the
cover page for our email address).

« Copy the following files from $RBROOT to your home directory:
Guirb, Scope Cctdag, Analyze

RuleBase: a Formal Verification Tool
Provided by special agreement with IBM



13 CHAPTER 2

2.2 Preparing the Verification Environment

This section provides an example of how to quickly build a working environ-
ment. These instructions should help you create an initial environment with
which to experiment, and are not meant to give you a complete understanding
of working with RuleBase.

Note: Some of the file names (e.g., envs and rules) are only recommendations
and you may select other names for these files.

You must first create a new directory in which the verification process will take
place. Your verification files will be located in this directory, and RuleBase will
also create various files and sub-directories in this directory.

Before running the first rule, prepare:

« The design to be verified
« Filerulebase.setup

« Fileenvs

« Filerules

e Filerun

We describe each of these items in the following sections.

Note: RuleBase supports several hardware description languages (VHDL,
DSL, Verilog) and several translation/synthesis paths. “Design Translation”

on page 20 details how to prepare the design for verification. If your design
environment is not mentioned, please contact us. CHAPTER 11: Design for
Formal Verification suggests design rules that can ease the verification process
(e.g., proper partitioning).

IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



Getting Started 14

2.2.1 "rulebase.setup”

This file should exist in the verification directory and must include (at least) the
following four lines:

« setenv entity <DESIGN_NAME>
This is the name of the top-level entity of your design (in upper case).
“Design Translation” on page 20 explains what is considered an entity in
each of the translation paths.

« setenv name <design_name>
This is the name of your top-level design file (without the extension).
“Design Translation” on page 20 explains what is considered a hame in
each of the translation paths.

e setenv SYNTHESIS <path>
This is your translation path: it can be either DSL, HIS, HIS_VERILOG,
SYNOPSYS, or VIM.
See “Design Translation” on page 20 to determine which of these to use.
If you need the Compass translation path, please contact us for instructions.

« setenv databasenvs
The file envs is where your environment models and rules are written. The
file is described below.

RuleBase only reads the rulebase.setup file once, at the beginning. Any change
to this file requires that you either exit and re-start RuleBase or select the “File/
Read rulebase.setup” menu option.

2.2.2 "envs"

This file should include environment models. Although it is possible to mix
models and specifications, we recommend that you separate them. Hence,
environment models are in tleavsfile and specifications are in thdesfile.

On the first line of filenvswrite:

#include “rules”

RuleBase: a Formal Verification Tool
Provided by special agreement with IBM
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This way, RuleBase knows it should read therfiles If you wish to write
your environment models in several files, connect the other fikgs/gusing
the#include command.

To start working, you must give a behavior to euaput signal of your

design. To provide full legal behavior for each of your input signals, see
CHAPTER 4: Describing the Environment before proceeding. In addition, we
recommend that you read CHAPTER 4. Describing the Environment before
beginning real verification work.

If you just want to try out RuleBase, you can give a simple (possibly incorrect)
behavior to your input signals. For each signal choose one of three possible
behaviors:

define SIGNAL1 := 0;
define SIGNAL2 = 1;
var SIGNAL3 : boolean

The first two possibilities assign a constant value to the input signal. The third
one gives an input signal totally free behavior: SIGNAL3 may change on every
cycle. A signal given this behavior is called “a free variable”. At this stage,

you do not want to leave too many variables free because it may cause a quick
explosion of the state space. However, if you are only interested in seeing your
design function, it is reasonable to leave five to ten signals as free variables at
this stage.

Note: In some translation paths, all signal names of the design are converted
to upper case.

Pay special attention to tliesetand clock signals. For a complete discussion

on how to model these signals, see “Modeling Reset” on page 105 and “Mod-
eling Clocks” on page 102. For now, the simplest clocking scheme - one clock,
is assumed to be sufficient.

1. Assign the clock signal the constant value ‘1’
defineCLOCK :=1; -- where CLOCK is the clock name in your design.

IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM
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2. Assign the reset signal the following behavior:
var reset_state : 0..3; -- Assuming that three cycle reset is required
assign
init (reset_state) :=0;
next(reset_state) :=

case
reset_state < 3 : reset_state + 1;
else 3
esag
defineRESET := (reset_state != 3); -- where RESET is your reset signal

If your design needs more than three cycles of active reset, you may increase
the cycle length by changing ‘3’ to the desired number.

2.2.3 "rules"

Write your specifications in thellesfile. Here, as in thenvsfile, you may
write the rules in several files and use#ireclude directive to connect them.

Each rule should have the following format:

rule <namex{
“ <a comment describing the rule>”

formula
“ <a comment describing the formula>"
{ <sugar-formula}

formula
“ <a comment >"
{ <another sugar formula}>

}

A rule must have a unique name and may contain any nhumber of formulas.
Comments are optional in both the rules and formulas. In addition, a rule may
contain environment models that override the default environment. For more
information, see “Defining Rules and Modes” on page 149.
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The most important part of the rule is its specification, written as a Sugar for-
mula. We describe Sugar, the RuleBase specification language, in CHAPTER
5.

To get started with writing rules for RuleBase, choose an (impodatpjt
signal of your design, and write the following rule in yauesfile:

rule start{
“getting started”

formula
“just to see a rule running”
{ AG AF (<output-signal>}

}

The above formula states that on every path, always, a state will exist in which
<output-signal> has the value one.

You may write more formulas (either in rugartor in separate rules) to check
real properties of your design. The most simple form of a formula is
formula { AG !( <some-bad-event>) }
where <some-bad-event> stands for a Boolean expression that should never be

true in your design. For examplegiiablelandenable2are two signals that
should never be active at the same time, the following formula can be used:

formula { “enablel and enable2 are mutually exclusid&( lenablel| lenable?2) }

For additional formula patterns, see CHAPTER 6: Sugar — Formula Exam-
ples.

2.2.4 "run"

Therun file is only needed for batch runs. However, we recommend that you
prepare it now. Copy this file from $RBROOT to the working directory.
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2.3Running RuleBase

After preparing the four items described in the previous section, you are ready
to run RuleBase.

1. Typerb in your verification directory.
The RuleBase window will appear. A list of the rule names you defined (See
“'rules"” on page 16) should appear on the left side. In our case, the rule
“start” will appear.
To the right of the rule list is a column of yellow push buttons that activate
commonly used commands. There is also a large text area for displaying
files. At the top of the window, there is a menu bar and a message line.

2. Select thestart rule from the rule list and press tRen push button. Rule-
Base will start to run your rule.

Watch the log of your run as it appears in the RuleBase window. If the log
scrolls too fast, you can use the scroll bar on the right hand side. When you
touch the scroll bar, the bottom righrieezebutton turns red and changes to
Frozen. To see the updated log and free the display, press tkeazeh but-

ton.

The following describes the verification process:

First, the design is translated into an internal representation. The translated
design is kept on the disk for use in future runs. The translation process will
only be repeated for a new version of the design.

Next, RuleBase loads the design, the environment models, and the formulas
into memory. At this time, RuleBase performs many types of checks, and gives
warning messages where necessary.

Press th&Varning push button to see a list of all the warning messages pro-
duced during the run. After you press Warning button (or any other but-
ton), press theog push button to display the log again.
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Note: Pay attention to the warning messages as they may indicate serious
problems.

Then, Reduction takes place. Reduction removes parts of the design that are
not required for the verification of the formulas of the current rule. It also links
those environment models that resolve essential input signals to the design.
Information regarding the size of the design (in terms of flip-flops and gates) is
displayed before and after the reduction.

After reduction, the actual verification process begins. During verification, two
types of messages appear continuously: ‘nodes allocated <number>" and ‘iter-
ation <number>’. Whenever ‘nodes allocated’ grows too much, dynamic BDD
ordering will try to reduce the number of nodes. Hopefully, at this stage of
experimentation the reduced design is fairly small. That is, ‘nodes allocated’
are less than 500,000, ‘iteration’ is less than 200, and the total run time is a few
minutes. Otherwise, you will have to reduce the design further by restricting
some free inputs, or employ more advanced methods, as described later in this
manual.

3. At the end of the run, press tResultsquick button.
Your rule will be displayed with one of three possible results: “failed’,
‘passed’, or ‘vacuously’. If you get an ‘unknown’ result, it means that you
pressed th&esultsbutton too early and your run was not finished.
Press thé.og push button to see the log again.

If the result is ‘failed’, it means that your formula does not hold true in your
design, and a counter-example was produced. If the result is ‘passed’, your
formula holds true. To see the counter-example of a failed formula, click the
left mouse button near the word ‘failed’, then drag the mouse and cl8juse
timing diagram. See CHAPTER 9: Debugging Aids for instructions on how
to use the timing diagram browser. If the result is ‘vacuously’, no timing dia-
gram exists for this formula. This result may indicate a problem in the for-
mula, environment or design (see “Debugging Aids” on page 166 for an
explanation of vacuity).
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Some of the formulas may have failed because the environment behavior is
wrong, as some of the free inputs have unexpected behavior. We suggest that
you use this opportunity to refine the environment model. You can try to make
use of your short experience with the tutorial, or read CHAPTER 4: Describ-
ing the Environment to learn more about environment modeling.

4. After changing your environment or adding formulas, save the editor’s
buffer. Then, select the rule that you want to run from the rule list (if it is not
already selected), and press e button again.

If the name of a newly created rule does not appear in the rule list, select the
“File/Refresh” menu option.

5. Repeat the process of refinement and analysis until all the rules that should
pass, do pass.
You may also add rules and formulas to cover all the interesting properties
of your design.

Note: To learn more about formulas and rules, read CHAPTER 5: Sugar —
The RuleBase Specification Language, CHAPTER 6: Sugar — Formula Exam-
ples, and CHAPTER 7: Managing Rules, Modes, and Environments. Browse
through the other chapters to learn more about tools and methods that Rule-
Base provides to ease successful verification.

To exit RuleBase, select thEile/Quit” menu option.

2.4 Design Translation

RuleBase supports several Hardware Description Languages (HDLs) and sev-
eral translation paths. Wherever possible, it uses existing tools of the design
environment—compilers and synthesizers—to translate the HDLs into a lower
level representation that only consists of basic gates and flip-flops. The follow-
ing sections describe how to translate the design in some of the environments.

If none of the environments described here meet your needs, please contact us.
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2.4.1 CLSI and HIS / VHDL

The following section describes setting environment variables for CLSI and
HIS/VHDL users.

2.4.1.1 Setting Environment Variables

To set the environment variables, add the following lines toullebase.setup
file in your verification directory:
setenv name <TOP>

# <TOP> is the top-level entity in your design (in capital letters)

setenv entity <TOP>

# <TOP> is the top-level entity in your design (in capital letters)
setenv SYNTHESIS HIS

setenv SRC <directory>

# The directory in which the VHDL files are located (optional)

setenv sources “<VHDL-files >"

# <VHDL-files > is a list of VHDL file names separated by spaces.
# The files should appear in bottom-up reference order.
# The entire list should be written as one line.

It is usually enough to set the above environment variables in order to work
with HIS/VHDL.

Note: You only need to read the next two sections if you encounter problems.
We recommend that you review the HIS compilation messages in order to
locate possible problems.
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2.4.1.2 Setting CLSI and HIS Variables

The RuleBase focal point usually only needs to perform this setup once per
site, in which case you may skip the rest of this section.

The $RBROOT/../his_aix/clsi.local file stores site-specific settings. It contains
the following information:

setenv VTIP <vtip>

# <vtip> is the directory in which the clsi compiler is located.
setenv LM_LICENSE_FILE <CLSI licence file>
For each of the VHDL libraries you use, add the following two lines:

setenv dIs_<lib> <directory>

# <lib> is the library name in lower-case

setenv <LIB> dIs_<lib>

# <LIB> is the library name in upper-case

Check to make sure that the libraries are CLSI-compiled, and that compilation
is performed in bottom-up reference order.

You can have your own copy of the clsi.local file. If clsi.local exists in the ver-
ification directory, it is read instead of the central clsi.local.

2.4.1.3 Hints

1. Ifthe VHDL attribute BTR_NAME is used with an entity, this entity will be
synthesized as a black box, unless attribute RECURSIVE_SYNTHESIS is
setto 1. RECURSIVE_SYNTHESIS can either be specified in an entity def-
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inition or in a component instantiation. There is no way to specify it glo-
bally.

2. The GEN directiveange is not supported; udeft andright instead.
Wrong way: GEN: for | in Dataln’range generate
Right way: GEN: for | in Dataln’left downto Dataln’right generate

3. HIS needs to know all the pins that should be treated as bidi’'s. You can do
this in one of the following two ways:

e Attach attribute IO_PHYSICAL_DESCRIPTION =
Bl_DIRECTIONAL to each inout port.

« Attach attribute PHYSICAL_PINS = TRUE to the Entity (then all its
inout ports are considered bidi’s).
HIS will split every bi-directional signal into two signals (input and
output) for the purpose of formal verification with RuleBase

4. Look for the string “DUMMY” in the compilation log file. If it appears, a
cell library was missing and the compilation considered the cell to be a
black box.

2.4.2 HIS/Verilog

The following section describes setting environment variables for HIS/VER-
ILOG users.

2.4.2.1 Setting Environment Variables
Add the following lines to fileulebase.setum your verification directory:

setenv nhame <TOP>

# <TOP> is the top-level module in your design

setenv entity <TOP>
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# <TOP> is the top-level module in your design (in capital letters)
setenv SYNTHESIS HIS_VERILOG

setenv SRC <directory>

# The directory in which the Verilog source files are located (optional)

setenv sources “<Verilog-files >”

# <Verilog-files > is a list of Verilog file names separated by spaces.
# The entire list should be written as one line.

2.4.3 TexVHDL

Note: The following information may become inaccurate as a result of com-
piler changes. In cases of doubt, consult the TexVHDL Compiler Reference
Manual.

setenv name <ENTITY>

# <ENTITY> is the top-level entity in your design

setenv entity WORK.<ENTITY>.<ARCHITECTURE>

# <ENTITY> is the top level entity in your design and <ARCHITECTURE> is the top
level architecture (both in capital letters)

setenv SYNTHESIS TEXVHDL

setenv sources <makefile>

# <makefile> is the name of a file that contains a list of VHDL source file names, one name
in each line. Files are listed in bottom-up order - referenced files appear before the refer-
encing file.

setenv VHDLPATH <path>
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# <path> is a list of directory names, separated by colons, in which the source VHDL files,
not including library source files, reside.

setenv DBIN <path>

# <path> is a list of directory hames, separated by colons, in which the compiled protos,
including library protos, reside.

setenv TEXSIM_DIR <dadb_install_dir>

# If you define TEXSIM_DIR, RuleBase will load DaDb tools from this directory. Other-
wise, the tools will be loaded from $RBROOT (the RuleBase installation directory).

2.4.3.1 Working with TexVHDL Libraries

If the libraries are not yet compiled, compile them by following the instruc-
tions in the TexXVHDL Compiler Reference Manual. Then, for each library add
the following to the “rulebase.setup” file in the verification directory:

1. Define an environment variable whose name is the library name (in upper
case) that points to the library source files. For example:
setenv |IEEE .../vhdl/source/ieee
2. Add the directory with the compiled protos to DBIN. For example:
setemv DBIN “${DBIN}..../vhdl/protos/ieee”

Library source files should not be included in the makefile.

2.4.4 Synopsys / VHDL

With the Synopsys translation path, you must compile the design into a gate-
level description outside of RuleBase. The result should be a single gate-level
VHDL file, <name>.vhdl, that only consists @fot andand VHDL operators,

and the component SYNOP_BASIC_FF. You can use the following dc_shell
commands to create gate-level VHDL.

1. vhdlout_write_components = false
2. vhdlout_equations = true
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verilogout_equation = true

verilogout_write_components = false

target_library = “gtech.db”

6. read -format vhdl { <vhdl_file1>, <vhdl_file2>, ... } /* Read VHDL files */

7. current_design = <top_level_entity_name> /* Specify name of top-level
entity */

8. compile -no_map /* Compile with low effort */

9. replace_synthetic -ungroup

10. ungroup -all -flatten /* Sometimes more flattening is needed */

11. write -no_implicit -format vhdl -o <name>.vhdl /* Write gate-level VHDL
*/

12. quit

A

Add the following lines to theulebase.setufile in your verification directory:

setenv name <name>

# <name> is the gate-level VHDL file name without the extension

setenv entity <NAME>

# <NAME> is the same as <name> but in capital letters

setenv SYNTHESIS SYNOPSYS

2.4.5 Synopsys / Verilog

The Synopsys/Verilog path is very similar to the Synopsys/VHDL path. In fact
there are two paths:
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« \erilog to gate-level Verilog
Use the instructions in “Synopsys / VHDL” on page 25, but replace ‘-format
vhdl’ by ‘-format verilog’ in lines 6 and 11. Then, translate gate-level Ver-
ilog to gate-level VHDL using the v2v tool provided with RuleBase. (This is
a temporary workaround.)

« \erilog to gate-level VHDL
Use the instructions in “CLSI and HIS / VHDL” on page 21, but replace ‘-
format vhdl' by ‘-format verilog’ in line 6.

2.4.6 DSL

RuleBase can read standard DSL files, including DSB library files. The only
special preparation needed is for latches and flip-flops.

If you use the master outputs of a master-slave latch, or if you do not use mas-
ter-slave latches or edge-triggered flip-flops, contact us for instructions to learn
how to map your memory elements to standard RuleBase elements.

If you use master-slave latches and only use slave outputs, or if you use edge-
triggered flip-flops, follow the directions in “Mapping Master-slave Latches

and Edge-triggered Flip-flops” on page 27, to map your latches and/or flip-
flops to standard RuleBase elements.

After mapping your memory elements, follow the directions in “Setting Envi-
ronment Variables” on page 29 to set up a DSL environment for formal verifi-
cation.

2.4.6.1 Mapping Master-slave Latches and Edge-triggered Flip-flops

1. Your DSL file should instantiate a device that represents the memory ele-
ment (it should not make direct use of the “Register” statement of DSL).

2. Replace the desblo file that represents your basic memory element with a
desblo file that instantiates the standard RuleBase register NBITREG.
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An NBITREG is a 1-32 bit memory element that represents a simple
master-slave latch or D-flip-flop. It has the following inputs:

e« CLK — the clock.

« DATA_IN(0O..N) — the data input.

« ASYNC_SET - an asynchronous set.
« ASYNC_RESET - an asynchronous reset

and the following output:

« DATA_OUT(0..N) — the data output.

If your master-slave latch or flip-flop has scan pins or other circuitry not
directly related to the functionality of the memory element, they should be
ignored (left unconnected).

Below is an example that maps a master-slave latch called “latch4l” with scan
pins to the standard RuleBase memory element NBITREG. As you can see in
the example, the scan pins and the slave clock are left unconnected.

/*1 TO 32 BIT SRL REG */

SIM = SYN

CALL CHECKPARM
CALL CHECKPARM
CALL CHECKPARM
CALL CHECKPARM
CALL CHECKPARM
CALL CHECKPARM
CALL CHECKPARM

GENERATE
BLOCK

INPUT
DI #bitrange#,

‘width’ 132 1
‘set’ 010
‘reset’ 010
‘nl2’ 010
‘hide” 020
‘bhc’ 030
‘type’ 060
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SHIFTCLK IS B"0”,

MASTERCLK,

SLAVECLK IS B"0",

SCIN IS B"0”,

SETL1 IS B"0”,

RESETL1 IS B"1";
OUTPUT

PL20OUT #bitrange#;
DEVICE U : NBITREG (width=#width#)
MASTERCLK. ... ... | CLK |
Di#bitrange#. . .. ... .. | DATA_IN |
SETLL............. | ASYNC_SET |
RESETL1 .......... | ASYNC_RESET |

| DATA_OUT | PL2OUT#bitrange#;

END BLOCK
END GENERATE
END SIM=SYN

If you have neglected to perform this step (mapping of memory elements to
standard RuleBase memory elements), RuleBase will notify you with the fol-
lowing message:

Unknown box type: <a lowest-level register name>

2.4.6.2 Setting Environment Variables

These instructions use the following notation:

« <top>.dessrc — the top-level DSL file.
« <dir> - the directory in which formal verification will take place.
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Add the following lines to theulebase.setufile in the verification directory.

setenv name <top>

setenv entity <TOP> # Same as <top> but in capital letters

setenv SYNTHESIS DSL

setenv database envs # Name of environments file

setenv sources <top>.dessrc

setenv DSLPATH .:<directories containing relevant DSL files>

setenv DSBPATH .:<directories containing relevant DSB files>:$RBROOT
setenv DSLOUT . # Directories in the above lists are separated by colons

2.4.6.3 Flip-flop Initialization

If you use a reset signal for initialization, connect it to the ASYNCH_SET or
ASYNCH_RESET appropriately. If another initialization scheme is used (e.g.,
through the scan chain), it can be translated to a set of EDL statements (see
CHAPTER 4: Describing the Environment). If you use Boeblingen-style srl
initialization files, contact us.

2.4.6.4 Compilation Errors

In the case of compilation errors, see file compile.msg.

2.4.7 Koala Verilog Compiler

RuleBase comes with a native Verilog front-end, Koala, which can be invoked
using the following settings:

setenv SYNTHESIS KOALA_VERILOG

setenv entity <TOP-LEVEL-MODULE-NAME>

# the value of this environment variable is the name of the topmost
# block in the design under test
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setenv name <TOP-LEVEL-MODULE-NAME>

# for historical reasons, there should also be a definition of environment
# variable $name, with exactly the same value as for $entity

setenv sources <SOURCE-FILE-LIST>

# the value of this environment variable is a blank-separated
# list of verilog source files.

Example:
setenv SYNTHESIS KOALA_VERILOG
setenv entity dunit

setenv name dunit
setenv sources “dunit.v mux16_4.v arbiter.v”

If there are a lot of files in the model, it is convenient to create a wrapper file,
for example “all_files.v”, which contains ‘include’ directives for the Verilog
preprocessor to include all the model files. Then, use the following:

setenv sources all_files.v

2.4.8 Compass

If you wish to use the Compass translation path, contact us for instructions.
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Tutorial

3.1 Introduction

This tutorial presents a small design of a buffer, and explains how to verify it
under RuleBase. Since RuleBase supports both VHDL and VERILOG, we
cover both in this tutorial.

Note: You can find a more comprehensive tutorial on our web site at:
http://www.haifa.il.ibm.com/projects/verification/RB_Homepage/tutorials.html

After completing this tutorial, you should feel comfortable enough to begin
using the RuleBase tool. However, we assume you have basic knowledge in
logic design. It is important that you don’t override the special options settings
with which the tutorial comes, and that you perform all the steps in the speci-
fied order. Moreover, since the tutorial does involve code modifications, make
sure that you start to work on a fresh unmodified copy.

All files referred to in this chapter can be found in the tutorial directory.

« The VHDL tutorial usually is located:
$RBROOT../tutorial/tutorial _vhdl.

RuleBase: a Formal Verification Tool
Provided by special agreement with IBM



33 CHAPTER 3

« The VERILOG tutorial usually is located:
$RBROOT../tutorial/tutorial_verilog.
Make a private copy of this directory from which to run the tutorial.

We assume that you have access to $SRBROOT and that you performed the ini-
tial setup as described in “Accessing RuleBase” on page 12.

3.2 Specification

BUF is a design block that buffers a word of data (32 bits) sent by a sender to a
receiver. It has two control inputs, two control outputs, and a data bus on each
side, as shown by the block diagram:

........................

-StoB_REEi BtoR REQ !
: ‘BtoS_ACK ‘RtoB_ACK .
Sender : BUF . Receiver
:» |*E
L _: DI(0..31) DO(0..31) o

Communication (on both sides) takes place by means of a 4-phase handshak-
ing as follows:

When the sender has data to send to the receiver, it initiates a transfer by put-
ting the data on the data bus and asserting StoB_REQ (sender to buffer
request). If BUF is free, it reads the data and asserts BtoS_ACK (buffer to
sender acknowledge). Otherwise, the sender waits. After seeing BtoS_ACK,
the sender may release the data bus and deassert StoB_REQ. To conclude the
transaction, BUF deasserts BtoS_ACK.

When BUF has data, it initiates a transfer to the receiver by putting the data on
the data bus and asserting BtoR_REQ (buffer to receiver request). If the
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receiver is ready, it reads the data and asserts RtoB_ACK (receiver to buffer
acknowledge). Otherwise, BUF waits. After seeing RtoB_ACK, BUF may
release the data bus and deassert BtoR_REQ. To conclude the transaction the
receiver deasserts RtoB_ACK.

3.3BUF Implementation

An implementation of BUF, written in VHDL, is described in tB&JF.vhdfile
(See “BUF implementation in VHDL” on page 44).

The VERILOG implementation resides in thef.vfile (See “Implementing
BUF in VERILOG” on page 47).

From the source file, you can see that it consists of four parts:

1. State machine SENDER_INTERFACE - controls the interface with the sender state
machine.

2. RECEIVER_INTERFACE - controls the interface with the receiver.
3. OCCUPIED_FLAG - a flag that indicates whether BUF has data.
4. DATA_BUFFER - a register that holds the 32 bit data.

Knowledge of implementation details is not mandatory, unless you want to
fully understand the bug fix in the sequel. In this case, we suggest you read the
source file: VHDLBUF.vhdor the VERILOG buf.v.

Depending on the user’s design environment, RuleBase supports several auto-
matic translation paths of the implementation to a lower level format suitable
for verification.

» For VHDL users:
No specific VHDL translation path is set for this tutorial, and the VHDL file
is already translated for you.

+ For VERILOG users:
RuleBase implicitly translates this file.
To make the appropriate design available for verification, sgiaplin the
unix command line.
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3.4 Modeling the Environment

This section explains how to assign behavior to primary inputs. If inputs are
left unspecified, unexpected input sequences may induce incorrect behaviors of
the implementation. These are calfal$e negatives “bugs” which result

from a behavior that is impossible in the real environment.

Environment models are described in EDL (Environment Description Lan-
guage). Models for this example are in tkavsfile. For the sake of clarity, all
models are written in a uniform style. First, a module that describes the behav-
ior is defined, and then the module is instantiated. This is similar to defining a
function and then calling it. Both the sender and receiver require models.

The sender model (see below) has one state variable with two states: idle and
busy. It begins in the idle state, in which it has no data to send. If the previous
transaction has terminated (BtoS_ACK=0), the sender non-deterministically
decides if it wants to send data. When it decides to send data, it goes to the
busy state and raises StoB_REQ. It stays there for an arbitrary amount of time,
at least until BUF acknowledges the acceptance of data (BtoS_ACK=1). This
delay is arbitrary because the specification doesn’t force the sender to release
StoB_REQ immediately. The sender then returns to the idle state.

module sender ( reset, ack )(req) -- two inputs and one output
“The sender initiates data transfers ‘at random’ and stays active for

an arbitrary long time.” -- a textual description
{
var state : {idle, busy }; -- has two states
assign
init (state) := idle; -- begins in the idle state
next(state) := -- next-state function
case
reset : idle; -- remains idle during reset
state=idle & 'ack : { idle, busy };  --ifidle and ack is inactive,
eango to busy
state=busy & ack : {idle, busy }; --if busy and ack is active,
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eanreturn to idle

else: state; -- else stay in the same state
esag
definereq := state=busy; -- req is active when sender is busy

}
instancesender : sender ( RST, BtoS_ACK )( StoB_REQ ); -- instance of module sender

By using non-determinisnall possible situations are checked. It is not a ran-
dom selection of one or a few execution paths. The simple, abstract model rep-
resents all possible variations of a real sender, no matter how complicated they
are, provided that they adhere to the specified protocol.

The receiver model (below) is surprisingly similar to the sender (in fact this
tutorial could use the same module but they are left separate for clarity.)

module receiver ( reset, req )( ack)
{
var state : {idle, busy };
assign
init (state) := idle;
next(state) :=
case
reset : idle;
state=idle & req: {idle, busy };
state=busy & 'req : { idle, busy };
else: state;
esag
defineack := state=busy;

}
instancereceiver : receiver ( RST, BtoR_REQ )( RtoB_ACK);

A behavior is assigned to the reset (RST) signal; it is asserted for one cycle at
the beginning of execution.

module resetl ()( RST)
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“A one cycle reset at the beginning”
{
var RST:boolean
assign
init(RST) := 1,
next(RST) := 0;
}

instancereset : resetl ()( RST);

Since RuleBase runs the clock itself (in the case of a design with a single
clock), the clock (CLK) is stuck at ‘1’, as follows:

defineCLK :=1
See “Modeling Clocks” on page 102 for a complete explanation of clocks.

Note that we didn't assign behavior to data inputs, since the first rules that we
are going to write do not refer to data, and control is not affected by data. The
32 bit register and the data inputs will be dropped automatically during reduc-
tion.

3.5 Specifying Properties for Verification

Now we want to verify certain properties (rules) of BUF. You can find the full
text of these rules in thalesfile. The first property claims that neither over-

flow (two reads without a write in between) nor underflow (two writes without

a read in between) can occur. Actually, this example claims that the input
acknowledge and output acknowledge operations are interleaved. The first for-
mula says the following: “it is always true that if RST is not active and
BtoS_ACK is asserted, then beginning from the next state, RtoB_ACK will be
asserted before BtoS_ACK is asserted again”. The second formula is similar.
As you can see, explanatory comments may be embedded for the rule and for
each formula.

rule ack_interleaving {“input acknowledge and output acknowledge are interleaved”
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formula
“No overflow: RtoB_ACK is asserted between any two BtoS_ACK assertions”

{AG ( 'RST &rosgBtoS_ACK) ->
AX (rosgRtoB_ACK) before rosg¢BtoS_ACK) ) ) }

formula
“No underflow: BtoS_ACK is asserted between any two RtoB_ACK assertions”

{AG ('RST &rosgRtoB_ACK) ->
AX (rosgBtoS_ACK)before rosgRtoB_ACK) ) ) }

}
3.6 Performing Verification

The rulebase.setufile describes the verification environment: VHDL or
VERILOG file name, VHDL or VERILOG entity name, the file that contains
environment models and rules, and the translation path.

Note for VHDL users:To avoid specific compiler dependency, the translation
path assumes an input generated by Synopsys.

To activate RuleBase, typb.
RuleBase will then run as a background process.
(To exit from RuleBase, select the menu op&de/Quit.)

Look at the RuleBase front panel. We only use four parts of the front panel for
this tutorial:
1. A status window with red lines at the upper part.

2. Alist of rules to be verified (on the left). This list currently has three entries.
Sometimes the rule name is preceeded by a status letter, such as 'D’ (Done),
'R’ (Running), or 'K’ (Killed).

3. A column of yellow push buttons to control verification and its options.

4. A big text window that occupies most of the work area, and is used to dis-
play important information.
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To verify the property specified above, select the aale interleaving and

press thdkun button.

Belp

i Beich  Bestil Debmerin

P of rule ol jabeslen)ng

frmed Dfewatlbea 2
berping_darn Lt L ]

Ao Aderalben 5
st R frwoe dferwlbon &
ELiR nasden wllocabed: TRE
frmos Bferwtbon O
m raedar Bl |loenbed: THE
ftrmor Qfsvwtbon
i Priesimg witeeen Mor Torsels ma, J

Prilnt Fuplaastion La doees,

&1 Ferssalios are eonleaded

[ .
1 Fmiled TLll Clight presfh
£ pasmed iwl  12] Clight proolh

Preez Ehe Bazpliz Satice lTar ressli anslpzis

Bk Find |

wnzm fbaf = ock_gedrrloaving ssssssssssssmssss s

Edit Freeze

FIGURE 1. Front panel of RuleBase

While the rule is running, a log of its execution is displayed in the text window.
At present, the only interesting information is the final result, which is: the first
formula failed and the second one passed. The term “light proof” has to do
with the specific verification algorithm. The failure means that there is a case in
which there are two consecutive BtoS_ACK with no RtoB_ACK in between.

3.7 Problem Analysis

To view the results, press tiiesultsbutton. Information about the two formu-
las will be displayed in the text window. The area for each formula consists of
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three parts: verification results, an English description of the verified property
(a display of the comment coded by the user), and the actual formula.

1. Click the mouse button anywhere in the area of the first formula. A pop-up
menu will appear.

2. To selectShow timing diagram, drag the mouse to this entry and release
the button. Wait a few seconds until the timing diagram appears and dis-
plays a counter-example. All relevant signal names are shown. (To display
diagrams for additional signals, click their names in the left list. For a
detailed description of the waveform display, see CHAPTER 9: Debugging
Aids.)
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FIGURE 2.

A counter-example is a trace that demonstrates a failure of the design to fulfill
a specified requirement.

Here we see an example in which the first formula fails: BtoS_ACK is asserted
in both cycles 9 and 15 while RtoB_ACK is constantly high.

To better understand the problem, look at the interaction between BtoR_REQ
and RtoB_ACK. The four-phase handshaking is broken in cycle 10, in which
BtoR_REQ is asserted although RtoB_ACK is active. This occurs because the
condition under which BUF can initiate a new transaction to the receiver is
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incorrect (the relevant line in BUF.vhd or buf.v is marked as a comment). BUF
only looks at the OCCUPIED flag and it also has to wait for RtoB_ACK to
become inactive.

3.8 Fixing Problems and Rerunning Rules

To fix the problem

1. Typesetup2at the unix command line.

2. Close the timing diagram (using tRéde/Quit menu option) and press the
Run. Wait a few seconds. Both formulas will now pass (as tautologies).

This replaces the incorrect line with the line next to it (currently a comment)
and recompiles the design.

3.9Witness

Suppose that for some reason (due to a problem either in the design or the envi-
ronment models), BtoS_ACK can never be asserted, or that it is only asserted
once and RtoB_ACK is never asserted. In both cases, the formula will pass
because there was no violation of the property.

This hides a problem of which you should be aware. It is calleglcaious pass

and it is a form of #alse positiveanswer. To show that the pass was not vacu-
ous, awitnesds generated. A witness is a timing diagram that exhibits an inter-
esting execution trace that demonstrates one case in which the formula is true.
An interesting execution trace is one in which each event mentioned in the for-
mula appears.

In our example, there is a “(w)” near the “passed” message. This means that a
witness is available. To display the witness, pRssults click the mouse
anywhere in the area of the first formula, and s&ackv timing diagram.

This time the diagram displays a witness, rather than a counter-example. That
is, this trace is an interesting positive example of the truth of the formula.
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Close the timing diagram.

3.10Data-Path Rule

1. If you have not already run 'setup2’, run 'setup2’ now.
Next, verify that the data sent to the receiver is the same data received from
the sender. The value of DI (data in) when BtoS_ACK is asserted (moment
of transfer to BUF) must be the same as the value of DO (data out) at the
next time RtoB_ACK is asserted (moment of transfer to receiver).
forall x(0..31):boolean
formula

{ AG (!RST & rose(BtoS_ACK) & DI(0..31)=x(0..31) ->
next_even{rose(RtoB_ACK))(DO(0..31)=x(0..31) ) ) }

(The operators are described in Chapter 5.)

2. Select rulekeeping_datafrom the rule list and press tRain push button.
RuleBase stops with a fatal error: design inputs DI(0) to DI(31) are unre-
solved. Since DO is referred to in the formulas and the value of DI influ-
ences DO, you must declare the DI vector. At first, it is given a fully free
behavior, which means that it can always change its value.

var DI(0..31) :boolean

3. This environment model already exists in dmesfile. To activate it,
remove the two dashes in front of the l#aefine WRONG_DATA at the
beginning of theenvsfile.

4. Press th&kun push button again and wait a few seconds.
Both formulas failed.

5. Press th&esultspush button, click the formula and sel8tiow timing
diagram.

You can see that the value of DO when RtoB_ACK is asserted is different from
the value of DI when BtoS_ACK is asserted. This happened because our
server environment model is not adhering to the requirement of keeping the
data stable while StoB_REQ is active. You will often see “bugs” that result
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from incorrect modeling of the environment. A common practice to avoid such
problems is writing rules that verify the correct behavior of the environment
models.

The following is a fixed version of DI:

var DI(0..31) :boolean
assign
next(DI(0..31)) :=
case
IStoB_REQ : nondets(32);
else: DI(0..31);
esag

To activate the fix

1. Remove the two dashes in front of the Wuefine CORRECT _DATA at
the beginning of the filenvsand add two dashes in front of the liidefine
WRONG_DATA.

2. Press th&kun push button again.

Both formulas passed.

3. To see a witness, preResults click the first formula and sele&how tim-

ing diagram.

3.11Reducing the Size of the Data Model

Sometimes testing the data consistency of all the vector’s 32 bits at once may
work very well, especially in large models. One technique is to test a single bit
instead of the whole vector. So, instead of comparing DI(0..31) with
DO(0..31), you can compare DI(0) and DO(0), while setting all other DI input
vector elements to a constant, for example, of 0.

The above rule can be simplified as follows:

rule keeping_ 1bit {
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forall x: boolean
formula

{ AG (!RST & rose(BtoS_ACK) & DI(0)=x ->
next_even{rose(RtoB_ACK))(DO(0)=x)) }

}
To test the rule

1. Remove the two dashes in front of the line #define WRONG_DATA

2. Add two dashes in front of the line #define CORRECT_DATA.
The rule keeping_1bit should fail quickly .

3. Remove the two dashes in front of the line:
#define CORRECT_ONE_BIT,and add two dashes in front of the line
#define CORRECT_DATA. The keeping_1bit rule should now pass very
quickly.

3.12Exiting RuleBase

To exit from RuleBase, select théde/Quit menu option.

3.13Exercise

So far in this tutorial, we have not mentioned rules that cover the entire buffer
specification. We encourage you to think of additional properties and formulate
rules accordingly.

We recommend reading the remainder of this manual, or at least reviewing
Chapter 5, which describes the specification language Sugar.

3.14BUF implementation in VHDL

library IEEE;
use IEEE.std _logic_1164.all;
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use IEEE.std_logic_unsigned.all;

entity BUF is port (
CLK,RST :in std_logic;
StoB_REQ, RtoB_ACK :in  std_logic;

DI 1in  std_logic_vector (31 downto 0);
DO : buffer std_logic_vector (31 downto 0);
BtoS_ACK, BtoR_REQ : buffer std_logic );

end BUF;

architecture RTL_VIEW of BUF is

type S_STATES is (S_IDLE, S_READ, S_DONE);
signal S_STATE : S_STATES;

type R_STATES is (R_IDLE, R_SEND);
sighal R_STATE : R_STATES;

sighal OCCUPIED, READ : bit;
begin

SENDER_INTERFACE: process
begin
wait until CLK’event and CLK="1";
if (RST ='1") then
S STATE <= S_IDLE;
elsif (S_STATE = S_IDLE) then
if (StoB_REQ = ‘1" and OCCUPIED = ‘0"
then S_STATE <= S_READ;
end if;

IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



Tutorial

46

elsif (S_STATE =S_READ ) then
S_STATE <= S_DONE;

elsif (S_STATE =S_DONE ) then
if (StoB_REQ ="'0")

then S_STATE <= S _IDLE;

end if;

end if;

end process;

RECEIVER_INTERFACE: process
begin
wait until CLK’event and CLK="1";
if (RST ='1’) then
R_STATE <= R_IDLE;
elsif (R_STATE = R_IDLE) then
if (OCCUPIED =1") -

--  if (RtoB_ACK = ‘0’ and OCCUPIED ='1’)

then R_STATE <= R_SEND;
end if;
elsif (R_STATE = R_SEND) then
if (RtoB_ACK ='1")
then R_STATE <= R_IDLE;
end if;
end if;
end process;

OCCUPIED_FLAG: process
begin
wait until CLK’event and CLK="1";
if (RST ='1") then
OCCUPIED <=0
elsif (OCCUPIED = ‘0’) then
if (READ ='1")
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then OCCUPIED <='1’;
end if;
elsif (OCCUPIED = ‘1") then
if (RtoB_ACK = ‘1" and BtoR_REQ = ‘1")
then OCCUPIED <='0’;
end if;
end if;
end process;

DATA_BUFFER: process
begin
wait until CLK’event and CLK="1";
if READ =‘1")
then DO <= DI;
end if;
end process;

READ <=‘1"when (S_STATE =S_READ) else ‘0’;
BtoS_ACK <=‘1"when (S_STATE = S_DONE) else ‘0’;
BtoR_REQ <= ‘1" when (R_STATE = R_SEND) else ‘0’;

end RTL_VIEW,;

3.15Implementing BUF in VERILOG

module buffer (CLK, RST, STOB_REQ, RTOB_ACK, DI, DO, BTOS_ACK,
BTOR_REQ);

input CLK, RST, STOB_REQ, RTOB_ACK;
input [31:0] DI,
output [31:0] DO;
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reg [31:0] DO;
output BTOS_ACK, BTOR_REQ);

parameter S_IDLE = 2'h0, S READ = 2'h1l, S_DONE = 2'h2;
reg [1:0] s_state;

parameter R_IDLE = 1'h0, R_SEND = 1'h1;
reg r_state;

wire read;
reg occupied;

always @(posedge CLK)

begin :SENDER_INTERFACE
if (RST)
s_state <= S_IDLE;
else
case (s_state)
S _IDLE:
if (STOB_REQ && !occupied)
s_state <= S_READ;
S_READ:
s_state <= S_DONE;
S_DONE:
if ISTOB_REQ)
s_state <= S_IDLE;
endcase

end

always @(posedge CLK)

begin :RECEIVER_INTERFACE
if (RST)
r_state <= R_IDLE;
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else
case (r_state)
R_IDLE:
if (RTOB_ACK && occupied)

/I wrong:
II'if (occupied)
r_state <= R_SEND;
R_SEND:
if (RTOB_ACK)
r_state <= R_IDLE;
endcase

end

always @(posedge CLK)
begin :OCCUPIED_FLAG
if (RST)
occupied <= 0;
else
case (occupied)
1'bO0:
if (read)
occupied <= 1;
1'b1:
if (RTOB_ACK && BTOR_REQ)
occupied <= 0;
endcase
end

always @(posedge CLK)
begin :DATA BUFFER
if (read)
DO =DI;
end
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assign read = (s_state == S_READ);
assign BTOS_ACK = (s_state == S_DONE);
assign BTOR_REQ = (r_state == R_SEND);

endmodule
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CHAPTER 4

Describing the Environment

4.1 Overview

This chapter describes the syntax and semantics of EDL constructs, suggests
modeling techniques and demonstrates them with some examples. Before start-
ing to write your environments, we recommend you read CHAPTER 7: Man-
aging Rules, Modes, and Environments.

4.1.1 Describing Environment Models

RuleBase checks the properties specified for every possible input sequence.
However, most chips are not designed to accept every possible input sequence.
Designers often assume a correct behavior of the target environment and sim-
plify the design by ignoring illegal behaviors.

RuleBase must be made aware of the environment’s legal behavior, otherwise
it might produce “false negatives”, which are counter-examples that result from
illegal input sequences. The way to specify environment behavior is to write
environment models, which are the logic that drives the inputs of the design to
be verified.
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Every input of the design must be assigned some behavior. Some inputs are
kept constant (e.g., configuration inputs), others remain completely free (non-
deterministic), while the control signals of interest are usually assigned
detailed and exact behavior.

Environment models are written in the RuleBase Environment Description
Language (EDL), a dialect of the SMV language. EDL is somewhat similar to
common hardware description languages (HDLs), but it also supports non-
determinism and multiple environments.

Environments are linked to the design and to other environments by signal
names. Signals produced by the environment will match and drive design sig-
nals that have the same name even if they are internal to the design, which is a
way to abstract by overriding, described later. Signals (both output and internal
signals) produced by the design will match and drive environment models that
require these signals. In some translation paths, design signals are converted to
upper-case.

Writing good environment models is an art. Good environments should be
small andsimple, while allowingall and only the legal behaviors. Environ-

ments should be small to avoid overloading the model-checker, and simple in
order to be easily written, read, and maintained. Good environment models
should not produce illegal behavior, or else false-negative results will be pro-
duced. On the other hand, they should model all the legal behaviors because an
un-modeled behavior is a good place for bugs to hide. An attempt should be
made to hide as much detail as possible using abstraction techniques (as
explained later).

The following are the stages of environment modeling:

 Study the block interfaces in detail. The behavior of every input and every
relevant output must be understood. This information can be gathered from
standard bus protocols, design documents, and communication with the
designers.
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« Plan the hierarchical structure of the environment models, grouping related
signals and reusing components where possible.

« Decide how to model each input. Some inputs are held constant, at least dur-
ing the initial stages of verification. Usually there is a set of interesting con-
trol inputs that need detailed modeling. We have to design and implement
logic to drive these signals.

« Code the logic in EDL.

4.2 Language Constructs

An environment is made up of a few type of statements. These statements are
described in the following sections. The order of the statements is unimportant
and keywords are not case-sensitive; they can be in either upper or lower case.

4.2.1 Expressions
4.2.1.1 Variables and Constants

The basic expressions are numbers, enumerated constants, or variable refer-
ences.

A number is a decimal if it has only decimal digits and no suffix (e.g., 1276). A
binary number consists of binary digits and ends with ‘B’ (e.g., 1011B). A
hexadecimal number begins with a decimal digit, has hexadecimal digits, and
ends with ‘H’ (e.g., 7FFFH, OFFH). RuleBase infers the width of constants
from the context in which they are used aad from their format. For exam-

ple, 0010B can be assigned to any bit vector that has at least two bits.

One of the symbolic values a variable can take on is an enumerated constant.
For instance, if we declare the following:

var state: {idle, st1, st2, st3, waiting};
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then each of the five symbolic values “idle”, “st1”, “st2”, “st3”, and “waiting”
is enumerated constants.

A variable reference has one of the following formats:

¢ name -- simple variable

« name(number) -- one bit of array

« name(number..number) -- a range of bits

« prev(name) -- refers to the value of name on the previous cycle

The use oprev results in additional state variables, one for each variable to
which it refers. However, multiple references to the same variable will only
add one extra variable.

For more information on variables see Section 4.2.2.
For more information on arrays, see in Section 4.3.

4.2.1.2 Operators

An expression can be a combination of sub-expressions, connected by opera-
tors:

Boolean connectives:

I exprnot

expr & exprand

expr | expror

expr ~ expr  (or: expr xor expr)xor

expr -> exprimplies

expr <-> expriff (xnor)

(Boolean operations can be applied only to boolean expressions.)

Relational operators:

expr = exprequals
expr I= exprnot equals
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expr > exprgreater than

expr >= expr greater than or equals

expr < exprless than

expr <= exprless than or equals

(>, >=, < and <= can be applied only to integer or boolean expressions.)

Arithmetic operators:

expr - exprminus

expr + exprplus

expr * exprmultiplication

expr / expr divisior(since / is also legal in a signal name, make sure to surround it with spaces)
exprmod exprmodulo

(Arithmetic operators can be applied only to integer and boolean expressions.)

4.2.1.3 Operator Precedence and Associativity

The following operators are listed in decreasing order of precedence and
strength:

++ (concatenation)

I (not)

+ -

* [ mod

= l= < <= > >=

Temporal operators (will be introduced in CHAPTER 5)
& (and)

| (or)

xor ~

<-> (iff)

->  (implies)

All the operators, except ->, have left to right associativity.
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Use parentheses in any case that you don’t know or don’t remember the prece-
dence. Even if you know, others may find explicit parenthesizing easier to read
and understand.

4.2.1.4 Case and If Expressions

EDL provides two constructs that express a choice between two or more
expressions. They are thaseandif expressions, described below.

Thecaseexpression has the following format:

case
condition : expy ;
conditior : expek ;

else: expr, ;

esac

A caseexpression is evaluated as follows: condiisnevaluated first. If it is
true, expy is returned. Otherwise, conditigis evaluated. Ifitis true, expis

returned, and so forth. Although thksepart is not essential, we recommend
you use it as the default entry if you are not certain that the other conditions
cover all the cases. Falling through the end of a case statement may have
unpredictable results. Notice that from the description of the case expression
above, it follows that an earlier condition takes precedence over a later one.
That is, if two conditions are true, the first takes precedence.

Theif expression is shorthand for a case with two entries. If has the following
format:
if conditionthen exprA elseexprB endif

In the abovef expressionexprAis returned ittonditionis true, anaxprBis
returned ifconditionis false.

IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



Describing the Environment 58

Note: This section deals witififcaseexpressions rather than statemetifts (
casestatements are allowed only inside sequential processes. See Section 4.4).
Youcannotwrite, for example:

if cthen assigna := x; b :=y; else assigra := z; b := w; endif;

Instead, you should write:

assign a := ifcthen x elsezendif, b :=if ctheny elsew endif;

4.2.1.5 Non-deterministic Choice

RuleBase uses non-determinism to describe many possible behaviors at once.
Section 4.8 describes non-determinism in detail. In this section, the non-deter-
ministic constructs are briefly mentioned for completeness. The non-determin-
istic constructs of RuleBase have the following format:

{ expry, expp, ..., expy }a non-deterministic choice
expr union expk, another way to express {expexpb}

N, .. p another way to express fmy+1,..., i}
4.2.1.6 Other Expressions

The following are also expressions:

( expr) a parenthesized expression
exprin {vq, Vo, ..., iy} shorthand for ((expr = | (expr =y) | ... (expr = \))

4.2.1.7 Built-in Functions

The built-in functiondell() androse() have the following functionality:

« fell(expr) is true if expr is 0, and was 1 on the previous cycle
« roseg(expr) is true if expr is 1, and was 0 on the previous cycle
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The use ofell androseresults in additional state variables, one for each
expression to which they refer. However, multiple references to the same vari-
able will only add one extra variable.

4.2.2 Var Statement

A var statement declares variables. It has the following format:
var name, name, ... : type; name, name, ... : type;

Note: The variables are always state variables as long as the declaration is not
within a sequential process (see Section 4.3).

var name, name, ... : type; name, name, ... : type;

The type can be one of the following:

» Boolean
« {enuml, enum2, ... }
« numberl .. number2

(For information on arrays, see Section 4.3.)

For instance, the following are legalr statements:

var request, acknowledgboolean

var state: {idle, reading, writing, hold};
var counter: {0, 1, 2, 3};

var length: 3 .. 15;

The first statement declares two variables, “request” and “acknowledge”, to be
of type Boolean. The second statement declares a variable called “state” which
can take on one of four enumerated values: “idle”, “reading”, “writing”, or
“hold”. The third statement declares a variable called “counter” which can

take on the values 0, 1, 2, and 3. The fourth statement declares a variable
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called “length” which can take on any of the values between 3 and 15, inclu-
sive.

A var statement only declares state variables. a$sgnstatement, described
below, defines the behavior of these variables.

4.2.3 Assign Statement

An assignstatement assigns a value to a variable declared wih state-
ment. It has one of the following formats:

« assign iniftname) = expression; assigns an initial value to a variable (com-
binational or state.

« assignname = expression; assigns a value to a variable (combinational or
state).
assign nexfname) = expression; defines the next-state function of a state
variable.

A state variable is simply a memory element, or register (flip-flop or latch).

Note: Usingassign nextwithin a sequential process causes the variable to be
a state variable (see section 4.3 ). Variables outside a process are already state
variables by definition.

The following are examples of legadsignstatements:

assign init(state) := idle;
assign nex(state) :=
case
reset : idle;
state=idle : { idle, busy };
state=busy & done : {idle }
else: state;
esac
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The keywordassignmay be omitted for the second and following consecutive
assignstatements. Thus, the following:
assignvarl := xyz;
init(var2) := abc;
next(var2) := qrs;

is equivalent to:

assignvarl := xyz;
assign init(var2) := abc;
assign nexfvar2) := qrs;

4.2 .4 Define Statement

A define statement is used to give a name to a frequently-used expression,
much like a macro in other programming or hardware description languages.
Thedefine statement has the following format:

definename := expression;

For instance, the following are legidfine statements:

defineadef:=(q|r) & (t| v);
definebb(0) :=q &t; cc:=3;

As with theassignstatement, the keywontkefine may be omitted in the sec-
ond, and following, consecutidefine statements.

4.2.5 The Difference Between Assign and Define

A state variable (flip-flop or latch) must always be declared withdhastate-
ment. If assigned an explicit value, tesign init() andassign nex() state-

ments are used (if either is omitted, the initial and next values, respectively, are
considered to be completely non-deterministic).
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For a combinational variable (output of combinational logic), you may use
eitherassignor define Users of SMV or of previous versions of RuleBase

may recall that there were subtle differences betweeassignanddefine
statements which made it more efficient to use one or the other in certain situa-
tions. These differences are no longer present in RuleBase, which will convert
from one to the other as needed in order to make the model checking more effi-
cient.

Only the following semantic distinctions exist betweassignanddefine

« assignmust refer to a variable defined witér.

« definemust NOT refer to a variable defined wir.

« An assignstatement can be thought of as a variable assignment, while a
define statement should be thought of as macro text substitution. Thus, in
the following:

VAR v,v1,v2,d1,d2: boolean;
assign v :={0,1};

assign vl :=v;

assign v2 :=v;

define d := {0,1};

assign dl :=d;

assign d2 :=d;

It is true that v1=v2, because both are equal to the value of the variable v.
However, it is not true that d1=d2, because the macro text substitution has
made the assignments to d1 and d2 equivalent to:

assign d1 :={0,1};
assign d2 :={0,1};

so that each non-deterministic assignment is completely independent of the
other. If you code something similar to the above, RuleBase will issue a warn-
ing that a non-deterministaefine expression is used multiple times.
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4.2.6 Module Statement

An environment file can be totally flat, with no hierarchy at all. In this case, all
statements are considered to be enclosed by one big main module. However, it
is usually more appropriate to write a modular and hierarchical environment.
Themodule andinstancestatements are used for this purpose.

A module statement is used to define a module that can be instantiated a num-
ber of times, as in hardware description languages. It has the following format:

module module_name (inputs ) ( outputs )
{

statement;

statement;

}

whereinputsis a list of formal parameters passed to the modulgputsis a

list of formal parameters produced by the module,saattmentss any

sequence ofar, assign define, fairness, andinstancestatements. The input/
output parameters can be thought of as input/output signals. Input parameters
are produced elsewhere, and they drive the module, while output parameters
are produced by the module itself and can be used elsewhere. A signal that
appears as an output parameter of a module must be defined and assigned a
value in that modulevar or defineor instanceoutput). If a signal that appears

as an input parameter of a module is not used in that module, RuleBase will
issue a warning.

For instance, the following is a legabdule statement:

module delayed_and (s1, s2) (out)
{
var out :boolearn
assign
init (out) := 0;
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next(out) := sl & s2;
}

Modules cannot bdeclaredinside other modules but they can lied(instan-
tiated) by other modules.

4.2.7 Instance Statement

A module statement is only a definition—it has no effect until it is instantiated
(called). Thanstancestatement instantiates a module using the following for-
mat:

instanceinstance_name : module_name ( inputs ) ( outputs );

whereinstance_names the name of the specific instance (one module can be
multiply instantiated)module_namés the name of the module being instanti-
ated,inputsis a list of expressions passed as inputs to this instanceywpdts

is a list of output parameters that connect the instance outputs to real signals of
the design or the environment. An instance name is optional.

For example, the following is a legaistancestatement, instantiating the two-
input and-gate defined in Section 4.2.6:

instanceda : delayed_and(q,r)(t);

4.2.8 Fairness Statement

A fairnessstatement is used to describe a fairness constraint. We describe the
use of fairness in detail later in this chapter. Brieffgimess statement

describes a condition that must be met an infinite number of times. It is an
important tool in specifying abstract environment models. féiineess state-

ment has the following format:

fairness expression;

The following is a legaflairness statement:
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fairnessstate != busy;

Currently, the fairness expression cannot contain temporal operators. This lim-
itation protects users from commonly encountered mistakes. RuleBase sup-
ports other types of fairness constraints, which are detailed in Section 4.8.3.1,
Advanced Fairness Types.

4.2.9 Scope Rules

Statements inside a module cannot reference variables outside that module (no
global symbols). External signals and variables needed by the module must be
passed as parameters to the instance. A module can only assign values to
external signals and variables by passing them as output parameters.

On the other hand, it is possible to reference internal signals of an instance
from outside that instance. For example, if module M has an internal signal
Sig, and Ins is an instance of module M, one can refer to signal Sig as Ins/Sig
(‘/ is the hierarchy character). This allows formulas to refer to the internal
state of instances without the burden of exporting state variables. It also allows
you to easily override parts of existing modules without changing the module
definition. For further detail on overriding, see Section 4.6.

4.2.10 Comments, Macros, and Preprocessing

There are two types of comments in environment description files:

1. Text beginning with “--” and ending at the end of line.
2. Text beginning with “/*” and ending with “*/”.

RuleBase ignores comment text. You can insert a comment anywhere a space
is legal (except in text strings).

Before processing the environment description files, RuleBase calls a standard
preprocessor, cpp, to filter these files. The mechanisms provided by cpp can be
used to facilitate the development of environment models. The most useful
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mechanisms are macros, conditional compilation (#ifdef, #if, #endif, ...) and
#include. See “man cpp” on your unix system for more details.

The cpp preprocessor may issue errors when the ’ character appears inside
commented text; therefore, we recommend you avoid the use of this character
within comments.

RuleBase provides additional preprocessing abilities in addition to cpp. These
are the %for and %if constructs described below.

4.2.10.1 %for

The%for construct replicates a piece of text a number of times, with the possi-
bility of each replication receiving a parameter. The syntax of the %for con-
struct is as follows:

%for <var> %in <exprl> .. <expr2> do
%end
or:
%for <var> in <exprl> .. <expr2> step <expr3> do
%end
-- step can be negative
or:
%for <var> in { <item> , <item>, ... , <item> } do
%end
« <item> is either a number, an identifier, or a string in double-quotes.

« When the value of an item is substituted into the loop body (see below), the
double quotes will be stripped.
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In the first case, the text inside the %for-%end pair will be replicated expr2-
exprl+1 times (assuming that expr2>=exprl). Inthe second case, the text will
be replicated (Jexpr2-exprl|+1)/expr3 times (if both expr2-exprl and expr3 are
positive or both are negative). In the third case, the text will be replicated
according to the number of items in the list.

During each replication of the text, the loop variable value can be substituted
into the text as follows. Suppose the loop variable is called “ii”. Then, the cur-
rent value of the loop variable can be accessed from the loop body using the
following three methods:

« The current value of the loop variable can be accessed simply using “ii” if
“li” is a separate token in the text. For instance:

%for iiin 0..3 do
define aal(ii) ;=i > 2;
%end

is equivalent to:

define aa(0) :=0> 2;
define aa(l) :=1>2;
define aa(2) =2 > 2;
define aa(3) :=3> 2;

« If “ii” is part of an identifier, it can be accessed using %f{ii} as follows:

%for iiin 0..3 do
define aa%fii} :=ii > 2;
%end

is equivalent to:

define aa0 := 0 > 2;
defineaal ;=1 > 2;
define aa2 :=2 > 2;
define aa3 := 3 > 2;

 If "ii” needs to be used as part of an expression, it can be accessed using
%{<expr>} as follows:
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%foriiin 1..4 do
define aa%fii-1} := %{ii-1} > 2;
%end

is equivalent to:

define aa0 := 0 > 2;
defineaal =1 > 2;
define aa2 := 2 > 2;
define aa3 := 3 > 2;

4.2.10.2 %if

The syntax of the %if construct is as follows:

%if <expr> %then

%end
or:

%if <expr> %then

%else

%end
The%if construct is similar to the #if construct of the cpp preprocessor. How-
ever, %if must be used when <expr> refers to variables defined in an encapsu-
lating %for.

4.2.10.3 Operators in Preprocessor Expressions

The following operators can be used in pre-processor expressions:

= I= < > <= >= -+ * | O
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In the current version, operators work only on numeric values, for example, it
is acceptable to write:

%foriin 0..3 do
%if i = 3 %then +... %end
%end

But it is not possible to write:

%for command in {read, write} do
%if command = read %then-- doesn’t work!
;’)(.)end
4.2.11 Reserved Words

The following words are keywords and should not be used as identifiers:

N~<KLK<=<>==2>>>=> | = |>->-,;=11=] . (
YI]1{}*& & + ++ A ABF ABG AF AG always AND
ANDVECTOR AR as_in assign assume attributes AWR AX before
before  before! before! boolean bvtoi case coverage define E EBF EBG
EF EG else endcase endif env envs ER esac eventually EWR EX
fairness false fell fg forall formula formulas gf goto hint hint_
holds_until holds_until_ if in inherit init instance invar itobv max min
mod mode module never next next _event next_event! next_event f
next_event _f! next_event g next_event g! nondets NOT ones OR original
ORVECTOR override prev process reduce_instance rep restrict rose rule
stable_until stable_until! test pins then trans true U union until until_
until! until!_ vV var W whilenot whilenot_ whilenot! whilenot!  within
within_ within! within! _ xor zeroes

If a keyword is prefixed with the ‘\’ character, it becomes a regular identifier.
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4.3 Arrays

It is often convenient to define arrays of state variables and to apply operations
to entire arrays or to ranges of indices. Boolean arrays (buses, bundles) are the
most common, but other types of arrays (integer sub-range, enumerated con-
stants) are also useful. Hence, RuleBase is primarily oriented toward Boolean

arrays, but also supports other types of arrays .

4.3.1 Defining Arrays

An array of state variables is defined as follows:

var hame (index1 .. index2) : type ;

It actually defines (Jindex2-index1|+1) state variables named name(index1), ...

name(index2), where index1 can be either greater or less than index2.

Examples:

var
addr(0..7) boolean -- 8 boolean variables, addr(0), addr(1), ... , addr(7)
counter(4..5) : 0..3;  -- 2 integer variables, each can have the values 0,1,2,3
status(3..0) : {empty, notempty, full };
-- 4 variables, each can have the values empty, notempty, full

An array can also be defined witliefine statement:

definename( indexl .. index2 ) := <expr>;

Example:
definemasked_sig(0..3) := sig(0..3) & mask(0..3);

Note that the following line
var x(0..3) : {5, 7,13 };

RuleBase: a Formal Verification Tool
Provided by special agreement with IBM



71 CHAPTER 4

defines an array of four integer variables, each of them can have the values 5, 7,
or 13. This inot a non-deterministic bit vector. To define a bit vector and
assign to it the three values non-deterministically, do the following:

var x(0..3) :boolearnt  assignx(0..3) :={5, 7, 13 };

4.3.2 Operations on Arrays
Reference

The simplest operation on an array is a reference to a bit or a bit range. One bit
of an array is referenced asray_name(N)vhereN is a constant. A range of

bits is referenced agray_name(M..N) It is always necessary to specify the

bit range when referencing an array.

It is possible to access an array element using variable index:
array_name(V: index1..index2)whereV is an integer variable, and
index1..indexare constants that indicate its range. Example:

var source(0..7)boolean V: 0..7;

definedestination := source(V:0..7); -- assuming that the behavior of V is defined else-
where

Other operations that can be used with any type of arrays are:

;= = I= if case prev

Examples:

aa(0..7) :=f bb(0..2)=cc(0..2)hen dd(0..7)elseee(1..8)endif;
aa(0..7) :=prev(bb(2..9));

The rest of the operators can only be applied to Boolean arrays (bit vectors).
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Boolean connectives (bitwise): & | ! -> <>

Both operands must be of the same width (unless one of them is constant). The
result will have the same width as the vector operands.

Example:
v(0..7) :=x(0..7) & y(0..7) | '2(0..7);

Relational: = < > <= >=

Both operands must be of the same width (unless one of them is constant). The
result will be a scalar Boolean value.

Examples:
c:=v(0..7) >x(0..7); d:=v(0..7) <= 16;

Arithmetic (unsigned). + - *

Both operands must be of the same width (unless one of them is constant). The
result will have the same width as the vector operands.

Examples:

define cc1(0..7) := aa(0..7) + bb(0..7);
cc2(0..7) := aa(0..7) + 1,
cc3(0..7) := 10 * aa(0..7);

In order not to lose the most significant bits of the result, pad the operands with
zeroes on the left.

Examples:
define aa(0..7) := zeroes(4) ++ bb(0..3) * zeroes(4) ++ cc(0..3);
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co++sum(0..7) := 0++a(0..7) + 0++b(0..7);
(++ is the concatenation operator, described below. zeroes(4) is a vector of four zeroes)

Shift: >> <<

The first operand must be a Boolean vector and the second operand must be an
integer constant or variable. The result is a Boolean vector of the same width as
the first operand. These operations perform the logical shift, (i.e., vacated bit
positions are filled with zeroes).

Examples:

definecc(0..7) := aa(0..7) << 2;

var shift_amount: 0..5;

definedd(0..7) := bb(0..7) >> shift_amount;
ee(0..8) := 0++ff(0..7) << 1,

4.3.3 Converting Bit Vectors to Integers and Vice Versa

Bit vector to integer:

bvtoi( a_vector)

Integer to bit vector:

itobv( an_integer)

Example:
assign nexf counter(0..7) ) :#tobv( bvtoi( counter(0..7) ) + 1);
Constant integers are converted to bit vectors implicitly, you do not need to

apply itobv. We recommended that you use bit vectors instead of big integer
variables, if possible.
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4.3.4 Constructing Bit Vectors from Bits or Sub-vectors

The concatenation operator (++) is used to make bit vectors out of bits or
smaller vectors:

expr ++ expr

Example:

definewide(0..5) := narrow(2..3) ++ bitl ++ bit2 ++ another_narrow(0..1);

If expr is a constant, it should be either O or 1. Wider constant vectors should
be split into separate bits.

definex(0..5) := y(0..2)++1++0++z; -- allowed
definex(0..5) := y(0..2)++10B++z; -- not allowed

The concatenation operator can also appear on the left-hand-side of an assign
or define statement. For instance, the following statement:

definea ++ b ++ ¢(0..2) :=d ++ 1 ++ 0 ++ e(0..1);

is equivalent to the following four statements:
definea:=d; b:=1; c(0):=0; c(1..2) :=e(0..1);

The built-in constructep() can help construct arrays of repeated elements:

rep (expr, N) is equivalent to expr concatenated with itself N times. For exam-
ple, you can use the following assignment to make each bit of array ‘arr’ non-
deterministic:

assign arr(0..3) :xep({0,1},4); -- {0,1}++{0,1}++{0,1}++{0,1}

Shorthands:
zeroegN) is equivalent toep(0,N)
onegN) is equivalent toep(1,N)
nondetgN) is equivalent toep({0..1},N)
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4.3.5 Array Notes

The exact range must be specified in the operation
“a = b” is not equivalent to “a(0..3) = b(0..3)". b(0..3) represents variables
b(0) through b(3) while b represents one variable with no index.

Operands can take any ranges, provided that their widths are compatible.
For example, “a(0..3) & b(1..4)" is legal, but “a(0..3) & b(0..4)" is not.

If one of the operands is a Boolean vector and the other is a numeric con-
stant, the constant is considered an array of bits. For example, “a(0..1) =
10B” is equivalent to “a(0)=1 & a(1)=0" and “a(1..0) = 10B” is equivalent
to “a(1)=1 & a(0)=0".

“var v(0..3): {5, 7, 13 }" defines four state variables, each of them can take
the values 5, 7, or 13. This is sometimes confused with

“var v(0..3):boolean assignv(0..3) :={5, 7, 13 };,” that defines a vector

of 4 bits, and the whole vector can take the values 5, 7, or 13.

Arrays can be used as formal parameters of modules and as actual parame-
ters of instances. The actual parameter width must match the width of the
formal parameter.

If you write “#define N 7” and later “a(0..N)”, leave a space around the two
dots: a(0 .. N). Otherwise, the standard preprocessor (cpp) used by Rule-
Base will identify ..N as a token and will not replace N by 7.

4.3.6 More Array Examples

var a(0..3), b(0..8), c(0..2Boolean
defined(0..3) := b(5..8);-- different sub-ranges
definee(0..2) := b(2..0) & ¢(0..2);-- different directions

var x_state(0..2), y_state(0..2): {s1, s2, s3 };
definesame_state := x_state(0..2) = y_state(0..2);

var nda(0..2)boolean
assignnda(0..2) := {001b, 010b, 111b}; -- non-deterministic assignment to a vector
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assign nexf a(0..2) ) =
case
reset : 0;
a(0..2) = b(0..2) : c(1..3);
a(0..1) =10B : d(0..2);
else: a(0..2);
esag

var counter(0..7) boolean
assign
init ( counter(0..7) ) := 0;
next( counter(0..7) ) := counter(0..7) + 1;

module and_or ( a(0..7), b(0..7), ¢(0..7) )( d(0..7) )
{ defined(0..7) :=a(0..7) & b(0..7) | ¢(0..7); }

instanceal : and_or( x(0..7), y(7..0), z(0..7) )(w(7..0) );

4.4 Sequential Processes

Process constructs of EDL are similar to “process statements” of VHDL and to
“always blocks” of Verilog. They can be useful in situations when it is awk-
ward to write explicit concurrent definitions for signals. Using process con-
structs, you can write your code in the form of sequences of statements, which
are “executed” in each cycle to compute the needed values of signals. The only
statements allowed in a process are variable declarations, variable assignments,
IF statements, and CASE statements.

As a simple example,

process{
var foo: boolean
foo := d1;
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if cthen foo := d2endif;
}

is equivalent to the concurrent assignment

assignfoo :=if cthen d2elsedl endif;
(Of course, in this example the concurrent form is simpler than the process construct).

As a slightly more realistic example, suppose that we need to model a ripple-
carry adder in EDL, but for some reason cannot use the '+’ operator:

process{
var sum(0..7)boolean
var carry:boolean
carry :=0;
%for iin 7..0step-1do
sum(i) := x(i) * y(i) ~ carry;
carry == (x(i) & y(i)) | (x(i) & carry) | (y(i) & carry);
Y%end

}

The carry signal is assigned several times in the process, and each stanza of the
loop refers to the value of carry valid for this specific stanza. if some code out-
side this process refers to the carry signal, it will refer to the “final” value of
carry, which in this case is the overflow bit of the adder.

It is convenient to think about processes as sequential code which is “executed”
each cycle, but what happens technically is that RuleBase analyzes the process
construct, keeping track of interim assignments, and generates concurrent defi-
nitions for signals driven by the process. This means, for example, that in the
wave browser you will only be able to see the “final” values of signals.

If you are familiar with VHDL or Verilog, you will notice that EDL processes
are not explicitly associated with some clock signal or a sensitivity list.
Instead, they are implicitly clocked on the “system clock”, just like the concur-
rent “assign next” construct.
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The following provides a closer look at the building blocks of a process con-
struct.

Variable declarations
The process construct should contaam declarations for all signals that are
assigned within the process. TVvaa declaration of each signal should
appear before the first assignment to it. Currently there is a restriction on
chains ofvar declarations within a process: eaen declaration should
start withvar keyword, for example:

“var foo: boolean bar:boolean”
is not allowed, but both

“var foo, bar:booleari and “var foo: boolean var bar:booleart
are allowed.
While using a var outside a process defines a state variable, this is not the
case here, unlesssign nextis used (see 2. below).

Assignments
The three usual forms of RuleBase assignments are supported:

assigns := expr;

assign next(S) := expr;

assign init (S) := expr;
The keywordassigncan be omitteddefine constructs are illegal within a
process. S is a signal or a concatenation of signals.
The assignment of the first form:

S = expr;
Is similar to the VHDL variable assignment and to the blocking Verilog
assignment, in that references to S, which are “executed” after this assign-
ment, will already refer to the new value of S. Therefore, the order of the
statements is important. For example,

foo :=0;
bar := foo;
foo :=1;

will assign 0 to bar (even though foo is re-assigned later on).
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The assignment of the form:
next (S) := expr;
behaves more like the VHDL signal assignment and to non-blocking Ver-

ilog assignment, in that it doesn’t influence the values of S that can be
observed in this cycle.

The use ohext makes S a state variable.
next (foo) := 0;
bar := foo;

will assign the current-cycle value of foo, which is not necessarily 0, to bar.
The next-cycle value of foo will be 0 (in the absence of further assignments
to "next (foo)” in the process).

The assignment of the form:

init (S) := expr;
is very special in that it will only be “executed” in the very first cycle, and
will have no effect on subsequent cycles.

CASE statements
case
guard: sta;
guarg: stap;

guard;: staf;
else stat;

esag

Each guargis a Boolean expression. The else clause is optional. Ea¢h stat

IS either a single assignment, oraabitrary sequence of statements
enclosed in braces

IF statements
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The IF statement is less general than the CASE statement and can take one
of two forms:
if conditionthen
statements
endif;
or
if conditionthen
statements
else
statements
endif;

The following is an an example of a process construct that makes use of differ-
ent statements:

module server (start,grant)(request,done)
{
process{
var state: { idle, wait, busy };
init (state) := idle;
next(state) := state; -- default behavior

var request, dondaooleann  -- state machine outputs
request := false; done := false; -- their default behavior

case
state=idle & start:
next(state) := wait;

state=wait: {
request := true;
if grantthen
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next(state) := busy
endif;

}

state=busy: {
done := {true,false};
if donethen
next(state) := busy
endif;

}

esag
} -- process
} -- module

4.5 Environment Constraints

Trans, Invar, assume restrict, andhints are environment constructs that

enable you to set constraints on signals. They allow you to describe the envi-
ronment by declarative means instead of giving each signal a functional behav-
ior. These environment constraints can be combined with other environment
constructs such as var, assign, define, etc.

4.5.1 Initially and Trans

Theinitially statement enables you to specify a boolean expression that must
hold true at the very first cycle. RuleBase will cut off from the model all initial
states that do not hold the boolean expression specified within the initially
statement.

The syntax of the initially construct is as follows:
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initially <expr>
-- Where <expr> is a boolean expression

<expr> can include both environment and design signals.

Thetrans statement enables you to specify a set of legal transitions between
states of the design, thus ignoring all other transitions, which are illegal. Rule-
Base willforce the model to hold the boolean expression specified within the
trans statement at every cycle.

The syntax of the trans construct is as follows:

trans <expr>
-- Where <expr> is a boolean expression

<expr> can include both environment and design signals.

The statement trans <expr> implies that all transitions which do not comply
with <expr> are cut off.

Note that <expr> should not be just any boolean expression, but a boolean
expression that describes transitions between states of the design. If <expr>
does not contain any next() expression, then it does not refer to any transition,
therefore nothing will be cut off; in other words, such a trans statement will not
have any effect. This implies that <expr> should contain at least one 'next’.

For example:

rule transexamp {

var a,b,c: boolean;
trans next(a) = next(b);
initially (a=c)

formula {AG (a|b|c)}
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4.5.2 Invar

Theinvar statement enables you to specify a boolean invariant that you want
to be true at any cycle. RuleBase Vditce the model to hold this invariant at
every cycle.

The following shows the syntax of the invar construct:

invar <expr>
-- Where <expr> is a boolean expression.

The Boolean expression within the invar can include both environment and
design signals.

Example:

Given a design with the inputs requestl, request2, and request3, the design
should only work properly under the constraint that one request, at most,
can be active at any given cycle.

This can be specified by:

var requestl, request2, requesti®dolean
invar (requestl+ request2+ request3<= 1)

requestl, requestandrequest3ignals can have any non-deterministic
behavior that holds the above invariant.

4.5.3 Assume

Assume can be seen as an extension of the invar construct. It enables you to
write more expressive assumptions on your model, which tell RuleBase to
force your model to hold those assumptions. The assumptions are written as
Sugar properties.

The syntax of the assume construct is as follows:
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assume{sugar_formula}

Most of the Sugar safety formulas can be used within the assume. These Sugar
formulas are the same formulas that can be verified on the fly.

Examples:

« readandwrite are inputs to a design.

« readshould not be followed bwrite (one or two cycles later).
This can be specified by:

var read, write boolean
assume{AG (read-> ABGJ1..2] (lwrite))}

Note AG andABG, andAX andbefore_and sequences, mentioned in the
sequel, are constructs of the Sugar specification language, described in CHAP-
TER 5.

Additional requirements:

e The first input command must be a write.
assume{write before_read}

« A sequence of three consecutwstes is illegal.
assume{ {[*], write[3]}(false) }

Assume can help you define complex behavior of inputs.

Using the assume construct, you can start the verification process with an ini-
tial free environment, and you can add environment assumptions when you
encounter “false negatives” (counter-examples that result from illegal input
sequences).

Writing an environment with assumptions enables you to apply compositional
verification to your design using the assume-guarantee approach.
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The assume-guarantee approach is as follows:

1. Assume that the input signals obey some assumptions.

2. Take those assumptions and guarantee they hold by turning them into rules
and verifying them on the blocks that produced them.

Consider a design that is partitioned into two blocks: blockl, block2 (see
Figure ). In the verification of blockl1, one can write environment assumptions
on the input signals generated by block2 using the assume construct. Later,
when proceeding to the verification of block2, the already written assumptions
can be turned into formulas and verified on block2.

assume

/N

envs rules

block1 block2

AAA

FIGURE 3. Design partitioned into two blocks that uses the assume construct for
compositional verification

Assumptions cannot be written inside the module or process.

Notes

« In some cases, the assume construct can cause state space explosion prob-
lems by introducing many variables. (These variables are needed to con-
struct a deterministic automata that represents the assume construct.) In
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such cases, it may be more convenient for the user to use other constraint
constructs, such as invar or restrict, or define the behavior in the usual way
using define and assign.

« Non-deterministic variables may cause false negatives, if they are used in
the same assume but in different points of time, for example:
var Xx,y,z:boolean
assign nexfx) := x;

assume{ AG (y=x -> AX (z=x))};

The user may get a counter example to some formula in which the value of y
for one cycle differs from the value of z for the next cycle (i.e., violates the
assume).
The other example (with the same meaning and same problems) is:

forall x assume{AG (y=x ->AX(z=x))}

The two cases can be rewritten as follows, without causing false negatives:
assume{ AG (y=0 -> AX (z=0))};
assume{AG (y=1 ->AX(z=1))};

In general, assumes are most useful in free environment.

« There is an additional case of false negatives, as seen by users when the
counter example does not show the restricted behavior, but is final (i.e.,
would necessarily show such behavior if prolonged). Such counter exam-
ples can be eliminated by writing the same assume on the “causing vari-
ables”. The following provides a simplified example of eliminating such a
counter example by writing the same assume on the “causing variables”:

var X, y: boolean

assign init(x) := {0,1};
assign nexfx) := x;
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assing initly) := 0;
assing nexfy) := Ix;

assume{AG(ly) }
rule dummy {
formula {AG (y) }
}

The user gets the counter example of length 1 where x=0 and y=0. This
trace only has the next state in which y=1 and x=0 is forbidden according to
the assumption. Thus, the trace the user gets in this example is not real. By
tracing back to the forbidden behavior of y, one can see that it is forbidden
for x to be 0. By replacing the existing assume with

assumgAG(x) }

on the same formula, the user gets the real counter example of length 1
where y=0 and x=1. (In this case, real means that it can be prolonged to any
length.)

4.5.4 Restrict

The restrict environment construct is used to limit the state space exploration to
certain paths. The restrict looks like a regular expression, and its semantics
resemble the semantics of a regular expression. Only paths that match the reg-
ular expression will be checked.

The syntax of theestrict construct is as follows:

restrict {regular_expression}
« Where the regular expression events can be any sttiileencesvents.

Example:

restrict { !read[*], read, 'read[*] }
« Restrict RuleBase to check only paths with at most one read command.
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Restrict does not have any meaning when it starts with a [*], since every com-
putation path is a prefix of such a restrict; hence, this restrict will not force a
limitation on the model.

There are several motivations for the use of restrict, including:

1. A ‘guide/direct’ search to start with specific behavior.
Example: Every path should start with two reads followed by a write
restrict {read[2], write, [*]}
Note: The [*] at the end of the above restrict is necessary; if you omit it,
RuleBase will only check paths with the length of three.

2. An easy way to define an input that behaves according to a specific pat-
tern.
Example:
Bus is defined as follows:
var bus: {idle, BOP, data, EOP};
We restrict the bus behavior to the following pattern:
restrict { {bus=idle[*], bus=BOP, bus=data[4], bus=EOP}[*] }
That is, there can be any number of transactions, with any number of idle
cycles in between, in which each transaction starts with BOP, followed by
four cycles of data and terminated with EOP.

3. A quick way to verify that a specific design failure does not exist in the
‘design after fix’:
Given a formula that failed and a trace that shows a counter example for the
formula, we fix the design and would like to verify (quickly) that we will
not get the same failure that we had before.

4. To convert the inputs of the trace into a restriction that describes the
inputs value in each cycle
« Click theResultdutton
« Click the formula that failed and sele@énerate restrict (inputs)
 Run the formula again including the file which contains restrict you gen-

erated.
The GUI will give you its name; it resides in your working directory.
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If the counter example no longer exists, you will receive a vacuous result for
the new run. This run is quick since it restricts the search space to a very
specific pattern of inputs.

4 5.5 Hints

Thehint list can be seen as a generalization ofitiaar construct. RuleBase

uses each hint in the list to restrict the search of the state space in the same way
as invar, by switching to the next hint in the list when no additional states can
be explored using the current one.

Syntax:
hint expr, ..., hint exp{NUM], ...;

Semantics:

 hint expr— continues to search reachable states with the transition relation
constrained bgxpruntil the fixpoint is reached.
« hint exp[NUM] — only performdNUM of steps with the constraint.

« RuleBase automatically adtisit TRUEat the end of the list, so you do not
need to do it.

« When a hint ends (either the fixpoint is reached or a given number of cycles
has passed), it passes on to the next one.

In the case of a liveness formula with hints, every liveness formula is checked
on the fly at every fixpoint that is reached that has a hint.

Examples:

var cmd {read, write, flush, stal;
hint cmd = read hint cmd = write hint cmd!= flusH5];

Hints may be combined with liveness and counters as follows:
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liveness + hints

RuleBase does not execute liveness algorithms that use hints in the calcu-
lated fixed point as some may expect (CAV99 - Ravi & Somensi).

Instead, it performs the following algorithm, which is related to liveness on
the fly for all hints (according to their order):

1. Compute the reachable states using the hint (exactly like in on-the-fly
mode).

2. Before changing to the next hint, build the transition relation, simplified
according to the reachable states (like in liveness on-the-fly).

3. Evaluate the formula with the classic algorithm on this partial model.

4. If the formula fails, generate a counter example; otherwise, move to the
next hint.

This is exactly like liveness on the fly, which is executed after every hint
fixed point instead of after every 'n’ iterations.

counters mode + hints

RuleBase turns off during the on the fly model checking.

It executes the liveness + hints algorithm described above with the follow-
ing change: Every time the transition relation is built, the counters are added
to the model. When RuleBase continues reachability with hints, the
counters are removed again.

4.5.6 Additional Environment Constraint Examples

cmd, busyare design inputfusyis active one cycle aftemd
var cmd, busy boolean
assume{ AG (cmd-> AX busy) }

When sending a commantndshould be active for three cycles, and then
inactive for at least two cycles.

var cmd boolean

assume{ {[*], ! cmd cmd(ABG[1..2] (cmg }

assume{ {[*], cmd3]}( ABG[1..2]('cmd) }

The above environment written with restrict:

var cmd boolean
restrict { {! cmd*], cmd3], 'lcmd2]}[*] }
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« Consider a design block that should work properly under the following
assumptions:

« start, end(the input signals) are pulses.

« startandendare interleaving (i.e., there is alwaystart between two
ends and vise versa).

« The firstendwill be proceeded by start.

var start, end boolean

assume{ AG (start-> (AX endbefore start)) }
assume{ AG (end->(AX startbefore end) }
assume{ AG !(start& eng }

assume{ startbeforeend}

» The above environment written with restrict:
var start, end: boolean
restrict { {(! start& !'end[*], start& !end (!start& !'end[*], ! start& end[*] }

4.6 Linking the Environment to the Design

In RuleBase, the name connects (links) the design and environment. Thus, to
give behavior to an input signal of the name “reset” in your design, give a sig-
nal, of the same name, behavior in your environment, using eithéefine
statement (see “Define Statement” on page 61), ordhstatement (see “Var
Statement” on page 59) in combination with #esignstatement (see “Assign
Statement” on page 60).

It is important to make sure that you use the name of the signal exactly as rec-
ognized by RuleBase (including capitalization). A list of the design signals that
RuleBase recognizes can be found under the “Debugging/Signals before reduc-
tion” menu option.

4.7 Overriding Design Behavior

The environment can be used to override the behavior of part of the design. To
override the behavior of an internal design signal, give it behavior using the
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define statement, or the var statement in combination with the assign state-
ment, which specifiegverride as follows:

define overridesig := ...

or:

var override sig: boolean
assign init@ig) = ...

nexgsig) := ...

Overriding design behavior is especially useful if you have implemented a spe-
cific behavior of a signal, but want to make sure the design works for any
behavior of the signal. For instance, suppose that we have a signal called “pre-
dict” that implements a complicated predict function. Some other piece of

logic uses the “predict” signal in its calculations. Suppose our formula is the
following:

AG (predict ->AX[2] llow_priority_request)

Also suppose that this formula should be true regardless of the implementation
of the predict function. We can make the job of RuleBase easier by eliminating
all of the logic driving “predict”, and overriding it with a totally non-determin-
istic behavior, as follows:

var override predict:boolean

Now, predict can have any behavior. For another example of overriding inter-
nal signals, see “Abstraction of Internal Parts” on page 159.

When overriding design signals, it is important to make sure that you are using
the name of the signal exactly as recognized by RuleBase (including capitali-
zation). A list of the design signals that RuleBase recognizes can be found
under the “Debugging/Signals before reduction” menu option.
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4.7.1 Overriding Initial Values

Sometimes, it is necessary to override the initial value of a flip-flop in the
design without modifying its next-state function. In these cases, specify the ini-
tial value as follows:

assign initabc) := 1;
assign init(def) := {0,1};

The first statement above assigns an initial value of 1 to signal abc. The second
statement assigns a non-deterministic initial value to signal def. In other
words, the value of signal def at power-on is not known.

4.7.2 Using Original Design Behavior

When design behavior is overridden withauerride statement, it is some-

times necessary to use the original behavior of the design in addition to the
overriding one. In such cases, the original design behavior can be accessed by
specifyingoriginal, as follows.

For example, suppose ack is a signal in the design.
If you write the following:

mode check_override {
var override ack:boolean ;
assign ack :=0;
}
rule override_original {
envs check_override ;
formula { AG (original(ack) = 0) }
}

RuleBase will check the formula according to the original behavior of ack and
not according to the behavior that overrides it.
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When the original behavior of ack is accessed, an auxiliary signal

NET _original_ack is created and it takes the original behavior of ack. How-
ever, the behavior of ack shown in the scope will be the overriding behavior,
not the original one, and NET _original_ack will not appear in the scope.

Note for advanced userg he reason that NET_original_ack is not shown in
the scope is that it is filtered out of the SMV log and the scope (like all signals
whose names begin with NET ).

To see NET _original_ack in the scope

 Insert the following two lines to your relubase.setup file:
setenv SMVFLAGS “$SMVFLAGS -no_filter_synopsys”
setenv rb_dont_filter_names 1

Or:

« Add the following definition to your envs file:
define orig_ack := NET_original_ack

You will then be able to view orig_ack in the scope.

4.8 Using Non-determinism and Fairness

It may not yet be clear to you how an environment is used to deseebg
possibleinput sequence. This is important if we are to fulfill the promise made
that formal verification is equivalent to exhaustive simulation. To achieve this
exhaustiveness, we use non-determinism.

This section discusses non-determinism and its uses. It is necessary to under-
stand this subject thoroughly in order to use formal verification. Afterwards,
we discuss fairness, a closely related concept. Fairness is a way of limiting
non-determinism so that the paths that we filter out the paths that we do not
want to consider.
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A non-deterministic environment is an environment in which we specify more
than one possibility for the behavior of a given variable. When we make a non-
deterministic assignment, we are indicating to RuleBasalhpbssibilities

must be considered. Do not confuse a non-deterministic assignment with the X
value sometimes used in simulation, or with a don’t care assignment as used in
synthesis. A don’t care assignment gives a measure of freedom to the synthesis
tool—it indicates that any value chosen by the tool is acceptable. In synthesis,
the actual logic will either have one value or the other. A non-deterministic
assignment, on the other hand, does not give any freedom. Rather, it forces
RuleBase to consider the exact outcome of all possible choices.

This section assumes that the rules checked are of the form “for all possible
execution paths, some property holds true.” If rules of this type are proven in
an abstract system, it will also hold true in every concrete system that imple-
ments the abstract system. Experience has proven that most of the rules used in
practice are of this type.

4.8.1 Coding Non-determinism
4.8.1.1 Free Variables

A free variable is any variable that is declared, but not assigned a behavior
using amassignstatement. For instance, assume the following is part of an
environment that models a CPU driving a memory bus:

var command: {read, write, none};

Since we have not specified any behavior forecbenmandariable, RuleBase
must consider all possible sequences of commands.

A non-deterministic choice between values of a variable can also be made by
enumerating all possible values. Thus, we could have made the command vari-
able free, as follows:

var command: {read, write, none};
assigncommand := {read, write, none};

IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



Describing the Environment 96

4.8.1.2 Non-deterministic Choice

Many times, we do not want a variable to be completely free, but rather con-
strained in some way while still exhibiting non-deterministic behavior in cer-
tain cases. For this purpose, we can use non-deterministic choice among
expressions. The non-deterministic choice is an expression that indicates a
choice between a number of values. For instance, the following expression:

{write, none}

indicates a non-deterministic choice between the values “write” and “none”.
Suppose that our CPU contains a MESI-state cache. Then, it will never issue
the read command unless it is in an invalid state. However, the write command
may be issued in any case. We would then model our CPU as follows:

var command: {read, write, none};
assigncommand :=

case
mesi_state = invalid: {read, write, none};
else . {write, none};

esac

In this environment we have specified that the command can be any of the three
declared values if the variable mesi_state equals invalid. Otherwise, the vari-
able command can take on either the value “write” or the value “none”.

Example:

Say we have an arbiter that receives two commands: c1 and c2. If both com-
mands have the value “none”, then the arbiter outputs “none”. If one of the
command is something other than “none”, then that command is chosen. If
both commands are something other than “none”, then the arbiter may choose
either command non-deterministically. We can model this as follows:

module an_arbiter (c1, c2) (output_command)

{

var output_command: {read, write, none},
assignoutput_command :=
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case
(cl =none) & (c2 = none): none;
(c1 =none): c2;
(c2 = none): cl;
else : {c1, c2};
esac

4.8.1.3 Auxiliary Non-deterministic Variables

The arbiter shown above is rather simplistic. To complicate things, let us
assume that command c1 comes with address al, and command c2 comes with
address a2. Then, if we choose command c1, it makes no sense to choose a2.
In this case we must choose al. One way to associate one non-deterministic
choice with another is to use an auxiliary non-deterministic variable. The fol-
lowing example illustrates this point.

FIGURE 4. Another arbiter

module another_arbiter (c1, al, c2, a2) (output_command, output_address)
{

var choose: {1,2};

var output_command: {read, write, none};

var output_addresioolean

assignoutput_command :=
case
(c1 = none) & (c2 = none): none;
(c1 = none): c2;
(c2 = none): c1;

else : case choose = 1: cl1; 2: c2; esac;
esag
assignoutput_address :=
case

(c1 =none) & (c2 = none): {0,1};
(c1 =none): az;
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(c2 = none): al;
else : case choose = 1: al; 2: a2; esac;
esag

}

By using the free auxiliary variable “choose”, we have tied the non-determinis-
tic choice between c1 and c2 to that between al and a2. Notice that in the case
where both c1 and c2 are none, we let the address be free. This is an accurate
picture of an arbiter in which the address is undefined in the case that no com-
mand is chosen.

4.8.2 Using Non-determinism to Create an Abstract Model

Suppose we need to model an arbiter that uses a round-robin or other algorithm
in order to ensure that every requestor gets a turn. Now, assume that this arbi-
ter is not part of the model under test, but a piece of logic that we know is cor-
rect. Creating an exact model of the arbiter will be time-consuming and error-
prone. We would probably spend a good amount of time debugging the model
rather than verifying our design under test.

If the properties to be verified only depend on the fact that the arbiter eventu-
ally gives every requestor a turn, and not on the specific algorithm used by the
arbiter, then we may want to use non-determinism to make our modeling job
easier. By using a non-deterministic arbiter, as shown in Section 4.8.1, we
ensure that any property we prove will be true in the case that the real arbiter is
used. This is because a hon-deterministic arbiter models all possible sequences
of events wherever the non-deterministic choice appears. Since the real behav-
ior is one of the possible choices, it follows that anything proved for the non-
deterministic arbiter is true for the real arbiter. A model that includes more
behavior than the entity being modeled is called an abstract model.

There is one catch, however. Since our non-deterministic arbiter models all
possible behaviors, it also models the behavior in which c1 is always chosen
whenever a non-deterministic choice is to be made. We need a way to filter out
this possibility and the way to do so is throdginness
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4 .8.3 Fairness

Recall that théairness statement has the following format:

fairness expression;

The meaning of th&airness statement is that we are only interested in
sequences in which the expression specified will happen infinitely often. That
is, we are not interested in input sequences in which, at some point in time, the
expression becomes false and stays that way forever.

By making the following two fairness constraints within the arbiter of Figure 4

fairnesschoose = 1;
fairnesschoose = 2;

we indicate to RuleBase that we are only interested in input sequences in
which choosetakes on the values 1 and 2 infinitely often. That is, we filter out
sequences in which, at some point in ticleosegets stuck at either value.

4.8.3.1 Advanced Fairness Types

In the example above, suppose that we whobseto take on the value 1 infi-
nitely often only on those paths in which c1 is not stuck at value ‘none’ forever.
(That is, for paths on which cl is stuck at ‘none’ forever, we have no require-
ments fromchoose). For this purpose, thiairness statement described above

is too strong; we need a weaker type of fairness to filter out the paths we want.
The statement

GF->GF c1 != none,choose= 1;
will leave the paths we want in the model.

Note GF andFG, mentioned in the sequel, are constructs of the Sugar specifi-
cation language, described in CHAPTER 5: Sugar — The RuleBase Specifica-
tion Language.
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The following additional fairness types are supported:

FGp;

Leaves in the model only paths on which, from some point onwahlds
forever

FG->FGp,q;

Leaves in the model only paths on which if a point from whitiolds for-
ever then a point also exists from whigtholds forever

FG->GFp, q;

Leaves in the model only paths on which, if a point from whitiolds for-
everexists, therg holds infinitelyoften .

GF->GFp,q;

Leaves in the model only paths on whicp ifiolds infinitelyoften, therg
also holds infinitelyoften.

4.8.3.2 Danger of Fairness

Fairness is a powerful, but dangerous tool. The danger of fairness is that too
many paths may be unintentionally filtered out, some of which may include
violations of our formulas. Here is an example:

module server (start) (ready)
{
var state : { idle, busy, done };
assign
init (state) :=idle;
next (state) :=
case
state=idle & start : busy;
state=busy : { busy, done };
state=done : idle;
else: state;
esac
defineready := state=idle;
fairnessstate = done;

}
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In the above example, we give the variable “state” a non-deterministic behavior
while it is busy. We also constrain RuleBase wittasnessstatement so that it
only checks paths on which the machine does not stay busy forever. However,
this is a dangerous formulation of the fairness requirement. Since for each
“done” there is one “start”, the paths left in the model also have “start” infi-
nitely often. If some deadlock condition in the verified design prevents start
from being asserted, this deadlock will not be detected, because the fairness
constraint filtered out paths on which start is not asserted infinitely often.

To overcome the problem in the above example fdimess statement should
be formulated in a way that prevents state from staying busy, while having no
side effects:

fairnessstate!= busy;
4.9 Using Counter Files

Counters in the design may induce many iterations during reachability analy-
sis, because only one counter state is reached at each step. If you have big
counters and experience this problem, try the following:

If your design is small, first try to run without reachability: Set options/verifi-
cation/reachability=no and verify-safety-OnTheFly=no. This may solve your
problem.

If your design is not small, or if the above solution resulted in BDD explosion,
try the “counters trick”:

1. Set options/verification/reachability=yes and verify-safety-OnTheFly=no.

2. Create file “counters” in the verification directory that contains the names of
the counter variables, one at each line (vectors should be split into single
bits).

3. Add the following line to rulebase.setup:
setenv SMVFLAGS “$SMVFLAGS -counters_file ../counters”
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Note: This will result in approximate reachable state space, so errors cannot
be detected on the fly.

If you expect errors in early iterations, we recommend that you clean them first
in OnTheFly mode (options/verification/reachability=yes and verify-safety-
OnTheFly=yes), and only then use the counters trick.

4.10Modeling Clocks

To use formal verification properly, it is essential to understand the way Rule-
Base deals with clocks, and to choose the proper clock scheme. This section
assumes that the clock signal is generated externally and drives the verified
design through input clock pins.

The most simple case is a design that only has one clock, in which only one
level or edge of the clock is used in the design. In this case, the clock input
should be held constant at the value ‘1’

defineCLK :=1; -- CLK s the clock input pin *

RuleBase understands it as the clock being active in every cycle. This works
even when some of the flip-flops are gated. The gated flip-flops will work only
when the gate is active.

The next scheme has one clock, but both levels (or edges) are used in the
design. In this case, we define the clock as having alternate values 0 and 1, as
follows:

var CLK: booleann assign init(CLK) := 0; next(CLK) := ICLK; (**)

Notes

« If your design uses master-slave latches, then the master latches will change
on one level of the clock, and the slave latches on the other. However, if the
only use of the master latches is to drive the slaves (i.e., there is no use of
the master latch output other than by its slave), then you can still use the
simpler clock scheme described above, which will give you better perfor-
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mance. To do this, you must model the master-slave pair as a single edge-
triggered flip-flop or latch (see CHAPTER 2: Getting Started for modeling
of latches).

« Although (**) may be used in designs that have one clock with one phase,
model-checking of (*) is more efficient.

« When the clock is defined as in (**), formulas should include explicit refer-
ences to the clock signal. For example, the following formula:

“AG(p->AX q)"

should be rewritten as:
“AG( (p&CLK) -> next_ever{CLK)(q) )"
This rewriting may also be necessary in the more complicated clock
schemes described below. If all signals in the formula refer to the same
clock, as in the examples above, RuleBase can rewrite the formula automat-
ically. To do that, write
AG(p->AX q) ::clk=CLK
See section 5.4: “Multiple-Clocks in Formulas” for more details.

Before continuing further with more clock schemes, it is important to note that
complex schemes usually contribute to size problems more than simpler ones.
When planning the micro-architecture of the design, it is advised to partition
the design in a way that each part will have the simplest scheme possible, pref-
erably one clock.

The next scheme has multiple synchronized clocks. For example, assume that
there are two clocks, with a 1:3 ratio between their frequencies. In this case, we
fix the faster clock at value ‘1’ (always active), and generate a pulse every third
cycle for the slow clock:

defineFAST_CLOCK :=1;

var clock_counter: 0..2;

assign nexfclock_counter) := (clock_counter +djod 3;
define SLOW_CLOCK :=clock_counter = 0;
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In contrast to clocks in real systems, whose duty cycle is usually 50%, slow
clocks in RuleBase should only be activedoecycle each time. (If this is a
problem because the clock is generated internally, contact us.)

A similar case is a ratio of 2:3:

var clock_counter: 0..5;

assign nexfclock _counter) := (clock_counter +fjod 6;
define SLOW_CLOCK :=clock_counterin {0, 3 };
defineFAST_CLOCK := clock_counterin{0, 2,4 };

If the clocks are not synchronized, some tricks are necessary in order to work
in a synchronous framework. One case is presented to demonstrate the range of
possibilities. In general, even when the clocks are not synchronized, the ratio
of frequencies is kept within a limited range. Assume, for example, that the
ratio can range from 1:2 to 1:3, which means (among other things) that some-
times the faster clock beats twice (and possibly three times) before the slower
clock beats once. One possible solution is to model a slow clock that non-
deterministically generates a pulse once every two or three cycles:

defineFAST_CLOCK :=1;
var clock_counter: 0..2;
assign nexfclock_counter) :=
{(clock_counter +1) mod 2 , (clock_counter fi9d 3};
define SLOW_CLOCK :=clock_counter = 0;

Even if the clock scheme in your design is a complex one, we recommend that
you begin verification with the simplest scheme possibldAT/WHO is
likely to detect some of the design errors regardless of the scheme.

Only after the simplified design seems to be error free, should you move to a
more complex and realistic scheme and hunt for the problems that otherwise
cannot be detected.
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4.11Modeling Reset

Another important signal that appears in most of the designs is the reset signal.
Usually, reset is activated for some time after power-up, and then deactivated
for normal operation. Reset must be active long enough to initialize all mem-
ory elements with the correct values. In many designs, a few cycles (1 to 10)
are enough. The following example shows an environment model that gener-
ates a 4-cycle active-high reset:

var reset_counter : 0..4;
assign

init (reset_counter) := 0;

next(reset_counter) :# reset_counter=then 4 elsereset_counter+&ndif;
defineRESET :=reset_counter != 4;

It is important to identify the optimal duration of reset. It should be long
enough for correct operation, but not too long. A big counter may contribute to
the size problem inherent to formal verification and may result in unnecessarily
long counter examples.
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5.1 Overview

Sugar is the specification language of RuleBase. It is used to formally describe
properties to which the design under verification must adhere. Sugar is an
extension of the temporal logic CTL (Computational Tree Logic). CTL is
designed with academic orientation, and needs some adjustments in order to be
used in industry. Particularly, complex CTL specifications are difficult to read
and write. Sugar adds, on top of CTL, a small set of new operators that sim-
plify formulation of complex properties. It is fully backward compatible with
CTL.

The following sections describe both CTL and Sugar. Section 5.2, Semantic
Model, provides background on the underlying model on which CTL and

Sugar operate (it is not necessary for the understanding of the rest of the chap-
ter and you can skip it if you like). Section 5.3, CTL Operators and Section
5.4, Sugar Operators describe the CTL and Sugar operators, and the remaining
sections offer some practical advice. Before you start to write formulas, we
recommend that you read CHAPTER 7: Managing Rules, Modes, and Envi-
ronments.
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5.2 Semantic Model

RuleBase is used to verify that a given finite-state machine satisfies a given list
of properties. The machine consists of a design, usually written in a hardware
description language, composed with an EDL (Environment Description Lan-
guage) description of the target environment in which the design is expected to
run. There are cases, such as in protocol verification, where both the design and
the environment are written in EDL. The finite state machine has no free
inputs; every input of the design is driven by some signal of the environment,
and every input of the environment is driven by the design. While there are no
free inputs, the machine usually has multiple choices when moving to the next
state, because some of the state-variables, mainly those that model the environ-
ment, have non-deterministic behavior.

A non-deterministic finite state machine can be unfolded into an infinite tree
that represents the machine’s computations. The tree root represents the initial
state of the machine, each tree node corresponds to a state in the machine, and
the edges that emanate from a state are the possible transitions to other states.
The infinite paths of the tree, beginning at the root, are the machine’s computa-
tions. A machine with multiple initial states is unfolded into multiple trees. In

the unfolded tree, different nodes may correspond to the same state of the
machine. Figure 5 shows an example of a machine and its computation tree.
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idle ...

—> don
busy< e<busy
'\ / / busy<d0ne
busy ...
@ idle\ done

FIGURE 5. Example: A finite-state machine and part of its computation tree

It may be useful to keep this computation tree structure in mind when writing
rules, because RuleBase formulas are interpreted over such trees.

Within RuleBase, rules are written in the specification language Sugar. Sugar is
built on top of CTL (Computational Tree Logic). CTL, and hence Sugat, is
specially designed to work with the computation trees described in the previ-
ous paragraphs. In the temporal logic CTL, time is discrete, and the world con-
sists of a current state, mapped to a specific node in the computation tree, and
of many possible futures (all computation paths emanating from this state).
CTL has no way to refer to the past. The only way to reason about the past is to
have information stored in state variables.

An important premise in CTL is that time is infinite. A computation is an infi-
nite sequence of points in time, which start at the current state. Thus, from any
point in time (any “current state”), there are many infinite computations
(branches) into the future. In Figure , the beginning of one path (recall that all
paths are infinite) is shown in bold. In this figure, and in later figures, the only
reason that some points do not show a future is lack of dpeemsy. point in
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time has a future. To simplify the figures, state names are sometimes omitted
from tree nodes.

You are here now

~

T~

FIGURE 6. Beginning of one possible path

5.3CTL Operators

CTL formulas have the following syntax:

1. Signal names and constants are CTL formulas.

2. CTL formulas combined with boolean operators are also CTL formulas:
Ifl, fl1&f2, f1|f2, f1->f2, fl<->f2, flxorf2,

3. Iff, f1, and f2 are CTL formulas, then the following are also CTL formulas:
AXf, EXf, AGf, EGf, AFf, EFf A[flUf2], E[flUf2]
These eight operators are caltethporal operators.

Boolean operators have their usual meaning.

IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



Sugar — The RuleBase Specification Language 110

Temporal operators are used to reason about events that take place along some
time interval. Each temporal operator consists of two letters. The first letter is
eitherA or E, whereA means “the formula holds in all paths beginning in the
current state”, ane means “the formula holds in at least one path beginning in

the current state”. The second letteGid, X, or U, whereG means “the for-

mula holds from now on”F means “the formula holds now or will hold in the
future”, X means “the formula will hold in the next point of time”, and tf1

f2” means “f2 holds now or f1 will hold until (but not necessary including) f2
holds”.

The temporal operator letters and their meanings are:

« A=Al

« E =Exists

e G =Globally
 F =Future

e« X =nexXt

e U =Until

The following sections detail the eight temporal operators.

Temporal operators take precedence over Boolean operators. Therefore, you
should use parentheses to enclose the formula to which the temporal operator
is applied.

5.3.1 AG and EG

By combining the meaning @&f with the meaning o6, the resultinctAG
means “for all paths, from now on”. This is depicted in Figure 7 below. The
points in time affected by the operator are marked with a black triangle.
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current state

FIGURE 7. AG

As can be seen by looking at Figure 7, all points in time on paths that start in
the current state are marked. Consider an example with two signals, “read” and
“write”, which should never be active simultaneously. This fact can be stated in
CTL as follows:

AG !(read & write) (For. 1)

Because the Boolean formula “!(read & write)” is prefixedA&y, it will be
checked at every point in time starting at the current state.

EG, on the other hand, means “for some path, from now on”. This is depicted
in Figure 8 below.
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current state

FIGURE 8. EG

In Figure 8 , you can see that all points in time along one infinite path are
marked. This illustrates the fact that in orderE@ to be satisfied, you need
at leastone path where every point in time satisfies the demand. For example:

EG (transaction_starts -> read) (For. 2)

states that there is a possible computation (infinite branch) in which all the
transactions are reads.

5.3.2 AF and EF

By combining the meaning &% with the meaning oF, we find thatAF means
“for all paths, now or at some future point in time”. This is depicted in Figure
below.
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current state

=

FIGURE 9. AF

By examining Figure , we can see that starting at the current state, along every
possible path, at least one future point is marked. For example, say that at the
current state, a request has been made and it requires an acknowledge. The
acknowledge may take place at different points in time, depending on the cir-
cumstances, but it must always eventually take place. This can be expressed in
CTL as:

AF ack (For. 3)

The above formula is not very useful, since in real life a request is made at
many points in time and under many circumstances. In real life, our world
would probably look more like this:

IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



Sugar — The RuleBase Specification Language 114

current state
re

FIGURE 10. AF in the real world

In Figure 10, a request is made at three different points in time. Starting at
each point where a request is made, there are many infinite paths. For each one
of those paths, at least one future point is marked. This can be expressed in
CTL as:

AG (req ->AF ack) (For. 4)

where “->" is the “implies” operator. Thus, this formulas can be read as: for all
paths, at every point in time, if there is a request, then for all paths emanating
from that point, at some future time, we must receive an acknowledge. In sim-
pler terms: whenever there is a request, eventually there is an acknowledge.

There are still some open questions regarding Formula 4. WA required
in Formula 4? Why not simply state:

req ->AF ack (For. 5)
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The answer is that Formula 5 refers only to the initial state. For a hardware
model, the initial state is located at power on. Thus, Formula 5 refers only to a
request that occurs at power on. In order to express events that take place after
power on, you must always enclose the formula in one of the eight basic tem-
poral operatorsAG, AF, AX, AU, EG, EF, EX, EU). Specifically, in order to
express a request that can happen at any time, you must enclose Formula 5 in
the temporal operat®G. )

EF, on the other hand, means “for some path, at some point in time”. This is
depicted in Figure below.

current state

/
\

FIGURE 11. EF

By examining Figure , you can see that there is some point in some future path
from the current state which is marked. For exantpfecan be used to

express that it must always be possible for our state machine to return to state
“idle”, as follows:

AG EF (state =idle) (For. 6)
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which reads as: for all paths, at all points in time, there is some path in which,
at some point in time, the state will be idle. In simpler terms: it is always true
that a path exists to idle. Thu&E can be used to express a lack of deadlock.

5.3.3 AX and EX

AX means “for all paths, at the next point in time”. This is depicted in Figure
below.

current state

FIGURE 12. AX

In Figure 12 , along all paths that start in the current state, the very next point
in time is marked. For example, if a request is made at the current state, and an
acknowledge is required at the very next time step. This is expressed as:

AX ack (For. 7)

As is the case witAF described above, Formula 7 is not practical, since in
real life a request is made at many points in time and under many circum-
stances. In real life our world would probably look more like Figure 13 .
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current state
re

FIGURE 13. AX in the real world

In Figure 13, a request is made at three different points in time. Starting at
each point where a request is made, there are many infinite paths. For each one
of those paths, the very next point in time is marked. This can be expressed in
CTL as:

AG (req ->AX ack) (For. 8)

Formula 8 can be read as follows: for every request, we must get an acknowl-
edge at the next point in time.

It is worthwhile to compare Figure 10 with Figure 13 . In the former, a request
must be acknowledged eventually. In the latter, a request must be acknowl-
edged at the very next point in time.

EX means “for some path, at the very next point in time”. This situation is
depicted in Figure 14 below.
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current state

-
T~

FIGURE 14. EX

Once again, by studying Figure 14 , you can see that for some path from the
current state, the very next point in time is marked.

5.3.4 AU and EU

AU has two operands, and is used as follows:
Alqur] (For. 9)

which reads: for all paths, q is true until r is true. Note that:

¢ r must occur eventually.
 rcan occur in the current state, in which case g may not appear at all.
e ( need not hold at the time r holds.

This is depicted in Figure below.
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current state

FIGURE 15. AU

By examining Figure , you can see that from the current state, all points on all
infinite paths are marked until a point where r holds is reached. The marked
points are those in which g must be true. For example, suppose that you want to
ensure that a busy signal is asserted from the moment a request is made up
until the time that an acknowledge is received. This is expressed in CTL as:

AG (req ->A[busyU ack]) (For. 10)

In this case, Figure represents a subset of the complete time tree, with a
request that occurs at the current state.

The AU operator requires that the terminating condition eventually happen.
That s, there are two ways Formula 10 can fail. First, if the busy signal is inac-
tive somewhere between req and ack, and second, if the ack never occurs.
Because it makes a demand on its terminating condi#dhss known as a
strong operator.
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EU means “for some path, until”. The computation tree=fdris left as an
exercise for the reader.

At this point, the eight basic CTL operator§ AEG, AF, EF, AX, EX, AU,

andEU have been covered. While combinations of the basic CTL temporal
operators presented here can provide a lot of expressive power, complex CTL
formulas are difficult to read and write. To overcome this limitation, RuleBase
provides higher-level operators that add more expressive ability.

5.4 Sugar Operators

Sugar adds several operators on top of CTL in order to answer real needs that
arise in practical formal verification. Although many Sugar formulas can be
expressed in pure CTL, many other formulas are practically impossible to
express in CTL because they would be too complex. Sugar is also stronger than
pure CTL in the theoretical aspect, mainly in its ability to express any regular
expression, as described in Section 5.4.6.

Experience shows thatin CTL it is easy to write formulas that are syntactically
correct, but their meaning is completely different from what the user had in
mind. Sugar protects you from making these kinds of mistakes in two ways.
One way is to limit the formulas syntactically. For example, in some fields of
certain Sugar operators only Boolean expressions are allowed. The other way
is to produce a warning when a formula is suspected of having a wrong mean-
ing. For more details see Section 5.7, Writing Correct Formulas.

Experience indicates that almost all useful formulas fall into the ACTL [SG90]
subset of CTL, (i.e., they require that properties will hold alatigpaths rather
than insomepaths). For this reason, the new Sugar operators should be inter-
preted as being applied &l paths (as if there is ain front of them).

Another observation is that the strong versions of the @il operator AU
andEU) are not suitable for the formulation of many properties. Expressing a
weakuntil (in which there is no demand that the terminating condition must
eventually occur) in CTL is laborious and error prone. Sugar provides the weak
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until operator, and in addition, provides both weak and strong versions of
some higher-level operatonsext_event within, etc.). A strong operator
name has!' as its last character (e.gvithin! ).

The following sections describe Sugar operators, beginning with the simpler
ones.

5.4.1 Bounded-Range Operators
5.4.1.1 AX[n]

The first Sugar operator AX[n]. This is simply shorthand for n timesX. For
example,

AG (req ->AX]3] ack) (For. 11)

is equivalent to

AG(req ->AX AX AX ack) (For. 12)

This can be read as “whenever there is a request, an acknowledge will be
received three clocks later”.

5.4.1.2 ABF

The operatoABFi..j](f) constrains the future of the operathF between i

and j clocks from where it is applied. For instance, the following example
exhibits the rule “whenever there is a request, an acknowledge will be received
within 1 to 3 clocks™:

AG (req ->ABFJ1..3](ack)) (For. 13)
The equivalent CTL expression of this simple fact is:

AG (req ->AX (ack | AX (ack |AX ack))) (For. 14)
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5.4.1.3 ABG

The operatoABG]i..j](f) constrains the future of the operathG between i

and j clocks from now. For example, the following expresses the rule “when-
ever there is a request, the busy signal is locked and stays locked for the next 4
clocks™

AG (req ->ABG|0..4](busy)) (For. 15)

The equivalent CTL expression is:

AG (req -> (busy &AX (busy &AX (busy &AX (busy &AX busy))))) (For. 16)

5.4.2 Until Operators
5.4.2.1 until

As discussed in Section 5.3.4, tAg operator is a strong operator. That is, the
formula

AlpU(q] (For. 17)

means that g must eventually occur, and that p must be true on all paths until q
occurs. Theuntil operator is the weak version of tiA&J) operator. It is written:

p until g (For. 18)

and means that for all paths, p is true until g occurs. However, thewglak

does not require that g eventually occur (in that case p must be true forever).
For example, to express the rule “always, once a transaction starts, there will be
no additional transaction starts before the end of the first transaction”, you can
use the following Sugar formula:

AG (trans_start -> AX (Itrans_stauntil trans_end)) (For. 19)
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Formula 19 does not require that every transaction end, only that a new one
does not start before the first one ends.

Another way to write the wealkntil operator is:

AlpW(q] (For. 20)

which uses syntax that mimics that of CTL.
5.4.2.2 until!

Theuntil! operator is a strong version of taetil operator. It is equivalent to
the CTL operatoAU.

5.4.2.3 until_

Formula 18 requires that p be true until, but not including, the cycle on which q
is true (if there exists such a cycle). The statement

puntil_ q (For. 21)

means “p until g” and also requires that at the first cycle where q is true (if at
all), p is also true.

5.4.2.4 untill_

Theuntil!_ operator is a strong version of tinetil_ operator.

5.4.3 Before Operators
5.4.3.1 before

Thebefore operator has the format

p before q (For. 22)
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and means that on all paths, the first p must happen before or together with the
first g. Thebefore operator is a weak operator, that is, it does not require that p
eventually happen.

5.4.3.2 before!

Thebefore! operator is a strong version of thefore operator. Thus, the for-
mula:

AG (req -> (data_receiveefore! ack)) (For. 23)

requires that after request, data_receive is asserted before or together with ack,
and data_receive must eventually be asserted.

5.4.3.3 before_ and before!

(p before_q) and (poefore_! g) are similar to (jpefore q) and (pbefore! q),
but require that the first p happen strictly before (and not together with) the first

o]
5.4.4 Next_event

next_eventis a conceptual extension of tAX operator. WhileAX talks
about the next cyclenext_eventtalks about the next time a certain event
occurs. Variations afiext_eventare extensions of th&X[n] andABG]i..j]
operators.

5.4.4.1 next_event(p)(q)

The operatonext_even{p)(q) means that the next time that p occurs, q will
occur. For instance, imagine an arbiter in which requests are processed in the
order they are received, unless there is a high priority request, in which case it
must be processed immediately. For simplicity’s sake, assume that there is only
one requestor that can send high priority requests. Then a rule might be:
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“whenever a high priority request is received, the next grant must be to the high
priority requestor”. Here is the rule in Sugar:

AG ((req & high_priority) ->AX (next_event{grant)(dst = high_priority_requestor)jpr. 24)

It is important to note that the operatmxt_even{p)(q) does not require that

the event p eventually happen. It only states that if p does happen, then q must
happen. Thus, Formula 24 can be more precisely read as: “whenever a high pri-
ority request is received, if there is eventually a grant, then the first grant must
be to the high priority requestor”. Because this operator does not make any
demands on the eventual occurrence of p, it is known as thenergilevent
operator. The strongext_eventoperator, presented in Section 5.4.4.2, has the
added semantics of “p must eventually occur”.

There is one limitation on the userwxt_even{p)(q) and all its incarnations.
While g can be any Sugar formula, p must be a Boolean formula, (i.e., a for-
mula with no temporal operators).

5.4.4.2 next_event!(p)(q)

The operatonext_event(p)(q) is called the strongext_eventoperator. It
means the same aext_even{p)(q) with the additional meaning that p must
occur. Thus, the strong version of Formula 24:

AG ((req & high_priority) -> AX (ext_event(grant)(dst = high_priority_requestoryjr. 25)

states that “whenever a high priority request is received, a grant must eventu-
ally occur, and the next grant must be to the high priority requestor”.

5.4.4.3 next_event(p)[n](q)

The operatonext_even{p)[n](q) means “on the nth time that p occurs, q will
occur”. For example, suppose that for every request, 4 ready signals must be
sent, and that on the last one, a signal called last_ready must be sent. That is,
after a request, the 4th ready signal must be accompanied by the signal
last_ready. This can be expressed in Sugar as:
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AG (req -> AX fext_evenfready)[4](last_ready))) (For. 26)

As with next_even{p)(q), this operator is a weak operator—it does not require
that p occur the specified number of times. For the corresponding strong opera-
tor, see Section 5.4.4.4.

5.4.4.4 next_event!(p)[n](q)

This is the strong version of timext_even{p)[n](q) operator. It has the same
meaning as the corresponding weak operator of Section 5.4.4.3, with the addi-
tional meaning that p must occur at least n times. Thus, the strong version of
Formula 26:

AG (req -> AX (ext_event(ready)[4](last_ready))) (For. 27)

states that after a request, there must be at least 4 ready signals, and the 4th
ready signal must be accompanied by the signal last_ready.

5.4.4.5 next_event(p)[i..jJ(q) and next_event!(p)]i..jj(q)

The formula

next_event(p)[2..4](q) (For. 28)

states that in the second, third, and fourth times that p occurs, g occurs as well.
Formula 29 is a stronger version of Formula 28, which also requires that p
occur at least 4 times on every possible path.

next_event(p)[2..4](q) (For. 29)

5.4.4.6 next_event_f(p)[i..jJ(g) and next_event_fli(p)[i..jl(q)

The formula

next_event_f(p)[3..4](q) (For. 30)
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states that in one of the third or fourth times that p occurs, g should occur as
well. Formula 31 is a stronger version of Formula 30, which also requires that
p should occur at least 3 times on every path where q occurs on the third p, and
at least 4 times on others.

next_event_fl(p)[3..4](q) (For. 31)
5.4.5 Within and Whilenot

The behavior of many reactive systems is repetitive, and consists of a few basic
types of transactions that take place again and again. In such systems, there are
properties that are only interesting within transaction boundariesvilta
andwhilenot operators can help formulate such properties by limiting the

scope of formulas to given intervals. By handling boundary conditiaithjn
andwhilenot let you focus on the actual properties to be checked, without wor-
rying about extreme cases.

5.4.5.1 within(p,q)(r)

The operatowithin (p,q)(r) means that “formula r is true in the period of time
starting when p is true and ending one cycle before q is true”. For instance, we
can express the requirement “between a request and its acknowledge, the busy
signal must remain asserted” as follows:

AG (within (req,ack)(AG busy ) ) (For. 32)

Compare this formula with Formula 15, where we knew exactly how long busy
should be asserted. In Formula 32, we express the fact that the busy signal
should remain asserted for a period of time without knowing in advance
exactly how many clocks that will be, or whether it is exactly the same number
of clocks each time.

within is a weak operator—it does not require that either of the conditions p or
g ever happen. But, if in some computation, p occurs and g never follows, then
the formula r should hold at p and remain true forever. For the corresponding
strong operator, see Section 5.4.5.2

IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



Sugar — The RuleBase Specification Language 128

The effect of thewithin (p,q)(r) operator oi\F is more interesting. Recall that

the standard meaning Af is “for all paths, at some point in the future”. By
restricting theAF operator with thevithin (p,q)(r) operatorAF means “for all

paths, at some point (in the future) between p and q”. For instance, suppose
you want to express the fact that before an acknowledge can be sent, data must
be received. This can be done using the following Sugar formula:

AG (within (req, ack)AF data_receive)) (For. 33)

Because thé&F operator is restricted byithin, its scope ends at the acknowl-
edge. Thus, the formula expresses the fact that for all paths that start at the time
of a request, at some time in the future but before an acknowledge signal is
asserted, data is received.

In the general casayithin (p,q)(r) trims the tree of computations and checks
the validity of formula r on this trimmed tree rather than on the full tree of
computations. The trimmed tree only contains the cycles of every path between
p and a cycle before q. Thus, the trimmed tree could have finite paths as well.
In fact, in the strongvithin !(p,q) operator (Section 5.4.5.2) one may think of
the trimmed tree as only having finite branches.

5.4.5.2 within!(p,q)(r)

This is the strong version of thithin (p,q)(r) operator. It has the semantics of
thewithin (p,q)(r) operator, with the additional requirement that p must eventu-
ally occur and g must eventually follow (p may occur at the same time as q).
Thus, the strong version of Formula 32:

AG (within!(req,ack)AG busy)) (For. 34)

states that “after every point in time there is a request that is followed by an
acknowledge signal, and between the request and its acknowledgment, busy
should be active”.
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5.4.5.3 whilenot(q)(r)

The operatowhilenot(q)(r) means that in every computation formula r is true
now and stays true at least until a clock before q is true. If g is true now then
whilenot(q)(r) is also true. For instance, Formula 32 can also be expressed as:

AG (req ->whilenot(ack)(AG busy)) (For. 35)

The operatowhilenot(q)(r) is a weak operator, that is, it does not require that
g eventually happen.

whilenot(q)(r) is a derivative of theithin operator. It may be thought of as
within (now,q)(r).

5.4.5.4 whilenot!(q)(r)

This is the strong version of thehilenot(q)(r). It has the same meaning as the
whilenot(q)(r) operator, with the addition that g must eventually happen.

5.4.6 Sequence

The sequence is a Sugar construct used to describe computation paths on
which some formula must hold. It looks like a regular expression, and its
semantics resemble the semantics of regular expressions. The sequence suits
the world of hardware design. It can be regarded as a textual representation of a
timing diagram, or as a generalized control program for simulation. Its main
advantage is the simplicity of writing certain properties that are difficult to for-
mulate using other CTL and Sugar operators.

The sequence has two parts, a list of events {el, e2, ...} and a Sugar formula

().

{el,e2,..,en}f (For. 36)

The sequence can be regarded a$ statement, in which the event list is a
condition that indicates when to check the formula. It means "if at some com-
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putation path all the events take place in the order they are defined, then the
formula must hold on this path at the last cycle of the last event in the list" (an
event may last more than one cycle). A comma between two events denotes a
move of one cycle forwards (however, if an event takes zero cycles, a comma
either before it or after it is ignored).

An event can be one of the following:

L p
A Boolean expression ‘p’.
The expression 'p’ holds for one cycle.

2. p[=i]
p is a Boolean expression.
p occurs exactly i times, not necessarily consecutively.

p[=3] is equivalent to {!P[*], P, 'P[*], P, 'P[*], P 'P}
Example
{read, write[=3], cancel}
3. p[>=i]
p is a Boolean expression.
p occurs at least i times, not necessarily consecutively.

p[>=3] is equivalent to {!P[*], P, IP[*], P, 'P[*], P, true[*]}
s p[>i]
p is a Boolean expression.

p occurs more than i times, not necessarily consecutively.
Examples

{read, write[>3], cancel}
5. p[<=i]
p is a Boolean expression.
p occurs at most i times, not necessarily consecutively.

6. p[<i]
p is a Boolean expression.
p occurs less than i times, not necessarily consecutively.
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10.

11.

12.

p[>i,<]]

p is a Boolean expression.

p occurs more that i times but less than j times, not necessarily consecu-
tively.

i and j are natural numbers (i>=0, j>i+1).

p[>=i,<|]

p is a Boolean expression.

p occurs at least i times but less than j times, not necessarily consecutively.
i and j are natural numbers ( i>=0, j>i).

p[>i,<=]]

p is a Boolean expression.

p occurs more that i times but at most j times, not necessarily consecutively.
I and j are natural numbers (i>=0, j>i).

p[>=i,<=]

p is a Boolean expression.

p occurs at least i times but at most j times, not necessarily consecutively.

i and j are natural numbers ( i>=0, j>=i).

true.
Skip one cycle. Equivalent to “AX”.

(] 0
S[k]ips zero or more cycles. Equivalent &,
‘goto p

p is a Boolean expression.

Go to the next time that p occurs.

Equivalent to {'p[*], p}.

Example

{req, goto ack,goto busy, end} (done)
‘p holds_until g,

p and g are Boolean expressions.
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13.

14.

15.

16.

17.

p holds (true) until g occurs
Equivalent to {(p & 19)[*], q}.

Example

{req, busyholds_until done} (ack)

The following sequences match the above one:

{req, busy, busy, busy, done}

{req, done}

‘p holds_until_ g,

p and g are Boolean expressions.

g holds until (inclusively) g occurs.

Equivalent to {(p & '9)[*], p&q}-

Qln]

A sub-sequence Q followed by]’, where n is a positive integer.
The sub-sequence holds n consecutive times.

Q]

A sub-sequence Q followed bjy]".

The sub-sequence holds zero or more consecutive times.
(Note: If Q is not a simple Boolean expression, then this kind of event must
be followed by a simple Boolean event.)

Ql+]

A sub-sequence Q followed bjy+]’.

The sub-sequence holds one or more consecutive times.

(Note: If Q is not a simple Boolean expression, then this kind of event must
be followed by a simple Boolean event.)

PIQ

Two sub-sequences P and Q separaté{]’ byor-between-sequence).

Either the first sub-sequence holds, or the second sub-sequence holds. For
example, the formula

AG ({p.{a.r} ] {s,t},u}(v))

IS equivalent to:
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(AG ({p,a.r,u}(v))) & (AG ({p,s,t,u}(v)))
18. P && Q

Two sub-sequences P and Q separaté@d&y (and-between-sequence).
P and Q must occur at the same time (start and end at the same cycle).

P and Q must be of the same length (same number of cycles).
Examples

If read arrives before write and both read and write are not cancelled (and
get a grant) then

read will be serviced before write.
{1,

{read, (!cancel)[*], grant_readk&
{true, write, (cancel)[*], grant_write}}
(operate_reablefore operate_write)

Exactly 3 write events should occur during the sequence:

{..... {req, read[+], flush, cance&& {write[=3]} ....... }...)
19. P[i..]]

P is a subsequence

I and j are natural numbers and i>=0, j>=i, j!=0

P holds between i to j times.

Examples

{read, write[7..10], flush}

{read, write[0..3], flush}[1..4]
20. P[i..]

P is a subsequence.

i is a natural number and i>=0

P holds at least i consecutive times.

Example

{read, write[7..], flush}[2..]
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21.

22.

23.

P~Q

Two sub-sequences separated ByP~Q).

The first cycle of Q starts when P reaches its last cycle.
Examples

{ start, req,goto busy-done, end} (ack)

{ start, {{read, busy[*]} || {write, flush }}~ {done, ready} } (ack)

is equivalent to:

{start, {{read&done}||{read,busy[*], busy&done}} || {write, flush&done}
,ready } (ack)

P->Q

Two sub-sequences separated-bty (P->Q).

If a path that is compatible with P occurs, it must be followed (starting at the same cycle
where P ends) by a path whose prefix is compatible with Q.

Examples
req -> (ackuntil (readyuntil (busyuntil end)))
is equivalent to:
{req} -> {ack[*], ready[*], busy[*], end}
{start, datal, data2, error} ->
AX(cancel_datal, &
AX(cancel_data2 &
AXdle until error)))))
IS equivalent to:
{start, datal, data2, error} ->
{true, cancel_datal, cancel_data2, idle[*], error}
P =>Q
Two sub-sequences separatedy ‘(P=>Q).

If some path compatible with P occurs, then it must be followed (starting one cycle after P
ends) by a path whose prefix is compatible with Q.

Examples
{start, datal, data2, error} =>
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AX(cancel_datal, &
AX(cancel_data2 &
AXdle until error)))))
IS equivalent to:
{start, datal, data2, errog>
{ cancel_datal, cancel_data2, idle[*], error}
24. P ->Q!
P, Q are sub-sequences.

If a path that is compatible with P occurs, then it must be followed (starting at the same
cycle where P ends) by a path that is compatible with Q and so, reaches Q’s end (i.e.
reaches the last cycle of Q):

Comments Strong version of P->Q

Example:

{a,b} -> {c,d[*],e}} - e must happen

{a,b} -> {c,d[*], e} - e may not happen (if d is ‘forever’) i.e.
a, b&ec,d,d,d,d, dd . d..... - is a valid sequence

req -> (ackuntil (readyuntil (busyuntil! end)))
{req} -> {ack[*], ready[*], busy[*], end}!
25. P => Q!
P, Q are sub-sequences.
The same as P->Q!, with the difference that Q starts one cycle after P reaches its end.

Examples

« Additional ways to expresaG (waiting ->AX next_event (done) X idle
)):
« {[*], waiting, !done[*], done, true}(idle)
« AG {waiting, goto done}(AX idle)
« {[*], waiting, goto done, true}( idle )
« The fourthreadyafterstart should be accompanied witksult=0k:
{[*], start, { 'ready[*], ready }[4] }( result=0k )
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The next example is interesting from a theoretical point of view. It is a Sugar
formula that cannot be expressed in bare CTL. It expresses the fact that f is
true at every even cycle (0, 2, ....):

{ {true, true}[*], true} (f)

Sequences may be useful for showing interesting paths, even if you don't
intend to find bugs. Suppose that you want to see a scenario in which a cache
line is modified, and later becomes exclusive without being invalidated in
between. The following sequence claims that this path is impossible, and its
counter example will demonstrate such a path (if one exists):

{ [*], modified, linvalid & !exclusive[*], exclusive } (false)

Falseis a formula that can never be true, so a counter example will be provided
if the sequence in braces is possible.

5.5 Multiple-Clocks in Formulas

Sometimes, the design under verification has more than one clock, and it
should be verified in several clock ratios. Assume for example that there are
two clocks, clk_a and clk_b, that we want to verify in two ratios: 1.1 and 1:2.
Assume also that the following formula is written for ratio 1:1.

AG(p->AX (g->AX (runtil s))) (For. 37)

If signals p,q,r,s, only depend on the slower clock, clk_b, then the formula
should be written differently for ratio 1:2.

AG((p &clk_b) ->AX[2] (g ->AX[2] ((r]'clk_b) until (s&clk_b)))) (For. 38)

To avoid the need to change formulas when the clock ratio is changed, the user
can specify the clock according to which the formula should behave, and the
translation will be done automatically. In our example, the user should specify
the clock as follows:

AG(p->AX (g->AX (runtil s))) ::clk=clk_b (For. 39)
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5.6 Quantification Over Data Values

When specifying the behavior of data, it is often necessary to refer to specific
data values. For example, suppose that we want to say that the data read in dur-
ing areadoperation will be written out in the nextrite operation. One way to
do this is to write a formula for each data value:
%for iin 0..31 do -- assuming that the data type is 0..31
formula { AG( (read & data_in=i) -next_evenf{write)(data_out=i) ) }
%end

This may be inefficient and even impossible if there are too many values. The
above can be done in one formula usingftinall construct as follows:

forall i: 0..31:
formula { AG( (read & data_in=i) ->next_even{write)( data_out=i) ) }

The syntax oforall is:

forall variable : type :

wherevariableis an EDL variable that is defined only for the purpose of quan-
tification. It should not be defined elsewhergeis any legal type, including a
bit vector.

More examples:

forall i(0..31):boolean

formula { AG( (read & data_in(0..31)=i(0..31)) ->
next_everite)(data_out(0..31)=i(0..31)) ) }

forall i: 0..15:
formula { AG( counter=i ->AX counter=(i+1)mod 16 ) }
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Although it looks natural to usterall with formulas, it is also possible to use it
anywhere else in EDL. For example:

forall i(0..31):boolean
definedata_in_is_i :=data_in(0..31)=i(0..31);
data_out_is_i := data_out(0..31)=i(0..31);
formula { AG( (read & data_in_is_i) -mext_even{write)(data_out_is_i)

)}

forall adds extra state variables. In many cases, this will not cause size prob-
lems, provided that you have a good BDD order that includes these variables.

5.7 Writing Correct Formulas

The semantic model of CTL and Sugar, described in Section 5.2, is sometimes
counter-intuitive. While reasoning about computatiees has its benefits,

users often think in terms phths. Sugar operators are designed to prevent
problems that result from misunderstanding the semantic differences. How-
ever, there are still cases in which you should be careful. This section attempts
to characterize some of these cases.

In many cases, formulas that are catisalhave a meaning that does not coin-
cide with the intention of the user. Bgusal,we mean formulas in which an
event B depends on event A only if event A occurs no later than event B. For
example, assume that you want to state the following rule: “every grant is
immediately preceded by a request”. Since CTL cannot reason about the past,
one may be tempted to write:

AG( (AX grant) -> request ) (For. 40)

This formulation relies on the future and is incorrect; it means “if grant holds

in all the next states of some state, request must be active in this state”. It
misses all the states that have grant active on some, but not all, of their succes-
sors. The correct way is to write the following causal formula:

AG( 'request ->AX !grant) (For. 41)
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We recommend that you dmt use CTL formulas that contain tBeoperator
(EG, EF, EU, andEX) unless a property cannot otherwise be formulated (for
example, AG EF p’ can find a weak form of deadlock). The main reason for
this recommendation is that it is impossible to produce a counter-example
when ark formula fails. The negation of akformula AG, AF, AU, and

AX), or of a Sugar formula, is equivalent to sd&®rmula, so we also rec-
ommend that you do not negate such formulas.

RuleBase employs two methods in order to protect users from these, and other
common mistakes. One method is to limit Sugar operators in a way that will
prevent unintended use. For example within operator can take only Bool-

ean expressions (no temporal operators) istég andendfields. The other
method is to issue warnings for suspected formulas. The cases in which such
warnings are issued are:

« For any type otintil or before operator with two temporal operands.
« If the right operand of auntil operator contains the ‘->' operator.
« If the operand of aAF or anEF operator contains the ‘->’ operator.

e For atemporal sub-formula on the left side of an “->” or on any side of the
‘<->' operator.

« When the operator ‘|’ (booleanr) has two temporal operands.

It should be emphasized thhere are correct formulas that do not obey the
above rules. However, it is important to write these formulas very carefully,
and to use them only if you are a very experienced user. Most of the properties
that are needed in daily use can be formulated while adhering to these rules.

RuleBase can produce textual explanations of Sugar formulas as a formula
debugging aid. To see formula explanations select a rule and cliddqblain

push button. These explanations may sometimes help find errors in formulas,
by presenting them in a different manner.
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5.8 Satellites — More Expressiveness

Although Sugar increases expressiveness capabilities, there are still properties
that cannot be expressed, and others that are too complicated to formulate.
Satellitesmay provide solutions in many of these cases. A satellite is a state-
machine that records events that occur in the design under verification. Formu-
las can then refer to these past events by accessing the satellite’s internal state.
Satellites do not affect the design because information only flows from the
design to the satellite (except when fairness is used in certain ways).

For example, assume that a queue of depth k reads data on one side and writes
it on the other side. Assume that we want to prove that the queue never con-
tains more that k data items. Formulation of this property in Sugar is difficult,
but it becomes easy with a satellite. An up/down counter is defined, whose
range is 0 to k, and which is incremented on reads and decremented on writes.
It is now necessary only to verify that the counter never exceeds k. We can use
the same counter to check for an underflow: Its value should never be less than
0.

Some formulas might have become easier if one could talk about past events.
Assume that we want to state that “if p occurs, then at that time g should be
activesincethe last occurrence of r’. We can define the opesitceas a
module:

module since( el, e2 )( el_since_e2)
{
var state:boolean
assign nex(state) :=
case
lel:0;
el&e2:1,
else state;
esar
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defineel_since_e2 := (el & e2) | (el & state);
}

and use it to formulate the required property:

instanceil : since( q, r)( g_since_r);
formula { AG (p->q_since_r )}
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6.1 Overview

In this chapter we present a list of useful formula patterns. Its main purpose is
to help the novice user, but experienced users may also find interesting pat-
terns. We want to emphasize the fact that one does not need to know all of
these patterns to perform successful verification work. Most of the formulas in
an average project only employ a small set of patterns. However, you may find
ideas that will simplify your work.

The following list is dynamic and we expect it to continue to grow. If you have
additional patterns that may help others, send them to us and we will add them
to this list.

Note: This chapter is brought here in a very preliminary form.

6.2 Basic Formulas

« okis always true:
AG ok
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« some_requiremens always true when reset is inactive:
AG ( 'reset ->some_requirement )
Note: Many designs begin in an unspecified state, and are being stabilized
during reset. Failure of a formula during reset is not interesting, so we filter
this time interval as shown above.

» Variablestatecan never have the valaeor:
AG ( state!= error )

» Variablesstatelandstate2are never in the same state:
AG ( statel!= state2)

« \Variablesstatelandstate2are never in stateritical together:
AG ( statel!= critical | state2!= critical )
or
AG !( statel= critical & state2=critical )

 If busyis true therworkingis also true:
AG ( busy->working)

« If almost_dones true nowgdonewill be true in the next cycle:
AG (almost_done> AX done)

« If hold becomes active, it remains active for at least one more cycle:
AG ( rosghold) -> AX hold)
Note: ros€hold) is true if hold is currently 1 and was 0 in the last cycle.

« gotshould rise 3 cycles aftgetrises:
AG (rosgget) ->AX]3]( rosggot) ))

« If we aregoing_to_abornow, weabort within O to 4 cycles:
AG( going_to_abort> ABF[0..4](abort) )

« If masterl_needs_biecomes activanaster2_accesses_bsisould be
inactive for at least 3 cycles, beginning from the next cycle:
AG( masterl needs_ bus ABGJ1..3]( 'master2_accesses_bus

« Counteris always between 3 and 7:
AG( counter>= 3 & counter<=7)
or
AG( counterin { 3,4,5,6,7 })
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Statusnever has the valu@grningor error or fatal:
AG !( statusin { warning error, fatal })
or
AG ( status!= warning & status!=error & status!= fatal)

At most one of the signalsy or zis 1 (mutual exclusion):
AG( x+y+z<=1)

If error becomes active, it will remain active forever:
AG ( error -> AG error)

6.3 Arrays

Define a bit vector vec of 4 bits that may have at any moment any of the val-
ues 3, 8, or 14:

var vec(0..3)boolean assignvec(0..3).={3,8,14};

Note: The above i®&OT equivalent tdvar vec(0..3): {3,8,14};” which

declares an array of four enumerated signals, each of them may have one of
the values 3, 8, or 14.

If the headpointer of a queue is equal to tlad pointerqueue_emptynust
be true:

AG( (head(0..3)tail(0..3)) -> queue_empty

The bitwiseand of vectorsvec(0..7)andmask(0..7has at least one bit set:
AG( (vec(0..7)& mask(0..7)!=0)

Exactly one bit of the bit vectm(0..7)is 1:

AG( (%for ii in 0..7dov(ii) + %end0) =1)

The above is expanded to:

AG(v(Orv(1Lyrv(yv(3Hv(4yrv(Bv(eHv(7) = 1)

6.4 Before

If a requestoccurs, then aack should occur (strictly) before the next
request
AG (request-> AX (ackbefore_reques})

Notes:
» The secondequestmay not occur, in which casekis not required.
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« before_ (with an underscore) means strictly befaegjuestwill come (if
at all) at least one cycle aftack.

« TheAX means that we expeatkto come at least one cycle aftequest

« Another way to formulate the above requirement, which allows more
explicit specification of boundary conditions:
{[*], request!acl*], request}( false)
Notes:

« The path begins with any sequence of events. Thequeesioccurs, and
(beginning from the next cyclexkis inactive for zero or more cycles.
Finally, there is anotheequest Thefalseon the right hand side means
that if such a sequence exists then the formula should fail.

« A technique we use is:
Instead of specifying what should happen, specify what should not happen
(as a bad sequence of events), and require false to be satisfied at the end of
this sequence. Since false is a formula that may never be satisfied, exist-
ence of the bad sequence in our design will cause RuleBase to produce a
counter-example.

6.5 Until

« If requestis asserted, it will remain active until (inclusigrant
AG (request-> (requestuntil_ grant))

Notes:

 grant may never occur after thisquestin which caseequesimust stay
active forever.

e until_ (with an underscore) means thequestmust also hold at the first
cycle whereggrant holds.
« Another way to formulate the above requirement:
{[*], request& !grant, lgran{*], ! request}( false)

« If requestis asserted, it will remain active until (not inclusigeant
AG (request-> AX ( requestuntil grant))
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« Other ways to formulate the above requirement:
{[*], request!grant*], ! request& !grant}( false)
or
{ [*], request!granf*] }( request)

6.6 Forall

 If data_in(0..7)has some value durimgad, in the next time thatrite is
activedata_out(0..7will have the same value:

forall x(0..7):boolean
AG( (read & data_in(0..7)=x(0..7)) ->next_even{write)(data_ou(0..7)=x(0..7) ) )

Notes:

- forall is a means for applying a formula to multiple values at a time. It is
equivalent to writing a separate formula for each value thdotak vari-

able can take:
AG( (read & data_in0..7)=0) ->next_evenfwrite)(data_ouf0..7)=0) )

AG( (read & data_in0..7)=255) ->next_even{write)(data_ou(0..7)=255) )

 forall has its penalty—an extra state variable (8 bits in the example above)
—Dbut this variable does not usually contribute excessively to the size prob-
lem, if the BDD order is reasonable.

6.7 Eventuality

« If requestis assertedackshould be asserted in the future, beginning from
the next cycle:
AG (request> AX AF ack)

 If requestrises,ackshould be asserted at the same cycle or in the future:
AG (rosgrequesy -> AF ack)

« No matter what is the current state, it is always possible to reach a state
wheremstatesidle:
AG AF mstatesidle
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6.8 More Sequences

If grantis active, and there is metry in the next cyclebusymust become
active two cycles aftegrant
{[*], grant, !retry }( AX busy)
or
{[*], grant, !retry, true }( busy)
or
{[*], grant, !retry, lbusy}( false)
or
AG( grant->AX( Iretry -> AX busy))

The fourthdata_readyafterstart should be accompanied tast _data
{[*], start {!data_readj*], data_read}{4] }( last _data)
The fourthdata_readyafterstart should be accompanied tast_data

unless there was afortin the middle:
{[*], start& 'abort, {!data_ready& !aborf*], data_ready& !aborf}[4] }( last_data)
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ceerer7 . Managing Rules, Modes,
and Environments

7.1 Overview

There are many possible ways to structure a verification project. The basic ele-
ments of all structures are the same: EDL statements, formulas, modes, and
rules. However, as the project becomes more complicated, spans a longer
period, and more people become involved, it becomes more important to use a
standard methodology.

The main contributor to project complexity is Behavioral partitioning (see
“Behavioral Partitioning” on page 157). Behavioral partitioning is an effective
method to attack the size problem. In this method, the environment is degener-
ated in various ways to reduce the size of the design to be verified. Formulas
should then be run in multiple reduced environments to cover the full environ-
ment. Unless managed carefully, these multiple environments may get out of
control.

This chapter suggests a methodology of managing multiple rules, modes, and
environments. The methodology is a result of our experience in many formal
verification projects. Section 7.2, Defining Rules and Modes describes the syn-
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tax and semantics of rules and modes. Section 7.3, Using Modes to Limit the
Environment shows an example of how to approach the size problem by using
modes, and Section 7.4, Verification Project Management suggests how to
structure a verification project that has multiple environments.

7.2 Defining Rules and Modes

RuleBase is rule oriented. A rule is the basic entity that can run. A rule defines
a group of related formulas to be verified in one run. It may also re-define parts
of the design or environment, thereby overriding the default behavior for the
specific run.

The rule syntax is as follows:

rule name {
“optional textual description of the rule”

-- at least one formula
formula “optional textual description” { Sugar-formula }
formula “optional textual description” { Sugar-formula }

-- the rest of the statements are optional:

envsrule-name, rule-name, ... ;

formulas rule-name, rule-name, ... ;

test_pins signal-name, signal-name, ..., rule-name, rule-name, ... ;
inherit rule-name, rule-name, ... ;

<EDL statements/ér, assign define, instance fairnesg)>
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A modeis a rule that cannot be run by itself, and is used to group and name
formulas and/or environments. It can only be inherited by rules or by other
modes. The syntax ofodeis exactly the same as the rule syntax, except that
it begins with the keyworchodeinstead ofule.

A rule must contain at least one formula (not required in mode). All the other
parts are optional. The order of statements in a rule is unimportant, and all
kinds of statements may appear numerous times. We recommend that you fill
the textual description of formulas and rules. This description may help during
the analysis of verification results and facilitate maintenance.

Rules and modes can inherit formulas and EDL statements from other rules
and modes:

« Theformulas statement inherits formulas.

« Theenvsstatement inherits EDL statements.

« Thetest_pinsstatement forces RuleBase to keep some signals during the
reduction stage, even if they are not needed for verification of the specific
rule. Sometimes these signals are needed to provide a better understanding
of counter-examples. Test pins can also be inherited. The statement

test_pinsenable, command;
forces RuleBase to keep track of signals enable and command, even if they
are not needed for verification. These signals can later be viewed in Scope
windows (the Scope waveform display tool is explained in “Scope Wave-
form Display Tool” on page 166). The statement

test_pins<rulename>;
inherits alltest_pinsstatements that appear in rule <rulename>. If <rule-
name> is also a name of a signal in your design, then the above statement is
ambiguous, and RuleBase will issue the following error message:

Name collision: <rulename> is both a rule and a signal

« Theinherit statement can be used to inherit the environments, formulas,
and test pins. The statement

inherit rule_name;
IS equivalent to:
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envsrule_nameformulas rule_nametest_pinsrule_name;

Rules and modes may include EDL statemerds, @ssign defing fairness
andinstance. The behavior assigned to signals by these statements overrides
the signals’ behavior in the default environment (all EDL statements outside
rules or modes are considered as the default environment). A rule may inherit
EDL statements from other rules or modes usingtivsstatement. Inherited
statements override the default environment, but are overridden by statements
written directly in the body of the rule. The exact hierarchy of behavior is as
follows:

1. Signal definition in the default environment overrides the definition in the
design (HDL).

2. Inherited signal definition overrides the definition in the default environ-
ment.

3. Signal definition in the running rule overrides inherited signal definition.

7.3Using Modes to Limit the Environment

One way to approach the size problem is to limit the behavior of the environ-
ment, as mentioned in “Behavioral Partitioning” on page 157. RuleBase uses
information from the restricted environment to automatically reduce the size of
the model to be verified. To help reductions, some signals in the environment
may be set to constant values, or restricted to some other simple behavior. This
over-reduction is usually done by using modes, rather than in the default envi-
ronment, as shown in the example below.

Suppose that a design obtains a command and an address from the environ-
ment, in addition to other things. The default environment will include the fol-
lowing lines:

var command: { load, store, add, jmp };
defineCMD(0..2) := -- these are the actual command inputs of the design
case
command=Iload : 010b;
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command=store : 111b;

command=add : 011b;

command=jmp : 100b;
esag

var CMD_VALID: boolean

var ADDR(0..15):boolean
assign nextADDR(0..15)) :=
if CMD_VALID then ADDR(0..15)else nondet£l6) endif;
-- ADDR is stable when CMD_VALID is active, and is free to change otherwise

Now, suppose that the design is too large, or verification takes too long, even
though you have used all basic methods to cope with size problems (see
CHAPTER 8: Size Problems and Solutions). In this case, you may want to
perform behavioral partitioning, and define modes that restrict the default
behavior. Several possibilities of such modes are shown below:

modeload_add {
“two commands only. CMD(0..1) become constant”
var command: { load, add };

}

mode eight_addr_bits {
“bits 0..7 are 0. bits 8..15 retain their behavior”
define ADDR(0..7) :=0;

modeload_add.eight_addr_bits {
“combining the above two modes”
inherit load_add, eight_addr_bits;
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mode another_way _to_do_the same {
var command: { load, add };
define ADDR(0..7) :=0;

}

Now, rules can run in the restricted environment by inheriting the above
modes. For example:

rule some_property {
inherit load_add.eight_addr_bits;
formula { ...}

}

Since over-reduction limits the model checking run to only a subset of the pos-
sible input sequences, multiple runs of the same rule using different environ-
ments are sometimes necessary to provide good verification. Managing these
multiple environments is described below in Section 7.4.

7.4 Verification Project Management

A well-formed verification project usually consists of the following elements:

« Default environment

« Modes that define restricted environments
« Modes that group related formulas

* Rules

Default environment:

The default environment should model the full behavior of the environment.
When writing the default environment, we recommend that you “forget” the
small details of how you intend to attack the size problem. This does not mean
that the environment is written without considering this problem—on the con-
trary, the environment models should be abstract and small. Specific reduc-
tions should only be reflected in modes, which are to be written at a later stage.
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Modes that define restricted environments:

In many cases the default environment does not cause enough reduction of the
design to be verified. Behavioral partitioning is one of the methods that may
help in these cases. In behavioral partitioning, multiple reduced environments
are defined, each of them is represented as a mode. Then each formulais runin
all these modes. (S&=ction 7.3

Modes that group related formulas:
The necessity to run each formula in multiple environments suggests that you
keep formulas in separate modes, to be inherited by rules.

Rules:
In this methodology, the list of rules is a matrix of environment modes and for-
mula modes, in which each formula may run in many environment.

Example:

-- environment modes

moderead_only {
definecommand := read,;

}

mode write_only {
definecommand := write;

-- formula modes

mode no_starvation {
formula { AG AF grantl }
formula { AG AF grant2 }

}

modeno_collision {
formula { AG !(grantl & grant2) }

}
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-- rule matrix

rule read_only.no_starvation ifherit read_only, no_starvation; }
rule read_only.no_collision ifiherit read_only, no_collision; }
rule write_only.no_starvation ipherit write_only, no_starvation; }
rule write_only.no_collision {nherit write_only, no_collision; }
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8.1 Introduction

Size is one of the major obstacles to using formal verification for any design.
RuleBase is limited to designs that have several hundred state variables (flip-
flops) after reduction, or several thousand before reduction. The number of
state variables is a rough estimate of design complexity; the size limit depends
on the complexity of the logic as well as the number of memory elements.
This chapter discusses techniques you can use to push the size limit for your
design as far as possible.

8.2 Design Partitioning

The simplest method to overcome size problems is design partitioning. Thus,
instead of trying to verify the entire design at once, you may verify it unit-by-
unit. (See also “Design Partitioning” on page 205) The partitioning methodol-
ogy is as follows:

1. Split the design into manageable partitions, whose interfaces are well
defined and easy to model.
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2. When verifying a partition, replace its neighbors by abstract models. These
models should only represent the interfaces with the verified partition, hid-
iIng unnecessary details.

3. Verify the correct behavior of the abstract models of the neighbors by writ-
ing specific rules for this purpose.

While partitioning can be quite effective, there are obviously properties that
can only be verified when the entire design is considered. Partitioning also
requires extra effort in studying internal interfaces and writing models for
neighboring blocks.

8.3 Rule Patrtitioning

Before beginning model checking, RuleBase performs static analysis of the
design, and discards any signals that do not affect the rule being run. For exam-
ple, assume that the design has two outputs, each of which is affected by a dif-
ferent (possibly overlapping) set of input signals. If you run formulas that
check these two signals under the same rule, RuleBase will have to build a rep-
resentation of the entire model. However, if you separate the formulas into two
groups, in which one group checks the first output and the second group checks
the other output, RuleBase can build a partial representation in each case.

In effect, by partitioning the formulas into different rules, you enable RuleBase
to automatically partition the design by only using that part of the design
required to check the specific rule.

Note: Accumulating related formulas in one rule may save time if the formulas
refer to the same part of the design.

8.4 Behavioral Partitioning

Behavioral partitioning is a technique in which the input sequences of a design
are restricted to a subset of the legal input sequences. In this way, you allow
RuleBase to remove parts of the design that deal with behaviors that are not
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seen under the restricted inputs. For instance, if a design has two modes: read
and write, controlled by an input sigri@mmang you can verify each of the
modes separately. You can do this by declaring two separate environments: one
commands constantly read, and the other is constantly write. This is the only
action that you need to take. When input signals are set to a constant value,
RuleBase will automatically eliminate the logic that is made redundant. For
example, if you setommando read, then RuleBase will know how to elimi-

nate all logic that is only activated under mode write.

8.5 Abstraction of the Environment

As we explained in CHAPTER 4 , writing environment models requires
extreme thought and attention. Models should be very abstract and general,
representing all possible behaviors of the real environment, while remaining
simple and small. Models with too much detail are not an advantage and may
result in unnecessary growth of the model.

For example, assume that the verified design is a cache controller, connected to
a CPU on one side. It is not necessary to create a detailed model of the CPU.
Rather, you can create an abstract model of the CPU to model enough of it to
produce legal sequences of commands and control signals. Only a few dozen
state variables are needed to model this behavior, as compared to the huge
number required for the concrete CPU.

8.6 Gradual Enlargement

Attacking a new design with full blown environments is not very effective
when the design is large. Experience suggests a gradual process, such as:

1. Begin with simple, restricted environment models that cause the design to
beover-reduced

2. Verify the reduced design, fix errors in the environment models, correct
wrong formulas, and clean coarse design errors.

3. When the reduced design is stable enough, refine the environment. This usu-
ally increases the effective size of the design.
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This method is most efficient during the development of environment models
and rules, since at this stage the process is iterative and the turnaround time
must be short.

A main reason that this method works is that the model built by RuleBase for a
design that contains bugs is usually much larger than it is for a cleaner design
in which the state space is less well-behaved. Thus, even if we could not verify
the first ‘buggy’ design for all legal input sequences, perhaps it can be done
after some of the bugs have been removed.

The following example is taken from an architectural-level verification. Con-
sider a multi-processor system in which a number of CPUs are attached to one
or more control units. During initial debugging, only one CPU is hooked up to
clean major bugs out of the design (and environment). Once one CPU works,
another is hooked up, and so on.

8.7 Abstraction of Internal Parts

If some part of the design is too complex or memory-intensive, and if the inter-
nal logic of that part is not directly involved in the property to be verified, it can
be replaced by an abstract model. In effect, the part will now be regarded as an
environment.

The replacement can be easily done in RuleBase. Define an abstract model to
replace the part. This model should drive all the signals driven by the original
part (it can also use signals used by the part). RuleBase does the remainder of
the work, linking the model to the design and getting rid of the original part.
Figure 16 illustrates this method.
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part P

design

FIGURE 16. Abstraction of an internal part

For example, if a design includes an arbiter on which the rest of the design
should work regardless of the exact arbitration algorithm, that arbiter can be
replaced by an abstract one that only guarantees mutual exclusion. Such an
abstract arbiter for N devices can be modeled using log(N)+1 bits.

8.8 BDD Ordering

RuleBase uses a data-structure called a Binary Decision Diagram (BDD) to
represent the model. In a BDD, every state variable has a distinct level, from 1
to n, where n is the number of state variables. The order in which the levels are
allocated to the state variables has a large impact on the size of the BDD. For
example, a design whose verification with a good BDD requires 30 MB of
memory, may require 300 MB or more with a bad order. Therefore, it is impor-
tant to find a good order.

RuleBase can perform BDD reordering during model checking. This is known
as dynamic BDD ordering. Because BDD ordering is extremely CPU-inten-
sive, it is inactive by default. You should turn it on for initial runs, and feed the
resulting order back into RuleBase for all consecutive runs.
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Since reordering is time-consuming, it is good to reserve the final order for use
in later runs of the same rule and even of other rules.

To do this, open th8DD order section of theDptions dialog box. TheCopy
Now line has two fields.

« To copy the final order at the end of the run to #ralename>.ordeffile in
which <rulename>is the name of the rule, selegt<rule>.order.

» To use this order on the next run, setllse Order Filefield to
<rule>.order.

« To copy the order file back to a pool or orders that can be used by all rules,
click to orders pool

« To save the order for use by other rules using the same or similar reductions,
set theUse Order Filefield toorders poolon subsequent runs.

To automate control over ordering, use the various fields iBEt2 order
section of théptions dialog box. See CHAPTER 10 Graphical User Inter-
face: Tool Controls and Options for more details.

8.9 Verify-Safety-OnTheFly

In its normal mode of operation, RuleBase will compute the reachable state
space before checking any formula (the reachable state space is the set of all
states of the design that can be reached from the initial states). For a class of
formulas known aSafetyformulas, RuleBase can in many cases determine the
falsity of the formula before it has completed the search of the reachable state
space. This method is know as Verify-Safety-OnTheFly.

The Verify-Safety-OnTheFly method has several advantages:

« A counter example or witness is produced as soon as a state is found in
which the formula does not hold true. Crude errors (that usually stem from
incorrect formulas or environment models) are detected and displayed
quickly.
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« The iterative process of searching for the reachable states is often much
more expensive (in terms of memory and time) for states located far from
the initial state. For example, stopping after half the number of total itera-
tions can sometimes save 90% of the total run time.

« Itis not necessary to build a full Transition Relation (TR). In normal model
checking, RuleBase builds a TR that represents all possible state transitions
of the design. Since the TR is a bottleneck in large designs, you save a lot of
time and energy since you don’'t have to build it.

« Design errors often increase the model built by RuleBase. Models of errone-
ous designs tend to grow because the reachable state-space may include
many unexpected states. Finding and fixing errors in early iterations while
the state space reached is still small may decrease design size and allow
later runs to go farther.

If the Verify-Safety-OnTheFly option is enabled, RuleBase attempts to check
as many formulas as possible during the search for the reachable state space.
Formulas that cannot be verified in this mode will be identified automatically
and checked with the normal algorithm. The formulasB@NOT suit Ver-
ify-Safety-OnTheFly can be characterized as follows:

« Formulas that mix th& andE path quantifiers.

« Formulas that contain the temporal operatdFs AU, or EG, or any strong
Sugar operator (an operator whose name ends with ‘'); these are known as
livenessormulas, rather thasafetyformulas.

« Formulas in which there is a ‘|’ (tfwe operator) between temporal sub-for-
mulas.

« Formulas in which a wealntil has a temporal sub-formula on the right
hand side.

The Verify-Safety-OnTheFly option will sometimes need to add auxiliary

state variables. For this reason, the user can control the option. It is advisable
to try this option and see if the additional state variables are a problem for
RuleBase (because of size limitations). In most cases, this option can be a con-
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siderable time and space saver. RuleBase will not add any state-variables for
rules of the formAG(p), where p is a combinational formula.

A useful trick when using this technique is to “and” your formulas together

into one big formula. The advantage of this technique is that the overhead for
checking formulas on the fly is reduced considerably. RuleBase has an option
to make this automatic and transparent to the user. To operate this option, add
the following line to your rulebase.setup file:

setenv RB_BIG_AND 1

Using this option, you will “and” all safety formulas, but the results will be
given as if they were run separately. The RB_BIG_AND option will only oper-
ate if all formulas in the rule are safety formulas; otherwise, it will run in the
regular OnTheFly mode.

To access th¥erify-Safety-OnTheFly option, press th®ptions push button
and open th&ferification section of théptions dialog box.

The Verify Safety OnTheFly option menu has two entries:

« Yes.All Safety formulas will be checked OnTheFly. You can specify a
parameter (a two-digit integer number) that determines the trade-off
between memory and time consumption during the run. The default for this
parameter is 10. If a bigger number is specified, the run will consume less
memory, but counter-example production will take longer. If a smaller num-
ber is specified, the run is likely to consume more memory, but producing a
counter-example will be easier. Therefore, if many of the formulas are likely
to fail, we recommend you specify a small number, and if most of them are
likely to pass, a big number. A special case exists when specifying 0 as
parameter, which is similar to specifying ‘infinite’: the run will consume as
little memory as possible as long as no rule fails. However, if a counter-
example is needed, it will consume more time and space.

« No. Verify-Safety-OnTheFly is disabled.
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8.10 Using Real Memory Efficiently

Your memory quota is often much less than all of the real memory available in
the system. The operating system may kill a running process when the quota is
exceeded, although unused memory is still available. RuleBase users will usu-
ally want to override this limitation. lashell,for example, théimit command

can be used to control and display the user’s quota. A possible setting for a
computer with 256 MB real memory. is

limit datasize 230000
limit memoryuse 230000

To view current limits, use the following command:
limit

RuleBase ivery slow when it runs out of real memory; therefore, it is not a
good idea to increase data-size above the size of the real memory.
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CHAPTER 9

Debugging Aids

9.10verview
NEED INTRODUCTION TO THE CHAPTER

We will describe additional debugging aids in other chapters:

« Vacuity explanation — “Displaying Vacuity Explanation” on page 200
« Formula explanation

« Test generation

- Lists of variables and signals, before and after reduction

9.2 Scope Waveform Display Tool

You can display the counter-example or witness generated by RuleBase by
invoking the Scope waveform display tool as described in Section 10.6.9. This
section describes the Scope waveform display tool.
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9.2.1 Main Window — Scope

The Scope main window is shown below. It consists of a number of areas:

Bl-S8cope K21 ftwps/Lhvc jBOAME  Role:sck intsrloavisgy Formeln:l |
Fila  lgeals Hie = —ip

n_?l

« Rule and formula display — located on the top of the window frame. It dis-
plays the name of the rule and the formula number within the rule for which
this trace was generated.

« Menu bar - located at the top of the window. It will be green if you have
setup the default colors by copying the file Scope from $RBROOT to your
home directory as described in CHAPTER 2: Getting Started.

 Signal list— the rectangular area on the left-hand side of the window.

« Waveform display window — the large rectangular area in which the wave-
form itself is displayed.

« Message panel -the small rectangular window below the waveform dis-
play window.

The following sections describe these areas in detail.

9.2.2 Menu Bar

The menu bar contains the following menu items:
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9.2.2.1 File Menu Option

To open the sub-menu, click thée menu option. You will be presented with
the following items:

Print screen— prints a copy of the waveform display to the postscript file
scope.ps.

To print this file directly from Scope, add the following line to file Scope in
your home directory: “Scope*printCommand: <your print command>".
For example “Scope*printCommand: gprt -Bnn -Pprtl scope.ps”.

Load state— prompts the user for a name of a Scope state file to replace the
current state. (See Section 9.2.6, State Files for more information on the
Scope current state and state files.)

Create a state file using “Save state” or “Save state as” described below.

Append state— prompts the user for a name of a Scope state file, whose sig-
nals will be appended to the currently displayed signals.

Save state- saves the current Scope state, including the signals displayed,
in the currently loaded state file. The saved state will be used the next time a
waveform for this rule is displayed.(See Section 9.2.6, State Files for more
information on the Scope current state and state files.)

Save state as- prompts the user for the name of a Scope state file in which
to save the state. This state can later be loaded using “Load state” described
above.

Quit — exits the Scope waveform display tool.

9.2.2.2 Signals Menu Option

To open the sub-menu, click tBggnalsmenu option. You will be presented
with the following items:

Add all — adds all signals to the waveform display.
Remove all- removes all signals from the waveform display.

Vertical text — causes signals with text values (e.g., enumerated constants)
to have a vertical display format.
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« Horizontal text — causes signals with text values to have a horizontal dis-
play format.

« Sort/Unsort — users of RuleBase can ignore this option.

9.2.2.3 View Menu Option

To open the sub-menu, click theew menu option. You will be presented with
the following items:

e Zoom in —zooms in on the waveform display.

e Zoom out— zooms out on the waveform display.
« Show/Hide Toolbar— users of RuleBase can ignore this option.

9.2.3 Signal List

The signal list contains a list of all signals in the design and environment that
remained after reduction. If a signal does not currently appear in the waveform
display, it can be added to the display by clicking it.

You can control the location of the display of a signal’'s waveform in the fol-
lowing manner.

1. To add signal ‘a’ above signal ‘b’ in the waveform (assuming that signal ‘b’
is already displayed), first mark signal ‘b’ by clicking its name (and NOT its
waveform) in the waveform display window.

Signal ‘b’ should now be marked by a rectangular box surrounding the sig-
nal name.

2. In the signal list, click the name of signal ‘a’.
The waveform of signal ‘a’ should now appear above that of signal ‘b’.

3. To move the waveform of signal ‘a’, mark it as described above in step 1.
Then drag and drop it into its new location.

4. To remove the waveform of a signal, right-click its name in the waveform
display window.

IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



Debugging Aids 170

5. To add signal ‘a’ to the end of the waveform display, unmark all signals by
clicking the name of the currently marked signal (the easiest way to do this
is to double-click the name of any signal, which first marks it and then
unmarks it).

6. Click the name of signal ‘a’ in the signal list.
The waveform of signal ‘a’ should now appear as the last signal in the wave-
form display.

7. To search for a signal name in the signal list, type its name (or part of its
name) in the small window above the signal list, and fessr. To
quickly clear the search window, right-click anywhere in the search window.

9.2.4 Waveform Display Window

The waveform display window displays an execution trace that is a counter-
example or a witness to a formula. The number bar at the top of the display
counts the clock cycles of the fastest clock. Signals that have a textual display
(e.g., enumerated constant values) only display a change in the signal value. If
no value appears at time X, find the current value by looking to the left for the
value at the last time the signal changed.

9.2.4.1 Displaying an Infinite Trace: 'LOOP:

There are formulas whose counter-example or witness must be displayed as an
infinite trace. For example, consider the following formula:

AG (p > AF q)

If this formula is false, a valid counter-example is one in which ‘p’ is asserted,
and then ‘q’ is never asserted. Never is an infinite amount of time, and thus an
infinite trace is required to show that this formula is false. RuleBase displays
an infinite trace by displaying a finite prefix, and then a set of states comprising
a loop.

The special signal 'LOOP:, which appears first in the signal list, is used to indi-
cate the loop. A loop is indicated when the signal 'LOOP: begins taking on the
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values ‘=" and ‘-’ alternately, so that the entire loop is marked by a string of the

9.2.5 Message Panel

The message panel is used to display various errors, warnings, and informative
messages.

9.2.6 State Files

The current state of Scope consists of various aspects of the waveform display,
including the signals displayed, the zoom factor, and the window geometry.
You can save the current state in a state file and use it in later sessions of Scope.
To ease your work RuleBase performs basic management of Scope state files
as follows:

1. You can choose if state files are saved in the rule’s directory, in which case
different rules have different state files, or in the verification directory, in
which case all rules share one state file. See “Per-rule state file” in Section
10.6.3.5.

2. When Scope is invoked, it loads the default state file, if one exists. If “Per-
rule state file=No”, Scope loads smv.state from the verification directory. If
“Per-rule state file=Yes”, Scope tries to load rule_<rulename>/smv.state. If
this file doesn’t exist, Scope loads smv.state from the verification directory.

3. After loading the default state file, signals that appear in the formulas are
appended.

4. You can save the current state in the current state file using the “File/Save
state” menu option, or save it in another file using the “File/Save state as”
menu option. (See “File Menu Option” on page 168.)

5. You can replace the current state by another state file using the “File/Load
state” menu option. You can add Signals of another state file to the current
state using the “File/Append state” menu option. (See “File Menu Option”
on page 168.)
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9.3 Vacuity

When a formula passes in a trivial manner it is called vacuity. If vacuity detec-
tion is enabled (see Section 10.6.3.4) the status of the rule as displayed in the
results window (see Section 10.6.9) is ‘vacuously’. Forinstance, if the formula

AG (p -> AX q)

passes, but ‘p’ is never asserted, then the formula is said to pass vacuously.
Vacuity occurs when a sub-formula does not affect the truth value of the for-
mula. For instance, in the above formula, the sub-formula ‘AX g’ does not
affect the truth value of the formula, because ‘p’ is never asserted. We can
replace ‘AX q’ with any other sub-formula (even the sub-formula FALSE!),
and the rule will remain true. Since a trivially true formula is not intentionally
part of a specification, a vacuous pass usually indicates a problem in the rule,
in the environment, or in the design under verification. For this reason, we
strongly recommend that you do not turn off the vacuity checking option. If
vacuity checking is enabled, but full withness generation (see Section 9.4, Wit-
ness) is turned off, minimal overhead is incurred.

In the above example, there is only one possible cause of vacuity. However,
sometimes the situation is more complex. For instance, in the following for-
mula:

AG (start_transaction -> next_event(acknowledge)(read_enable | write_enable))

the vacuity may be because ‘start_transaction’ is never asserted, or because
‘acknowledge’ is never asserted after ‘start_transaction’. In both cases, the
sub-formula (read_enable | write_enable) does not affect the truth value of the
formula.

To facilitate debugging of vacuous passes of this type, an explanation of the
vacuous pass is available as described in “Displaying Vacuity Explanation” on
page 200.
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9.4 Witness

The knowledge that a formula passes only provides a measure of confidence in
the correctness of the design under verification. One reason for lack of confi-
dence is that the pass may be vacuous, as discussed above in Section 9.3, Vacu-
ity. However, even if a formula passes non-vacuously, there is the possibility
that the formula does not express the property that you intended. One way to
achieve greater confidence that the formula does express your intentions is to
examine a witness formula. A witness formula is a positive non-trivial example
of the truth of the formula. A witness formula is created when full witness gen-
eration is enabled (see “Verification Control Panel” on page 194) and the rule
passes non-vacuously. In this case, the status of the rule as displayed in the
results window (see “Results” on page 198) is ‘passed (w)’. For instance, if
the formula

AG (p -> AX q)

passes non-vacuously, then the witness trace will show a case in which ‘p’ is
asserted and then the following clock ‘q’ is asserted.

We recommend that you enable witness generation at the beginning of the for-
mal verification process, and you examine a witness trace at least once for
every formula. Once a witness formula has been examined and the formula is
determined to correctly express the desired property, you can turn off witness
generation as described in “Verification Control Panel” on page 194. At this
stage, model checking becomes a fully automated process in that it is enough
to determine that each formula passes non-vacuously, without examining
waveform displays for true formulas. We strongly recommend that you leave
vacuity detection on at all times.

9.5 Reduction Analyzer

As explained in CHAPTER 8: Size Problems and Solutions, one way that
RuleBase deals with the size problem is by behavioral partitioning and overre-
duction, in which parts of the design are eliminated based on the environment
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and the formulas to be checked. The reduction phase eliminates logic that is
not in the cone of influence of the formulas to be checked, propagates constants
from the environment forward, and eliminates redundant logic (that either was
there from the start, or that became redundant because of constant propaga-
tion). The reduction analyzer allows insight into these reductions. Usually,
there are two questions that the reduction analyzer can help answer:

« Why was signal X eliminated during reduction (why does it not affect the
truth of the formulas in this rule)?

« Why wasn’t signal Y eliminated during reduction (how does it affect the
truth of the formulas in this rule)?

The reduction analyzer is invoked from the ‘Debugging’ menu option as
described in “Debugging Menu Option” on page 188. The reduction analyzer
can only be invoked if creation of a circuit file was enabled as described in
“Debugging Control Panel” on page 196.
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9.5.1 Main Window — Reduction Analyzer

The main window of the reduction analyzer is shown below.
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It consists of the following areas:

« Menu bar —located at the top of the window. It will be light blue if you
have setup the default colors by copying the file Analyze from $RBROOT to
your home directory as described in CHAPTER 2: Getting Started.

 Signal list— the rectangular area on the left-hand side of the window.

« Analysis display window— the large rectangular area in which the wave-
form itself is displayed.

 Quick button menu - the area below the signal list.

The following sections describe these areas in detail.
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9.5.2 Menu Bar
The menu bar contains the following menu item:
9.5.2.1 File Menu Option

To open a sub-menu, click tl&le menu option.You will be presented with the
following item:

¢ Quit — exits the reduction analyzer.

9.5.3 Signal List

The signal list contains a list of all signals in the design. To choose a signal,
click the desired signal. To search for a signal name in the signal list, enter its
name (or part of its name) in the small window above the signal list, and press
Enter.

9.5.4 Analysis Display Window

The analysis display window is used to display the reduction analysis informa-
tion.

9.5.5 Quick Button Menu

The quick button menu contains the buttons used to control the reduction anal-
ysis. The following sections describe each button in detail.

9.5.5.1 Operation

The operation quick button is used to select the reduction analysis operation to
be performed. Choose a value, then click a signal from the signal list. The
reduction analyzer performs the operation you requested. You control the depth
of the analysis by the stop at quick button, described in the next section.
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Possible values of the operation quick button include:

Explain — asks the reduction analyzer to explain why a signal is dead, alive,
or has a constant value. If a signal is dead (deleted by the reduction ana-
lyzer), the reason will be shown. If it is alive, its influence on one of the for-
mula signals or on a test pin will be explained by showing a chain of
influence from the selected signal through intermediate signals and finally
to a formula signal or test pin. If a signal has a constant value, the derivation
of that constant value from the environment through the design will be
shown.

Cone— asks the reduction analyzer to show the cone of influence of the
selected signal. Some shortcuts may be taken. For instance, if signal xyz is
defined as follows:

define xyz := xx & yy & zz;

and signal zz is a constant O, then the cone of influence will not show logic
beyond the first “and” gate.

Fullcone — asks the reduction analyzer to show the cone of influence of the
selected signal without shortcuts. For instance, in the above example,
despite the fact that signal zz is a constant O, the full cone of logic including
that driving xx, yy, and zz will be shown.

Sources— shows the signals that are inputs to the cone of logic that drive
this signal.

Sinks — shows signals that are driven by this signal.

9.5.5.2 Stop at

The stop at quick button controls the depth of the analysis of the operations
described in the previous section. Possible values include:

Meaningful — analysis is continued until a meaningful signal name is
reached. A meaningful signal is one that was present in the original HDL
code (i.e., was not added by the synthesis tool).

Flip-flops — analysis is continued until a flip-flop (or latch) is reached.

Any — analysis stops at any signal. In other words, analysis stops at the first
logic gate that drives the signal.
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9.5.5.3 Write

This button writes the current contents of the analysis display window to a file.
You will be prompted for the file name.

9.5.5.4 Clear

This button clears the analysis display window.

9.6 Longest Trace

In model checking, the design and its environment are viewed as a finite state
machine that is traversed. If reachability analysis is enabled, the first step of the
verification is a breadth-first-search traversal of the state space of the model,
starting from the initial state or states. The steps of this traversal are reported as
“iterations” in the log file of the run. The set of initial states is iteration 0, the
set of all states reachable in one step from some initial state is iteration 1, and
so on. The last iteration includes all states that are as far from some initial state
as possible. A path from some initial state to a state in the last iteration is called
a “longest trace”.

A longest trace can be useful in gaining insight into the design under verifica-
tion, as a trace to some state in the final iteration is in some sense one of the
most complicated traces that can be generated. Frequently, examining a long-
est trace can uncover a bug in the design or in the environment.

You can control longest trace generation from the verification control panel as
described in “Verification Control Panel” on page 194. You can view the long-
est trace using the debugging menu option as described in “Debugging Menu
Option” on page 188.
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9.7 Multiple Traces

You may sometimes want to see more than one counter-example for a formula
and the more different the counter-examples are from another, the easier it is
for you to debug the design.

RuleBase provides the multiple traces feature for this aid, which uses the Ham-
ming distance heuristic to search different traces. The user asks RuleBase for
the desired number of traces, and gets them (or less, if not enough traces exist).

You can enable this feature by adding “-multiple_traces n” flag to $SMV-
FLAGS variable using File/Setenv menu as described in “File Menu Option”
on page 186 (in which n is the number of traces that the user wants to see.)

Note: Currently, you can see all the traces of a counter-example by pressing
the Get Next Trace button in the new Scope, which is given by request and cur-
rently is not in the Rulebase package. The default Scope does not support this
feature and only shows the first trace.

9.8 Prolong Trace

Looking at the counter-example, which is given to the point that contradicts the
formula, you may want to know “what happens next”, (i.e., what are the values
of signals on the following cycle, or even on the number of following cycles).

RuleBase makes it possible to know what happens next by providing the pro-
long trace feature. The user asks RuleBase to prolong the traces by n cycles,
and each trace (if any) is prolonged by the given number of cycles. A warning
is given if it is not possible, which occurs if the counter-example is finite and
has no continuation of given length because of environmental constraints
(invars, restricts, or assumes.)

You can enable this feature by adding the “prolong_trace n” flag to $SMV-
FLAGS variable using File/Setenv menu as described in “File Menu Option”
on page 186 (in which n is the number of cycles to be added to each trace.)
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9.9 Reporting a RuleBase Bug to IBM

You may at some point believe that RuleBase itself has a bug. In this case, we
ask that you report it to IBM. The report should include the files and directories
that enable IBM to reproduce the bug, normally as a gzipped tar file. While it is
possible to prepare, tar, and compress the appropriate files manually,

theutils directory contains a Perl script namaey_report.pl that will do it
automatically. When you run the script from the verification working directory,

it will produce the following two files:

« A gzipped tar file, which contains all relevant files and directories.
« A template for the actual bug reporting.

To run bug_report.pl, type 'bug_report.pl’.

The script will guide you through the bug reporting preparation process.

Note: We make the assmption that your Perl interpreter is installed as: /usr/
local/bin/perl.

9.10Stand Alone Scope Utility

You usually get the Scope by choosing the result page of a specific rule from
the RuleBase GUI, and then clicking the relevant formula. You can now launch
the Scope as a standalone application from the command line, bypassing the
GUIL. In this case, the red dots do not appear.

To launch the Scope, issue the following from within the verification working
directory:

mt_scp <rule-name> <formula-name> [trace-num]

The trace-num is set to default (1), which is the only valid option in which
there are no multiple traces for the rule.
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The scope should show up promptly; if it does not, the parameters are probably
wrong.

9.11RuleBase to VCD Converter

Theutils directory contains theob2vcd.pyutility that enables you to convert

a RuleBase log file into théCD format. This utiilty is written in Python, and

it requires you to have a Python 1.5.2 or higher interpreter installed on your
system.

Usage instructions

1. To set the environment variable to PF_SCOPE, add the line 'setenv
PF_SCOPE 1 to your rulebase.setup.

2. Run the rule.

3. Run the script from the verification directory:
python $RBROOT/log2vcd/log2vcd.py

--entity=<top-level entity>
--vcd=<vcd file>

--rule=<rule name>
[--formula=<formula number>]

[--trace=<trace number>]

Note: All of the options must appear on the command line. They are separated
for readability.

« <top-level entity>— the name of the top-level entity of the design, which is
the value of the ’entity’ variable in rulebase.setup. You MUST specify this
option.

« <vcd file>— the name of the output VCD file. You MUST specify this
option.
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« <rule name>- the name of the rule. You MUST specify this option.

« <formula number> — the formula whose trace you would like to convert to
VCD. The default value is formula number 1.

« <trace number>— used in case there are multiple traces. The default value
Is trace number 1.

For example, say you have just run the rule XXX on a design whose top-level
entity is named ZZZ and you would like to generate a VCD file for formula 1
to a file named xxx.vcd. Type the following command in your verification
directory.

python $RBROOT/log2vcd/log2vcd.py --entity=ZZZ --vcd=xxx.vcd
--rule=XXX --formula=1

Problems and limitations:

The following are the problems you may run encounter when setting the
PF_SCOPE:

« Setting PF_SCOPE causes RuleBase to generate afile called PF_SIGNALS.
It may take some time to generate (usually no more than a few seconds).

« Setting PF_SCOPE will cause the default Scope to be the PathFinder Scope
(when you click the rule results in the RuleBase GUI). To prevent this from
occuring, either remove this line from rulebase.setup and rerun the Rule-
Base GUI or use File/Setenv from the GUI to set the variable PF_SCOPE to
0.

» The format of the resulting VCD file may not be compatible with your
Scope as the IEEE standard is not well defined.

9.12Scope Resource File

The file Scope, located in the user home directory, is the resource file of the
RuleBase Scope. Fonts, for example, are controlled from this file.
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Each time a new user starts using RuleBase, this file is copied from $RBROOT
to the user’'s home directory.

9.13Additional Debugging Aids

Other debugging aids are available under the “Debugging” menu of the Rule-
Base main window. They are described in detail in “Debugging Menu Option”
on page 188.
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cneeer1o. Glaphical User Interface:
Tool Controls and Options

10.1Introduction

This chapter describes both the graphical user interface of RuleBase, and the
tool controls and options that it manipulates.
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10.2Main Window — Rule Base

The RuleBase main window is shown below. It consists of a number of areas:
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« Menu bar —located at the top of the window. It will be green if you have
setup the default colors by copying the file Guirb from $RBROOT to your
home directory as described in CHAPTER 2: Getting Started.

« Message panet located below the main control panel. It is off-white.
« Rule list — the rectangular area on the left-hand side of the window.
« Quick buttons — the dark yellow buttons to the right of the rule list.

« Main text window — the large rectangular area to the right of the quick but-
tons.

« Text control panel— located below the main text window.

The following sections describe each of the areas in detail. The most frequently
used area of the RuleBase main window is the area that contains the quick but-
tons. If you are reading this document for the first time, we recommend that
you skip to “Quick Buttons” on page 190 for a description of the quick buttons
before reading the remainder of this chapter.
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10.3Menu Bar

The menu bar contains the following menu items:

10.3.1 File Menu Option

To open a sub-menu, click tkRde menu option. You will be presented with
the following items:

reFresh — updates the list of rules in the rule list. This is necessary if, for
instance, you have added new rules since invoking RuleBase. There is no
need to refresh if the changes you have made do not affect the rule list.
Other changes will be seen automatically upon the next run of a rule. The
one exception to this is the file rulebase.setup. As described in CHAPTER
2. Getting Started, the file rulebase.setup is read once upon invocation of
RuleBase. Therefore, any changes to this file will not be seen automatically,
nor will they be seen after choosing reFresh. To see changes to the file rule-
base.setup, you must exit RuleBase and reinvoke.

Cleanup— removes and/or compresses log and other files from previous
runs.

Status of all rules— creates a summary file that shows the status of each
rule (formulas passed/failed on last run, run time, etc.).

Past status of rule— displays the status of previous runs of this rule in the
main text window, such as: formulas passed/failed, run time, etc.

Setenv —allows you to set environment variables.You will be prompted for
the name and value of the variable to set.

Read rulebase.setup +eads the current rulebase.setup file. You can use it
to update environment variables, instead of using#tenvoption

described above. No ‘unsetenv’ is done, thus if a ‘setenv’ line was erased
from rulebase.setup file, reading it will not change the environment variable.

Quit — exits RuleBase.
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10.3.2 Batch Menu Option

To open a sub-menu, click thgatch menu option. You will be presented with
the following items:

Start — starts a batch file. You will be prompted for the name of the batch
file to be run.
To run a batch file from the unix shell

1. Create the batch file described below under “create batch file”.
2. Copy the file $RBROOT/run to the current directory.
3. Select options for the batch run, and save them as described in “File
Menu” on page 191.
4. From the shell, invoke the batch file.
Kill — kills the currently running batch process.

Start at — schedules a delayed start of a batch file. You will be prompted for
a start time and the name of the batch file to be run.

Kill all at — schedules the Kkill of all processes (batch or otherwise) of this
window at a later time. You will be prompted for the time at which to kill all
running processes.

Create batch file— creates a batch file for later use. The batch file will con-
tain all rules, and can be edited by an external editor if only a subset of the
rules are desired. You will be prompted for the batch file name.

Failed batch file— same as create batch file, but only rules in which at least
one formula failed on a previous run will be included.

Aborted batch file — same as create batch file, but only rules that did not
complete the previous run will be included.

10.3.3 RunUtil Menu Option

To open a sub-menu, click tRanUntil menu option. You will be presented
with the following items:

« Pause/Continue- freezes a running rule. Choose it again to continue the

run. A paused rule hagPato the left of its name.
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« Undo run — undoes the effects of a rule that was run by mistake. Works
only if this rule has been killed, and no other rule has been run since this
rule was started.

» Adopt — allows the run to be controlled by the RuleBase window from
which adopt is performed. Usually if a rule was run from a unix shell or
from another RuleBase window, it cannot be controlled by the quick buttons
or the Options dialog.

Note: This will only work if the run that is to be adopted is on the same
machine as the RuleBase window that wants to adopt it.

« Unlock — forces lock deletion.
During execution, RuleBase locks the rule to prevent multiple simultaneous
executions. Sometimes, a run may abort without removing the lock. Choos-
ing unlock forces lock deletion. Only unlock a rule if you are sure that it is
not running (on any computer).

10.3.4 Debugging Menu Option

To open a sub-menu, click ti@ebuggingmenu option. You will be presented
with the following items:

 State variables— displays the names of the state variables for this rule
(valid after reduction).

 Signals before reduction- displays names of all signals in the design. In
some translation paths some of the internal names disappear and others are
added.

« Signals after reduction— displays names of signals after reduction that
were categorized as Deleted/Constant/Alive. Signals that appear in “Signals
before reduction” and do not appear here are not in the cone of influence of
the formula. The information to the right of the “--" can be ignored; it is
used by the reduction analyzer.

« Circuit before reduction — this option is currently not documented.
« Circuit after reduction — this option is currently not documented.
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« Reduction analyzer— invokes the reduction analyzer, which is useful for
debugging reductions performed by RuleBase. For more information, see
CHAPTER 9: Debugging Aids. The reduction analyzer can only be invoked
if creation of a circuit file was enabled as described in “Debugging Control
Panel” on page 196.

« Where signal is used- displays the locations (file name and line number)
in which a signal whose name matches a given pattern (wildcard is possible)
is used in the environment by the selected rule.

« Where signal is driven— displays the locations (file name and line number)
in which a signal whose name matches a given pattern (wildcard is possible)
Is driven in the environment by the selected rule.

« Show longest trace- presents a timing diagram generated by the verifica-
tion option “Gen longest trace”. See “Options” on page 190.

« Save longest trace- similar to “Show longest trace” above, but instead of
being displayed, the timing diagram is stored in the “longest.trace” file for
inspection by the stand-alone scope tool.

« GenTest from longest trace- similar to “Show longest trace” above, but
instead of being displayed, the timing diagram is stored as a control pro-
gram for simulation.

10.3.5 Help Button
TheHelp option opens the on-line help documentation.

10.4Message Panel

The message panel is used to display warnings, errors, and informative mes-
sages.

10.5Rule List

The rule list contains the list of rules coded by the user. It is derived from the
database file (usually called “envs”) pointed to by the rulebase.setup file.
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10.6Quick Buttons

The quick buttons are the most frequently used buttons during verification by
RuleBase. The following sections describe each in detail.

10.6.1 Run

To run the currently selected rule, click the rule name in the rules list. A run-
ning rule has am to the left of its name. ThR become® when the rule ends.

10.6.2 Kill

To kill the run of the currently selected rule, click the rule name in the rules
list. A killed rule has & to the left of its name.

10.6.3 Options

This button opens the options box. The options box consists of the following
areas, each of which is described in more detail in the sections below:
 File — allows you to store the options in a file, or load them from a file.

- BDD order — opens the BDD order control panel.

« Reduction— opens the reduction control panel.

« Verification — opens the verification control panel.

« Debugging— opens the debugging control panel.

« Hide — closes the options box.

Note: Many of the option buttons have a yelloW(apply) button next to
them. When you change an option during a run, you must click the corre-
sponding apply button to see the change.
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10.6.3.1 File Menu

The file menu consists of the following options:

Load —loads a previously saved options configuration.

Load <rule>.cfg: —loads a previously saved per-rule options configuration.
Save -saves the current options configuration for use by all rules.

Save <rule>.cfg -saves the current options configuration for this rule only.
Default — loads the default options configuration.

10.6.3.2 BDD Order Control Panel

The BDD order control panel consists of a number of fields, including:

Reorder: Enable/disable reordering.

When enabled, reordering will only begin when all the conditions below are
fulfilled.

Note: If you change this option during the run of a rule, you must click the
yellow “A” (apply) button to see the change.

Algorithm : Dynamic reordering algorithm.
Options are one or a combination of the following:

« Cheetah— quickest algorithm, but in many cases achieves the poorest
results. Use this algorithm in combination with another to achieve the
best combination of run time with results.

* Quick rudell — slower than Cheetah, but may result in a better order.

» Rudell — slowest algorithm, but frequently gives the best results.
Note: If you change this option during the run of a rule, you must click
the yellow “A” (apply) button to see the change.

Iteration : Two integers that are lower and upper bounds on the iterations
between which the reordering algorithm should be active.

Note: If you change this option during the run of a rule, you must click the
yellow “A” (apply) button to see the change.
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- BDD size Two integers that are the lower and upper bounds of BDD size
between which the reordering algorithm should be active. Reordering will
be activated when the “nodes allocated” displayed in the log file has reached
the lower bound, and has not yet exceeded the upper bound.

Note: If you change this option during the run of a rule, you must click the
yellow “A” (apply) button to see the change.

« Low threshold: An integer. If a low threshold is defined, a BDD ordering
round is stopped when the BDD size falls below the low threshold.
Note: If you change this option during the run of a rule, you must click the
yellow “A” (apply) button to see the change.

e Laziness factor A real number greater than 1 that controls the effort
expended in reordering. The default is 3. If the movement of a variable
requires more effort than the Laziness Factor permits, this variable will not
be moved further, and RuleBase will prefix its name with a dot.

Note: If you change this option during the run of a rule, you must click the
yellow “A” (apply) button to see the change.

« Growth factor : A real number greater than 1 that controls the start of a sec-
ond reordering round. A new round will only start when the BDD size
reaches last-size * growth-factor, in which last-size is the BDD size (nodes
allocated) at the end of the previous round. The default is 2.

Note: If you change this option during the run of a rule, you must click the
yellow “A” (apply) button to see the change.

« Use order file RuleBase may use an existing order file as its initial order.
The order file options include:

» Orders pool — the best match in the orders pool is used.
e <rule>.order — if such a file exists, it is used.

« Copy back after run: After every round of dynamic ordering, the order is
written to a file called temp.ord located in the rule directory. This file may
be used in later runs as the initial order. The options include:

» No — do not save the new order.

« To <rule>.order — at the end of the run, copy the new order to
<rule>.order.
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« To orders pool— at the end of the run, copy the new order todhders
pool.
« To both — at the end of the run, copy the new order to both the
<rule>.order and to theorders pool
« Copy now. Before a run has completed, a new order file may exist. This
button allows the new order to be copied back immediately to either
<rule>.order or to theorders pool

10.6.3.3 Reduction Control Panel

The reduction control panel consists of the following fields:

« Reduction effort: Determines how much effort (CPU time and memory)
are dedicated to performing the reduction. The options include:

e Low — no BDD reductions are performed.

« High — BDD reductions are performed. Applying all BDD reductions
may require a lot of time and space. To control the time and space used
by the reductions, try disabling one or more of the heavy reductions, as
shown below, or give a BDD node limit:

« Heavy reduction 1 NO
« Heavy reduction 2 NO
« BDD node limit: By limiting the number of BDD nodes and using
high effort with heavy reductions, you will frequently get better
reduction results than with no heavy reductions and no BDD limit.
A typical number for this limit is 300000. Leave the limit unspeci-
fied if there are no reduction problems.
For further insight into the reductions performed, see “Reduction Analyzer”
on page 173.
« SMV reductions: When this mode is active, RuleBase performs over-

approximations in order to find constants FF’s, and to apply reductions
(based on the constants-search results). This mode is inactive by default and
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should be activated when a size problem is encountered. Constants found (in
this mode) are saved in the FF pool so itis usually necessary to activate this
mode if no new constants are to be added.

10.6.3.4 Verification Control Panel

The verification control panel consists of the following fields:

« Reachability — determines if a search of the reachable state space of the cir-
cuit is to be done as the first step of verification. For most designs, this
should be set to “Yes”.

« Verify Safety OnTheFly — determines whether safety formulas (formulas
that do not contain strong operators or the AF operator) should be checked
during reachability analysis. Safety formulas can only be checked on the fly
if reachability is enabled. The options include:

« Yes Check all safety formulas on the fly. You can give a parameter (an
integer) that determines the trade-off between memory and time con-
sumption during the run. If the user gives this parameter a small value,
the run may consume more memory, but will produce counter-exam-
ples faster than a parameter with a large value.

« No: Do not check Safety OnTheFly.

For more information about Safety OnTheFly, see “Verify-Safety-OnThe-
Fly” on page 161.

« Verify Liveness OnTheFly —determines whether the liveness formulas
(formulas that contain AF, strong until, or sugar operators ending with!)
should be checked during reachability. Unlike Safety OnTheFly, the check
may take a long time. Therefore, if the liveness formulas are likely to pass,
we recommend that you do not use use this option. The options include:

« Yes: Check all liveness formulas every n iterations, where n should be
specified by the user.
« No: Do not check liveness on the fly.
« Attempt light proof — applies the classical model checking algorithm on

the rule (all possible states are considered and not necessarily only the
reachable onesThe square area along the button specifies the time (in sec-
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onds) that RuleBase should invest in this mode. If the formula does not fail/
pass in this period of time, RuleBase will apply regular model checking on
the rule.

Notes:

« If the formula passed (in light proof), RuleBase provides a witness and
vacuity explanation (if asked for). Producing a witness or vacuity
explanation may take more time than the other evaluation modes.

« If the formula failed (in light proof), the time needed to produce a
counter-example will not be restricted.

« A light proof does not check vacuity. A vacuous formula be given the
status ‘pass’.

 The longest trace cannot be produced in this mode.

« Witness— controls whether vacuity (a trivial pass) is checked, and whether
or not a witness trace is produced. For further information on vacuity and
witnesses, see CHAPTER 9: Debugging Aids. The options include:

« Full withess — checks formula for vacuity, and if the pass is non-vacu-
ous, produces a witness trace.

« Vacuity only — checks the formula for vacuity, but if the pass is non-
vacuous, does not produce a trace.

« None— does not check the formula for vacuity.
Note: If you change this option during the run of a rule, you must click
the yellow “A” (apply) button to see the change.

« Explain vacuous- if active and a formula is found to pass vacuously, Rule-
Base will point to the pre-condition that cannot hold.

« Gen longest trace- if active, and reachability is also active, a trace will be
produced to a state that is as far from the initial state as possible. If the
“Now” button is pushed, and reachability is also active, RuleBase will com-
plete the analysis of the current iteration, and then generate a trace that is
furthest from the initial state. It will then continue with reachability analysis
and check the remaining formulas.

Note: If you change this option during the run of a rule, you must click the
yellow “A” (apply) button to see the change.
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Stop after iteration — an integer that indicates how far RuleBase should go
into the reachability analysis. RuleBase will stop reachability after the spec-
ified number of iterations (i.e., it will not look at states that are farther than
X steps from the initial state). If theN'ow” button is pushed, and reachabil-
ity is also active, RuleBase will complete the analysis of the current itera-
tion, and only check remaining formulas if they pertain to the states it has
not yet seen.

Note: If you change this option during the run of a rule, you must click the
yellow “A” (apply) button to see the change.

Run only if changed —provides the ability to run a rule only if the design,
environment, or formula have been changed since the last run. Furthermore,
if the change in the design or environment does not affect the formula, then
it also will not run. When this mode is active, it creates a signature for each
run to be compared with the next run.

The following options are available:
« No — mode is inactive.
* Yes —mode is active. A rule will run only in the case of changes.

« Force —mode is active. A rule will run in any case and a signature will
be created.

e Fictitious — RuleBase creates a signature for the rule as it was just run-
ning. If the previous log file is older than the design, does not exist, or
is not completed (rule did not finish), RuleBase will not create a ficti-
tious signature.

10.6.3.5 Debugging Control Panel

The debugging control panel consists of the following fields:

Explain timing diagram — determines if explanations of the counter-exam-
ple will be shown in the trace. Explanations are red dots that show you
where to look for interesting events.

Show formula text— determines if the counter-example or witness trace
will also open a window that displays the formula to which it corresponds.
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« Per-rule state file— determines if the signal display configuration of the
trace will be saved per-rule or not.

« Clock cycle— length of the clock cycle for test generatigsee “Results”
on page 198).

« Clock name— name of the clock for test generation.

« Signal prefix — prefix for signal names for test generation.

« Create circuit file — a circuit file must be created during reduction if the
reduction analyzer (see “Reduction Analyzer” on page 173) is to be used.

10.6.4 ToglOrdr

This button will toggle BDD ordering for the currently selected rule.

- |f BDD ordering is currently taking place, it will stop the current round.
- If BDD ordering is not currently taking place, it will start one round.

This button only affects one round of BDD ordering. To turn BDD ordering on
or off permanently, see section “BDD Order Control Panel” on page 191.

10.6.5 Log

This button will display the log file of the currently selected rule. If the rule is
currently running, this option will only work if invoked from the machine on
which the rule is currently running. If the rule has completed, the log file of the
completed run will be displayed. The following two sub-buttons are provided
to ease the user’s analysis of the log:

« n—deletes all of the ‘nodes allocated’ lines from the log.
« >—deletes all BDD ordering lines.

1. Test generation is not usually needed, because RuleBase generates a simulation-like trace for debug-
ging. This option is only needed in the case that the user wants to generate a simulation test out of the
counter-example generated by RuleBase.
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10.6.6 Warnings

This button displays any warnings of the currently selected rule.

10.6.7 Status

This button displays the status of the currently selected rule. If the rule is cur-
rently running, it will display the start time of the run and the name of the
machine on which the rule is running. If the rule has completed, it will also dis-
play the results (pass/fail) of each formula and the CPU time and memory
usage.

10.6.8 Explain

This button displays an explanation of the formulas of the currently selected
rule. The explanation is a rudimentary translation of the formula into English.

10.6.9 Results

This button displays the results of the currently selected rule. It displays each
formula, along with information on its status. The status of a formula can be
one of the following outcomes:

« failed —formula is false, and a counter-example has been produced.

- failed(c) —formula is false, and is a contradiction in the model.

e passed(w) formula is true non-vacuously, and a witness trace has been
produced.

e passed(nv) formula is true non-vacuously.

e passed(ta) formula is true, and is a tautology in the mode, which means
that RuleBase could combinatorically determine that the rule passed, with-
out the need to search for all the reachable states of the model.

. passed -formula is true, but vacuity has not been checked.

« vacuously —formula is true vacuously.

RuleBase: a Formal Verification Tool
Provided by special agreement with IBM



199 CHAPTER 10

« unknown —formula has not yet been determined to be true or false
For an explanation of vacuity, see CHAPTER 9: Debugging Aids.

At the beginning of the run, the status of all formulas is unknown. If you
choose Safety OnTheFly (see “Verification Control Panel” on page 194), some
formulas may be determined to be true or false before the completion of the
run. It is, therefore, possible to click on fResultsquick button before a run

has completed and see that some formulas have either passed or failed, while
the status of others is still status.

10.6.9.1 Displaying Counter-examples and Witnesses

If the status of a formulas as described above is either “failed” or “passed(w)”,
a trace is available for viewing. In the case of “failed”, this trace is called a
counter-example. In the case of “passed(w)”, it is called a witness.

Click near the word “failed” or “passed(w)” and hold the mouse button down.
A menu will be displayed with the following options:

« Show timing diagram: If chosen, the waveform display tool Scope will dis-
play the counter-example or witness. For an explanation of the Scope tool,
see “Scope Waveform Display Tool” on page 166.

« Save timing diagram If chosen, the counter-example or witness will be
saved in a file named rule_name.N.trace, in which rule_name is the name of
the rule and N is the formula number in the rule. You can view this trace by
using the following command:

$RBROOT/scope -sfsmv.state rule_name.N

NOTE: Even after exiting RuleBase, you can access the trace by re-invoking
RuleBase, clickingresults and selectinghow timing diagramas above. You

only need to save using thave timing diagramoption if you want to keep a
copy of the trace independently of RuleBase. For instance, you can save a copy

1. We strongly recommend that you check vacuity.
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of a failing trace to send it to a colleague by e-mail, or to keep in a database
for documentation purposes.

« Generate test- generates a test for simulation that will produce the same
trace shown in the counter-example or witness. The following formats are
available: Synopsys and Cadence Verilog XL. The default format is Synop-
Sys.

To generate a test for Cadence Verilog XL, add the following line to your
rulebase.setup file:
setenv RB_TEST_VERILOG 1

NOTE: Normally, there is no reason to generate a test from a counter-
example or witness, because the counter-example or witness itself can be
used for debugging. In addition, the generated test will only check the spe-
cific failure that was found, whereas running the rule again will check all
possible failures that violate the rule. In other words, as a regression check,
re-running the rule under RuleBase provides much better coverage than re-
running the simulation test generated from a previous fail.

« Propagate values- sometimes, when analyzing counter-examples, it is
desired to see the value of design signals that were removed by the reduc-
tion. If every input that drives these signals is available, RuleBase can add
them to the generated trace after the fact.

To do this, create a file called “propagate.names” in the directory from
which you have invoked RuleBase. The file should contain a list of signals,
one to a line, which you would like to add to your trace. You can use wild-
cards; for example “* stands for ‘all signals’, and ‘block2/*" stands for all
signals whose names begin with ‘block2/. Then, checkpagate values

and wait until RuleBase computes the values. Finally, chBbses timing
diagram. The signals you requested should now be available in the menu of
signal names on the right hand side of the Scope tool.

10.6.9.2 Displaying Vacuity Explanation

If the status of a formula is “vacuously” and the explain vacuity facility was
enabled (see “Verification Control Panel” on page 194), an explanation of the
vacuous pass is available. Click near the word “vacuously”. Choose Explain
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vacuity (the only available option). RuleBase will display an explanatidme
vacuity explanation is the shortest prefix of the formula that is always
true. For a detailed explanation of vacuity, see “Vacuity” on page 172.

10.7 Text Control Panel

The text control panel contains buttons that control the display of text in the
main text window. Each control button is described in detail below.

10.7.1 BackText

This button performs a backward search for the text typed in the text search
window, located to the right of the Find Text control button. It does not sup-
port a wild-card search.

10.7.2 Find Text

This button performs a forward search for the text typed in the text search win-
dow, located to the right of the Find Text control button. It does not support a
wild-card search.

10.7.3 Edit Text

This button opens a window in which an editor is invoked on the current file
displayed in the main text window. The default editor is vi. To call your pre-
ferred editor, add the following line to file rulebase.setup:

“setenv RB_EDITORyour-editof’

Examples:

“setenv RB_EDITOR emacs” # rulebase calls “efila&s’
“setenv RB_EDITOR aixterm -e vi -R”  # rulebase calls “aixterm -e VileR”
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10.7.4 FreezeText

This button freezes the main text window (by default it is updated continuously
as the run progresses), making it easier to read the text. When clicked, this
button will change its color to red and display the mesBaggen. To

unfreeze, click it again.

The main text window will be automatically frozen, when using the scroll bar,

located on the right, to scroll backwards. To unfreeze it, click thEnagkn
button.

10.7.5 GUI Resource File

The file Guirb, located in the user home directory, is the resource file of the
RuleBase GUI. Fonts, for example, are controlled from this file.

Each time a new user starts using RuleBase, this file is copied from $RBROOT
to the user’'s home directory.
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cneeers DESIgN for Formal
Verification

11.1Introduction

RuleBase supports a wide variety of design styles and methodologies. While in
many cases you are not required to make special adjustments to existing design
methodology, the following design guidelines will further ease the verification
process.

11.2 Separating Control from Data

Although RuleBase can check both control logic and datapath, it is more effec-
tive for verifying control logic. Datapaths usually have many memory ele-
ments, which may increase the size of the internal model representation
beyond the capacity of RuleBase. When verifying a design that includes both
control and datapaths, the datapath is often replaced by an abstract model with
fewer memory elements. This abstraction is easier when there is a clear separa-
tion between control and data in the design.
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11.3Design Partitioning

Design partitioning, in which each partition is verified separately, is one solu-
tion to the size limitation inherent to formal verification. Another reason for
partitioning is the desire to push asynchronous signals and tri-state buffers to
block boundaries (explained below). In many cases, the natural partitioning
defined by the designers can serve as a basis for formal verification. In cases in
which design partitioning is too fine, several blocks are often combined to form
a bigger partition, which is more interesting in terms of verification.

Partitioning has several consequences:

« The effort exerted in defining, documenting, and studying the internal inter-
faces.

« The development of environment models for neighbor partitions.

« The tendency for changes in internal interfaces.

« The lack of expression for some global rules when the design is partitioned.

In light of this, our recommendations for partitioning are:

« Use the same patrtitioning for design and formal verification.

« Use documented or easy-to-understand interfaces.

« Use interfaces with stable protocols.

« Verify groups of related blocks, if the basic design blocks are small.

Experience shows that blocks that have several hundred flip-flops of control
logic are good candidates for formal verification.

11.4Clocking Schemes

While RuleBase supports many clocking schemes, the preferred scheme is in
which each patrtition to be verified uses one clock. Multiple clocks, particularly
if they are not synchronized, increase the size of the internal model’s represen-
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tation, and are not recommended for large partitions. When using multiple
clocks, a small frequency ratio is preferred.

11.5Design Mapping

RuleBase supports several languages and synthesis paths. The existing design
environment (synthesis) tools are usually used for translation into gate-level
representation. The design should be written in such a way that it will not pre-
vent the translators from mapping it into a basic library of gates and flip-flops.
For example, we do not recommend that you include switch-level macros in

the design; you should use their logic-level equivalents.

Edge-triggered latches, and master/slave flip-flops whose master’s output is
only connected to the slave, are most suitable for RuleBase. If level-triggered
latches are used, or if the master’s output drives logic, special modeling is
required, depending on how they are used in the design.

The following memory elements are supported in the synthesized netlist: flip-
flops without asynchronous reset, flip-flops with asynchronous reset and trans-
parent latches.

 Flip-flops without asynchronous reset will have the following behavior:
var q: boolean;
assign next(q) :=
case
clock: data;
else: q;
esac;

except when rb_e_t ff option is used, in which case they will have the following behavior:
var q: boolean;
assign next(q) :=
case
next(clock) & !clock: data;
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else: q;
esac;

See Table 8 on page 241 for a complete explanation of the rb_e_t ff option.

 Flip-flops with asynchronous reset will be modeled as:
define q := 'reset & q1;
var q1: boolean;
assign next(gl) =
case
reset: O;
clock: data;
else: q1;
esac;

 Flip-flops with asynchronous set are also supported and are handled simi-
larly.

« Transparent latches are modeled as:
define q :=
case
clock: data;
else: prev(q);
esac;

11.6 Asynchronous Logic

Ideally, there should be no asynchronous logic in the parts to be formally veri-
fied. RuleBase supports the verification of models in which the changes are at
the cycle level. Asynchronous signals, if present, are best handled when situ-
ated at the verified partition boundaries. Synchronizing elements should be
replaced by a short-circuit. State machines should be synchronized by proper
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hand-shaking. RuleBase does not support relying on absolute durations (e.qg.,
40 nano-seconds before response).

11.7 Tri-State Buffers

Ideally, tri-state buffers should be located in a separate module so they can be
easily separated from the design before formal verification. This is a common
design style; however, in some designs, for various reasons, tri-state buffers are
mixed with other logic. In these cases, they should be situated at the partition
boundaries. Future versions will be able to handle tri-state buffers everywhere.

11.8 Parametric Designs

When the design includes memory arrays that highly influence the logic (e.g.,
FIFOs), we may want to verify these arrays rather than their abstract model.
However, checking them as a whole may cause the model to become too big.
To solve the size problem, you can define the array size as a parameter that can
easily be changed. In this manner, you can choose the largest size possible
within the RuleBase capacity.

11.9Implementation Rules

Properties to be verified can be divided into two categories: specification rules
and implementation rules. While specification rules are usually extracted from
written documents, implementation rules are often not documented. We
strongly recommended that you write these rules while developing the design.
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cneerz. COVErage Methodology

12.10verview

While RuleBase addresses the coverage problem of verification by simulation,
it does not solve it completely. There is the question, “Have | coded all neces-
sary rules? In addition, due to the size problem, behavioral partitioning, as
described in CHAPTER 8: Size Problems and Solutions, is frequently used,
which adds the following question to the coverage problem, “Have | coded
enough environments?” We discuss these two questions in the following sec-
tions.

Before proceeding, we would like to emphasize that despite the fact that the
second coverage question sounds very similar to the coverage problem of sim-
ulation, it does not mean that using RuleBase with behavioral partitioning is
comparable to verification by simulation. Despite the coverage problem, verifi-
cation with RuleBase can still provide much greater coverage than verification
by simulation. For example, think of the set of all possible execution paths as
inhabiting a two-dimensional space. Then, a test suite covers a finite number of
points of the test space, as shown in Figure 17 below.
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FIGURE 17. Coverage problem in simulation

With RuleBase, on the other hand, each environment covers an infinite number
of points in the test space, as depicted below in Figure 18 .

FIGURE 18. Coverage problem with RuleBase
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While a complete solution to the coverage problem does not yet exist, we
describe a methodology of rule and environment writing in this chapter that
can help.

Note: This chapter is brought here in a preliminary form.

12.2 Coverage Model

The methodology is based on an attempt to obtain block Input-Output relation-
ship coverage, which means:

« The block will be fed with every possible legal input sequence. Inputs are
defined in the environments.

 All output signals will be systematically checked for correctness at all
times. The rules check the outputs.

« Selected internal states of the system will be checked for correctness at all
times.The rules check the internal states.

« The rules will check the functionality of the block. For instance, if the pur-
pose of the block is to acknowledge requests with a “grant” signal, then this
functionality should be covered, for example, with a formula of the format
“AG(request -> AF grant)”.

12.3Writing Rules
You should write rules in the following manner:

For every output signal and selected internal signals, andvery clock
cycle:

1. Determine the relationships of the signal to all other signals (inputs and out-
puts).
2. Write the rules that check the preservation of these relationships.
3. Divide the rules for each signal into three types:
« The signalwill always change value when necessary.
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« The signawill not changewhen it should not.

« The signalwill have a specific value at times that it must have that
value.

Experience with RuleBase does not necessarily indicate that rules that contain
complex signals find design errors more often, and it doesn’t mean that they
cover all errors either. RuleBase is effective due to the careful and methodical
coverage of all signals.

12.4Writing Environments

When writing environments, we suggest you adhere to the following guide-
lines:

« Keep the input signal nondeterministic, whenever possible, even if this
causes an illegal input sequence (as long as it doesn’t confuse the block).

« Restrict inputs only when necessary. For example, when the logic is con-
fused by illegal inputs, or when you want to restrict the environment to less
than the legal input behavior because of size problems.

¢ Hold rule and environment reviews as described in “Planning and Review-
ing Rule and Envioronment Writing” on page 214, since it is difficult to
determine how risky a certain environment restriction is (in terms of missing
design errors).

« Write rules that check the behavior of the environment, because the quality
of the verification is dependent on the quality of the environment. Specifi-
cally, write rules that check that events in which the environment is expected
to be able to generate are indeed generated. For instance, the following rules
check that both read_enable and write_enable can be asserted by the envi-
ronment (assuming these are environment signals):

EF read_enable
EF write_enable

IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



Coverage Methodology 214

12.5Planning and Reviewing Rule and
Envioronment Writing

Rule and environment writing are strict engineering activities and should be
planned and reviewed. You should conduct reviews with teammates who
understand block functionality on both the rules and the environments written.
In addition, it is very important to go over environment restrictions with the
block designers, in particular restrictions that were added in order to avoid
state explosion. The designers may challenge the assumptions taken and may
request more effort in verifying the restricted areas.

These reviews are also useful to describe the areas not covered by formal veri-
fication to the other teammates. A review can guide the simulation team to
stress those areas with simulation tests.
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cneerers. Advanced Verification
Engines (RuleBase Premium)

13.1Introduction

The RuleBase Classical version (the common RuleBase version) includes only
one verification engine, which is called Discovery. The RuleBase Premium
version contains additional verification engines in addition to Discovery. This
chapter describes these additional engines.

Note: This chapter is brought here in a preliminary form.

13.2SAT Engine

SAT is a Bounded Model Checking engine. Similar to the standard model
checking procedure conducted by Discovery, SAT searches for bugs in a
design.

The main difference is that with SAT the user is required to specify a finite
range of cycles for which the bug is searched. Bounded model checking with
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SAT is normally conducted in a gradual manner since typically, the larger the
range, the longer the search process.

First, SAT searches for bugs starting from the initial state, up to some user-
defined boundk. If no bug is found, the next problem instance will be fré&si

to k+(interval size), and so fortfihere are three possible terminations of this
process:

« Abugis found. In this case a counter-example is presented to the user in the
usual way.

« The problem becomes too difficult to solve in a reasonable amount of time.
This means that the property was not proven to hold globally. The only
guarantee that the user has in such cases is that the property holds up to the
last cycle that SAT was able to prove.

For example, if SAT proved that there is no bug in the range 0..20, and then
timed-out while attempting to prove that there is no bug from cycle 21 to 30,
the only guarantee that the user has is that there is no bug up to cycle 20. In
this case, the user may try to look in cycles 21 .. 25, which is an easier prob-
lem (see below).

« No bug is found up to thdiameter Dof the design. If we compute the short-
est path from an initial state to each of the reachable states of the system,
the diameter is defined to be the longest of these paths. Since hardware
designs have a finite number of reachable states, we are guaranteed that such
a finite diameter exists (finding the diameter is difficult by itself, as we will
later explain). Thus, if there is no bug up to cyEBleit means that there is no
bug at all, and the property is verified. Befdas reached, there is no guar-
antee that the property holds globally.

13.2.1SAT Technology

SAT has a completely different underlying technology than Discovery, which
works with a data-structure called BDD to represent the entire set of reachable
states—which is why Discovery’s bottleneck is typically the memory require-
ments that may grow exponentially
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SAT first builds a Boolean formula, which is logically satisfiable if and only if
there is a bug in the given range. Each signal in the design, in each cycle, is
represented by a different variable in this formula. Then, SAT tries to satisfy
the formula (i.e., find a single assignment to the formula that evaluates it to
TRUE). If it finds one, it becomes the counter-example.

The satisfiability problem also requires exponential time to solve, but there are
no exponential memory requirements. Thus, a fast CPU is the key for obtaining
fast results with SAT rather than large memory. The size of the formula that is
generated in the first step has a large effect on the speed of SAT. The formula
grows linearly with the distance from the initial state. Thus, the distance from
the initial state, rather than the range itself has the largest effect on the diffi-
culty of the problem. For example, searching in cycles 20..30 takes more time
than searching in cycles 10..20.

A thorough empirical study showed that many designs that cannot be verified
with the standard Discovery engine can be efficiently solved with SAT, and
vice versa. This is why the combination of these tools is very productive. SAT
is usually better in finding bugs (‘falsification’), especially if they can be
reached in early cycles (typically up to cycles 40 — 50, depending on the
design). Proving that no bug exists (‘verification') is much harder for SAT,
because this requires, as explained earlier, to reach the di@m8&iece this
number is usually high (more than 100 even in small designs), it is normally
beyond the capacity of SAT. The standard model checking engine of Discovery
is much better in verification and in finding 'deep’ bugs.

SAT has the following two restrictions:
« It can only check safety properties.

« It can only check one formula at a time.
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13.2.2 SAT GUI

As described above, there are several parameters that affect the way SAT oper-
ates. You can control the size of the bolnithe size of each 'jump’, the time-
out, and several other options described below.

To launch SAT from a RuleBase directory:

1. Set environment variable RB_SAT to 1 and launch the GUI.
A new box, labeled SAT, will appear at the options and a new engine.

2. To run SAT, select SAT.
You can run SAT in the following modes:

 Auto Mode
In Auto mode the range is incremented automatically. You can specify
the initial cycle (thdower bound from which to start, and the range of
the search instance (sometimes referred to as the ‘jump’). Auto mode
will stop if a bug is found or if the maximum cycle, you specified, is
reached. It will also stop if the time limit is reached.
For complete verification, the maximum cycle should be the diameter
D. We recommend you specify a high number, thus forcing SAT to stop
only when the time limit is reached. Auto mode has the following the

options:

Name Range Default |Explanations

First Instance Natural 10 The Bound for the first instance.

Bound

Jump Natural =0, 5 The size of the interval (number of
cycles) between two consecutive runs.

Max Bound Natural 100 The last cycle in which to look for a
counter example. For full verification
use the diameter (if it is known).

Total Time Limit Natural 40000 The time limit for all the intervals.
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« Manual Mode
In this mode, you manually specify the range of the search.
This option is useful in two cases. The first case is when searching for
the exact cycle in which the bug first occurs (this is useful for finding
the shortest possible counter example). For example, suppose that Auto
mode finds a bug in the range 10 — 20. To find the exact cycle, use the
Manual mode to search in cycles 10 — 15, and then, if the answer is pos-
itive, search again in cycles 13 — 15, and so forth, until the exact cycle
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is found. Another typical case that makes Manual mode useful occurs
during debugging. Once you find a bug and consequently change the
design, the best way to know whether the bug was fixed is to perform
another search for the bug in the same exact cycle. This is when the
option of searching in a specific cycle only, which is only available in
Manual mode, becomes very useful.

Manual mode has the following the options:

Name Range | Restrictions Pefault Explanations

Upper Bound Natural 10 Maximum cycle to search for
a counter-example (or exact
cycle for which to search, in
case the previous option is

on).
Exact Counter- (Sets Bound = Looks for a counter-example
example Length Lower Bound) only in the cycle specified in
Bound.
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FIGURE 19.
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Conjunctive Options:

Name Range | Restrictions Default Explanations
Time Limit Natural 20000 Time limit for a single interval.
(Sec)

Lower Natural | 0 <= Bound 0 Minimal cycle to search for a

Bound counter example.

Size limit Natural | 0 < Size Unlimitedq  Restrict the CNF formula file
size. (MB).

Native Off Grasp’s Native decision heuri$
tic (DLIS)

Clean On Delete temporary files.

To remove SAT from the options, unset RB_SAT and restart the GUI.

13.3Belzeebub Engine

The Belzeebub Engine incorporates classified IBM technology, and is only
available from IBM under a confidentiality agreement. Contact technical sup-

port for details.
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13.4Unfolding Engine

Unfolding is a bounded model checking engine. It proves safety properties
bounded to the first k cycles, using BDD-based procedures. If the property
failed, Unfolding produces a Discovery-like counter-example.

The following are the advantages to this approach:

 State variables become wires, therefore Unfolding has an advantage in com-
plex and shallow designs (many FFs, few inputs).

« Enables static BDD ordering — determines the initial order of variables in
the BDD based on the circuit’s structure. In many cases, this order is suffi-
cient to complete calculation without the need to reorder.

« Unfolding calculates signal values as a function of inputs, rather than a ran-
domly shaped set of states. Therefore, the function is more natural and
reflects the circuit’s structure.

« Eliminates false resource sharing along time. For example, if FF performs
one task in even cycles and another task in odd cycles, Unfolding will have a
different function for each task, and Discovery will have one big function
that represents all of its tasks.

« Fine underapproximation — makes an input constant only at a specific cycle.
Running with underapproximations is called Partial mode. In Unfolding,
Partial mode can be thought of as an intermediate stage between simulation
and formal proof (advanced simulation), when according to the parameters
(the underapproximation threshold) it goes smoothly from one to another.

Unfolding is potentially suitable to wide and shallow designs (for example
Boolean/sequential equivalence, datapath).

Unfolding has the following limitations:

« Unable, in most cases, to prove the correctness of formulas for all cycles;
therefore, a witness is unavailable.

« Works only on Safety OnTheFly formulas.
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13.4.1 Main Settings

The following are the main settings

« cycles

« Number of cycles to be checked. If you have an idea that the location of a
suspected bug is in cycle n, check n+10 cycles, since the bug may be easier
to find in the further cycles.

« Defaults to 50 cycles.

« mode

« EasyPartial (default) — performs a quick check of the formula with low
approximation bound (good for common bugs).

« Exact — tries to prove the cycles (does not make approximations).

« HardPartial — works harder than EasyPartial (higher approximation
bound) and has a better chance of finding rare bugs.

« ContinuesRun (tmp name)- tries to find the bug using EasyPartial, and
if it can’t find it, continues with HardPartial until the cycles are proven (or
the bug is found).

« Reorder (on/off) —selects whether or not to perform reordering.
« Defaults to "off".

« Threshold —defines when some special action should be taken (reorder or
assumption). The number is the total number of BDD nodes currently in the
calculated BDDs.

« Defaults:
Exact =1,000,000
EasyPartial = 100,000
HardPartial = 1,000,000
(ContinuesRun - disabled)
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« ForeverMode (available only for EasyPartial & HardPartial)
« singleRun (default) — runs once on each cycle.

 runForever — runs continuously until a counter-example is found or all
cycles proven. Use it for nights/weekends.

¢ AssumptionAgorithm (available only for EasyPartial & HardPartial) —
describes how to choose variables for underapproximation.

« MaxLevel (N=0, default for EasyPartial) — quick algorithm, but potentially
much more approximations will be made than with the second algorithm.

« Estimator (N=2, default for HardPartial) — slow algorithm with good
results.
3. ReorderAlg

« Sift (N=4, default) — recommended. It takes a long time, but provides good
results.

« Random (N=2) — TBD
« RandomPivot (N=3) — TBD
e Linear(N=18) — TBD
« ReadOrder (on/off) —reads initial order from a file.
« WriteOrder (on/off) — writes order in the end of the run.
« WriteOrderEvery N — writes current order every N seconds.

e timeOut: (default=-1} provides timeout in seconds.

« <show log>- shows Unfolding log.
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SMV Options

TABLE 1. Reachability

VALUES/
USER VISIBILITY DESCRIPTION CONSTRAINTS LEVEL DEFAULT
parameter GUI - options
-f Reachability Perform reachability. (In normal Works as Boolean. In GUI: Yes
mode this means simplify assume | When Reachability is On, GUI sets
with the reachable states.) -f-cp 1 -inc.
-inc Incremental: simplifies the transition Other options |r_1_th|§ table only work
relation, according to the last donut when Reachability is set to Yes.
-cp #n Partitions transition relation part or
reachability settings.
-fly #a Verify Safety OnTheFly | Saves each n donut while performir Int >0 Basic In GUI: 10
(the number) reachability. Only works when "Verify Safety
OnTheFly" (in GUI) set to Yes.
-Ifly #n Verify Liveness OnTheFly | Performs liveness on_the_fly for eaq Int >0 Basic In GUI: 10
(the number) n iterations. Only works when "Verify Liveness
OnTheFly" (in GUI) set to Yes.
-AF_on-the-fly_no w Dynamic liveness on the fly.
-longest_trace Gen longest trace Finds the longest trace that doesn't| Boolean Basic In GUI: No
repeat the same state.
-no_longest_trace see -longest_trace above.
Only used when 'No’ is applied
dynamically.
-longest_trace_no w | Gen longest trace (Now) | Longest trace to current donut. dynamic option Basic
-early_termination #n| Stop after iteration Stops after n iterations. int >0 Advanced Disabled
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VALUES/

USER VISIBILITY DESCRIPTION CONSTRAINTS LEVEL DEFAULT

-no_switch Does not switch to full TR after Boolean Advanced Disabled
reachability.

-simplify_donut Simplifies each donut according to | Boolean Advanced Disabled
I(reachable_states)
OR
Allows overlapping donuts.

-fairness_in_safety Provides fairness in Safety OnThegolean Advanced No
mode.

-simplify_in_reverse Simplifies the BDDs according to fH&oolean Very Advanced No
reachable states in a backward search.

-counters_file <file> Counters mode on the signals in flle.  File name Basic Not set
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TABLE 2. Reorder

below the low threshold.
Does not effect Cheetah algorithm.

VALUES/
USER VISIBILITY DESCRIPTION CONSTRAINTS LEVEL DEFAULT
parameter GUI - options
-reorder_minimum_size #1) <= BDD size SMV will not reorder if it has less than n nddes Basic In GUI:
allocated. 100000
-reorder_maximum_size #n BDD size <= If SMV gets this flag, it will not reorder if it hiaxt >0 Advanced
more than n nodes allocated.
-start_reorder_at_iteration| <= iteration If SMV gets this flag, it will not reorder until | Int Advanced
#n iteration n.
-stop_reorder_at_iteration| iteration <= If SMV gets this flag, it will stop reordering | Int Advanced
#n when it reaches iteration n.
-reorder_low_threshold #n|  Low treshold SMV stops reordering when the BDD size fatls Advanced In SMV: 0

-dont_swap_above #r

Laziness factor

r controls the allowed reordering effort fo
variable reordering. A single variable is sifted
a specific direction, only as long as the BDD
size does not exceed r*prev_size.

(prev_size being the BDD size just before we

started sifting the variable).
Does not effect Cheetah algorithm.

&l Number > 1
in

Basic / Advancs

d InGUI:
3.0

-growth_factor #r Growth factor

r controls when the next reordering round
take place. A new round will only start when th
BDD size reaches last_size*r. (last_size refle
the BDD size, at the end of the previous reo
dering)

vileal Number > 1
e
cts

Basic / Advancs

d InGUI:
2.0
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1)

VALUES/

USER VISIBILITY DESCRIPTION CONSTRAINTS LEVEL DEFAULT

parameter GUI - options

-reorder Reorder Performs dynamic BDD reorder. Boolean. Other | Advanced In GUI: Yes,

options in this table In SMV: No
only work when reor-
der is set to yes.

-rudell Algorithm The reorder algorithm. Only one flag of thes&dvanced In GUI:Rudell+

~quick_rudell is su_pposed to be Cheetah

applied

-cheeta

-cheeta+rudell

-cheeta+quick_rudell

-no_reorder_in_AG_ce Does not reorder while calculating AG coupBwolean Advanced Disabled
example. (Do reorder in ce

-no_reorder_in_light_proo Does not reorder in light proof. Boolean Advanced Disabled

(Do reorder)

-no_reorder_in_cone If SMV gets this flag, all variables are reor{ Boolean Advanced Disabled (reord
dered. Otherwise, only variables in cone arg only vars in cone
reordered.

-decrease_reorder _percept Causes growth_factor to decrease graduglBpolean Advanced Disabled (no
after 2 million nodes. At 2 million nodes, the| decrease)
percent is the original number.

At 10 million nodes, it is about 1+ (original/10)

Note: All reorder options here can be changed dynamically.
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TABLE 3. Garbage Collection

USER VISIBILITY DESCRIPTION \VALUES / CONSTRAINTS LEVEL DEFAULT
parameter GUI - options
-gcinfo Provides more information abaydrbage col- | Boolean Advanced No
lection.
-gcmin #n The minimum size on which garbage collect{dnt Very Advanced 0
is called.
-gcmax #n The maximum size on which garbage collectibnt Very Advanced 100000
is called.
-gctime The 'nodes allocated' printed with time stamp Boolean Advanced No
TABLE 4. SMV Reductions
VALUES/
USER VISIBILITY DESCRIPTION CONSTRAINTS LEVEL DEFAULT
parameter GUI - options
-reduction n SMV reductions| Controls over-approximations and redu¢i..10) Basic In Gui: 8
tions in SMV. The number indicates the (3 is probably
heaviness of the over-approximations. Better)
Controlled by SMV reductions. In Smv: Disabled
No FF pool and equivalence pool. Boolean Advanced Disabled
-no_after_reach_reductions Removes the reductions after reachability. Boolean Advanceg Disabled
Only removes reset reductions. Boolean Very Advanced Disabled
-equiv_in_cuts Adds equivalence to ff_pool. Boolean Very Advanced Disabled
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TABLE 4. SMV Reductions

VALUES/
USER VISIBILITY DESCRIPTION CONSTRAINTS LEVEL DEFAULT
parameter GUI - options
-no_sat_reduction Does not reduce after each formula evddaaiean

Very Advanced Disabled
tion.

-no_reduction_in_counter_example Does not perform the reduction befordBoolean

generating counter-example.
Disabled in case of bug.

Very Advanced Disabled
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TABLE 5. Other

VALUES/
USER VISIBILITY DESCRIPTION CONSTRAINTS LEVEL DEFAULT
GUI -
parameter setenv options
-light_proof #n RB_SPECN Tries to evaluate each formula| Integer >0 Basic In GUI: 30
should be defined for Rule- without reachability (in normal in SMV: disabled
Base. mode) and with partition transis
tion relation for n seconds.
-light_proof_without_timer Evaluates each formula withouBoolean Basic
reachability and with partition
transition relation.
-vacuous_check_only Witness = | Does not produce witness. Basic
Vacuity
only.
-V # Verbose level 1/2 Advanced
-or_inside_simplify Little change inside simplify Very
assuming. Better for some mod- Advanced
els.
-ca Checks all options. Boolean Advanced
Does not run the formulas, only
checks the model semantically|
-or_before_recurse Changes in r_collapse is goqd Very
for some models. Advanced

Provides a little optimization.
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signals printed to log.

-extra_filter_synopsys

Provides extra filtering of the
signals written to log.

RB_NAMES_FILTER
<filename>

Filters the signals written to log.

Used when it takes too long to
print the trace.

is supposed to be set

VALUES/
USER VISIBILITY DESCRIPTION CONSTRAINTS LEVEL DEFAULT
GUI -

parameter setenv options
-efficient_backward_sort This backwards sort does not yet Very

support invars. If this parameter Advanced

is present, no invars may be

enabled.

- Performs separate reduction far Very

separate_reductions_in_counter_ each formula. The default is Advanced

example common reduction only when

set to counter-example reduc-
tions.
-0sa Optimized simplify assuming. Very
Advanced
-suicide_if_swap SMV Kills itself if it has low | Boolean Basic
CPU for a long time.

-first_fail Quits after first failure. Boolean Advanced

-i <file name> Starts bdd_order file name

-log <file name> Name of the log file. file name GUlsetsitto’

being asked.

-d Can be overriden by the Removes rb.smv (delete input [rBoolean Advanced GUI sets it with
RB_NODEL_SMV RB smv). Sets to No, and enables out being asked.
env. variable future run of stand alone SMV.

-no_filter_synopsys Does not provide a filter on th@ne of these, at most, Advanced By default, none

of these are set.
SMV filters sig-
nals with NET _
in their names.
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TABLE 5. Other

VALUES/
USER VISIBILITY DESCRIPTION CONSTRAINTS LEVEL DEFAULT
GUI -

parameter setenv options
-no_real_loop Does not extract real loop. Used Disabled

when trace generation blows up.

May return a trace without a

loop
-multiple_traces #n Find n traces for each formula.  int>1 Advanced Not set (1 trace

per formula).

-prolong_trace #n Prolongs the trace with n cycles. Basic 0
-dump_reachable <file> Prints the reachable states to file. Advanced Not Set
-restore_reachable <file> Takes the reachable states from Advanced Not Set

the file.
-k # key table size Very Advanced Advanced
-c #apply cache size Very Advanced Advanced/

Basic
CHECK_CONST_INIT Disables Constant PropagationBoolean Very 0 (Cp Reduction
(CP) reduction. Advanced | Enabled)
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TABLE 6. rulebase.setup
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mentation.
PERFORMED IN BACKEND OF
RULEBASE.

USER VISIBILITY DESCRIPTION VALUES / CONSTRAINTS |EVEL DEFAULT
GUI -
parameter options
database Configuration is controlled by rule
base.setup.
entity Configuration is controlled by rule-
base.setup.
SYNTHESIS Configuration is controlled by rule-| TEXVHDL,
base.setup. KOALA_VERILOG,
DADB_VIM,...,NONE, VIM
SOURCE Located with VIM.controlled by rule- ..lvimdbase
base.setup
VIEW Directory inside Vimdbase in which Advanced HISVHDL
design is located. It is controlled by
rulebase.setup.
RB_EDL_CASE Defines case sensitivity of EDL, | SENSITIVE/ INSENSITIVE SENSITIVE
including rule names.
The names of rule directories are pfo-
duced from rule names. Therefore,
changing this parameter in the midd|e
of the project will "hide" directories
of rules with capital letters in their
names
RB_DESIGN_CASE Depends on the design compilationSENSITIVE/INSENSITIVE, SENSITIVE
(SYNTHESIS). RB_EDL_CASE is INSENSI-
TIVE must be INSENSITIVE
For VHDL must be INSENSI-
TIVE.
RB_NO_IMPL When setto 1, only EDL, no implet Disabled

IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



239

flict with SMV to unique inter-

nal representation.

TABLE 7.
VALUES /

Parameter setenv GUI DESCRIPTION CONSTRAINTS LEVEL DEFAULT
rb_report_zero_clk Checks if clock logics is 0. advanced
RB_DETAILED Explains vacu- | Explains vacuous. Shoud be In GUI: Yes

ous. removed from
options.
User always
wants to explain
vacuity.
RB_ASYNC _OUTPUT Used for FFs with async reset. Advanced On
If ON, model FFs with async
reset by ff with sync inputs
RB_BIG_ENDIAN Useful when vector direction Advanced RB:No
does not comply. If vectors GUI: Yes
used in format v(i..j), the value '
of RB_BIG_ENDIAN does not
matter.
RB_COMPLEX_CLOC Warns about suspicious clock| Boolean Advanced No
K_WARN calculating
RB_DOLLAR_FLAG Switches $ to _ in name for Advanced
SMV. (When $s In
Names)
RB_UNIQUE_NAME Switches characters that con- Advanced
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RB_REDUCTION_ON
LY

RuleBase performs reductiong,
prints rb.smv, and quits.

PERFORMED IN BACKEND
OF RULEBASE

Boolean

Advanced

Disabled

RB_TRANS_DSL_AR'Y

Translates DSL ARY to single
FFs. If off, DSL ARY should
be modeled in environment.

Boolean

Advanced

No

RB_SPECN

Attempt light
proof.

Causes Sugar to create normal
mode formulas.

disabled

-witness -
rulebase invoca-
tion option.

Witness

Sugar creates SPECs for chefk-

ing vacuity/giving witness for
pass formulas.

Basic

RB_AG_BOOLEAN

Verify Safety
OnTheFly

rb_cct

Creates circuit
file.

Creates circuit file for cctdag
(Debugging).

PERFORMED IN BACKEND
OF RULEBASE?

Boolean

Basic

In GUI and RB;{
No

init_impl_ffs

When ON, init every FREE
IMPL DFF INIT to O.

PERFORMED IN BACKEND
OF RULEBASE.

Boolean

Advanced

rb_init_latches

If enabled, gives init value to
latches.

Boolean

Advanced

rb_constant_simulation

Constant signals pre-reduction

simulation.

Very Advanced

rb_report_unresolved

Provides more information g
unresolved.

=]

Very Advanced

rb_ff_iterations

Number of FF EQUIV reduc-
tion iterations. RuleBase back
end

Very Advanced
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TABLE 7.

RB_ASSUMPTIONS Translates assumptions. 1

rb_a2d_boolean_only

E.RuleBase
TABLE 8. Reductions Control
setenv GUI Meaning Constraints Level Default
rb_bdd_reductions Reduction effort Reduction effort 1 - High Basic In GUI and
0 - Low SMV:
1(high)

rb_constant_propagation Performs constant_propagation reddicBoolean Advanced 1

tion.
rb_cone_verification Simple Cone. Boolean Advanced 1
rb_domain_check Domain reduction. Boolean Advanced 1
rb_reduction_report Reports reduction related information. Boolean Advanced No
rb_e t ff Edge triggers FFs with long alternating Boolean Advanced Off

clocks. Better to use clocks high 1

cycle.

See also Section 11.5: Design Mapping.
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rb_check_nondet_define Reports a warning for every nondetgr-Boolean Advanced 1
ministic DEFINE signal used more then
once.
PERFORMED IN BACKEND OF
RULEBASE
rb_smart_constants Heavy reduction 1 Is set in case too big to start SMV.|P&oolean. Advanced No
formed in backend of RuleBase. Usefu| If rb_bdd_reductio ns is
when more than 1000 variables are gen-On
erated, due to SMV limitation.
rb_smart_cone Heavy reduction 2 Is set in case too big to start SMV. Boolean. Advanced Off
If rb_bdd_reductio ns is
On
reduction_bdd_limit BDD node limit Maximal size of BDD in RuleBase. integer. Advan Ced
PERFORMED IN BACKEND OF If rb_bdd_reductio ns is
RULEBASE On
simple_vars Reduction of Assign to define. Boolean Advanced 1
PERFORMED IN BACKEND OF
RULEBASE
safe_fairness No reduction when the fairness cone| Boolean Advanced 1
does not touch formula cone
RB_NO_REDUCTION No reductions on envs.
RB_EARLY_CONE_CH Early cone check. Boolean Advanced No
E CK
RB_NO_ALL_AFTER_ Does not create all_after_reduction file|. Boolean Advanced Disabled
RE DUCTION

F.DP12 reduction
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TABLE 9.
setenv Meaning Values/ Constraints  Llevel Default
RB_CHECK DPL1_L2 runDP12 Other flags in this table | Boolean Basic Off
are only relevant if this variable is
set.
RB_DPL12_REMOVE_ONLY The layer to be removed. L1:'1', Advanced Bigger(0)
L2:'2,
Bigger:'0'
RB_DP12_LEAVE_ORIG_CL K Does not set all clocks to 1. Boolean. Advanced Off
if
RB_DPL12_REMOVE_
ONLY is setto L1,
model L2 clocks,...
RB_DP12 SAVE_DPVIM Saves the VIM after DP12 and usé¢sBoolean Advanced No
it as long as the design does not
change.
RB _DPL1 L1 OUTPUT_RES Aborts if c1_outputs is not full. Boolean Advanced No
TRICT Performs backward search.

RB_DPL1 STOP_AFTER_DP12 only DP12 check Boolean Very Advanced

RB_DP12 NUM_OF_FAILS The number of violations for which Integer Advanced 1
DP12 is looking.

DP12 IGNORE_FILE_NAME File Name Very Advanced C2_inputs
DP12_ L1 OUTPUTS_FILE_N File Name Very Advanced C1_outputs
AME
DP12_ L2 INPUTS_FILE_NA ME File Name Very Advanced Ignore_inputs
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FOR_PORT

DSL_ARRAY.

TABLE 9.
DP12_CUT_INT_FILE_NAME When points to a file, DP12 cuts| File Name Very Advanced
all nets from that file.
RB_DP12_CUT_BITVECTOR E Shorter problem message. When Boolean Advanced No
set after finding problem in name
v(#) will cut all vector.
RB_DP12_ONE_WARNING _ Same as previous, for Boolean Advanced No
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G.GUI
TABLE 10.
Values/
parameter setenv GUI name Meaning Constraints Lev el Default
PF_SCOPE Calls pf scope v&UI.
RB_AUTO_LOAD Uses private config file from . 0
_RUL E_CFG cfg/<rule_name>.cfg
RB_COND_RUN Asks confirmation on run. 0
RB_EDITOR On edit press.
COPY_RUDELL Copy back Copies the result of the To both: "yy" Basic In GUI:
after run dynamic reordering at the end To <rule>.order: "yn" To both
of the run. To orders pool: "ny"
No:"nn"
rb_find_order Use order file Prepares file bdd_oder befareorders pool: "pool” Basic In GUI:
SMV starts. <rule>.order:"rule " To orders pool
RB_ORDER_DIR Orders dir for copy back
order.
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TABLE 11.
parameter setenv GUI Meaning Constraint Level Default

RB_EXPLAIN_CE Explains timing diagram. | Explains timing diagram for old In GUl:Yes
scope.

RB_SCOPE_MSG Shows formula text. Defaults show formula text - for In GUI:Yes
old scope

RB_SCOPE_PER_RULE_ST| Per-rule state file. Per rule state file - for old scope In GUI:Yes

ATE

RB_TRACE_NUMBER <n>

See the n'th trace.
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