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1.1 Overview

Traditionally, logic verification is done by simulation. In simulation, a test ve
tor is applied to the logic model, and the results of the simulation are exam
ined. Both the generation of the test vectors and the examination of the re
can be done either automatically using a special-purpose tool, or by hand

Coverage is one of the major problems associated with simulation. Since 
cannot exhaustively simulate all possible sequences of input vectors, we ne
way to decide when enough input vectors have been applied in order to giv
reasonable confidence that our design functions as intended.

Formal verification is a novel technique for logic verification of hardware
designs. It attempts to address the problem of coverage by mathematicall
proving that a design is correct with respect to its specification. There are m
approaches to formal verification. RuleBase, a formal verification tool dev
oped by IBM, uses an approach known as “model checking”, which is equ
lent to exhaustive simulation of the circuit for every possible input sequen
In model checking, the specification consists of a set of properties to be
RuleBase: a Formal Verification Tool
Provided by special agreement with IBM
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proved. For example, “if signal x is asserted, then within three clocks, sign
will be de-asserted”, or “signals z and w will never be asserted together”. If
property is true, the designer is notified. If the property is false, a counter-
example is provided. The counter-example is a waveform that shows a sim
tion sequence that proves that the property is false.

The main advantage of model checking over simulation is that it frees the
designer from the need to generate test vectors. Model checking checks t
properties specified for every possible input sequence. However, most chip
not designed to accept every possible input sequence, so if a given prope
fails for an illegal input sequence, it is of no interest. Thus, we need a way
which to specify all the legal input sequences to the formal verification too
We can do this by specifying a model of the expected environment. This mo
describes the legal input sequences to the design under test.

One of the practical problems of model checking is known as “the size pro
lem”.  Because of the size problem, complete model checking runs can ve
designs that have a few hundred state variables (latches or flip-flops).  Th
not enough to be useful in real hardware designs.

The RuleBase formal verification tool solves the size problem by renounc
the proof of truth that is possible with model checking on small designs. B
renouncing the proof of truth, RuleBase can verify designs that contain up
few thousand state variables. Although an answer of “true” to a specificatio
no longer a firm indication that the design is correct, an answer of “false” w
a counter-example is an indication of a bug in the design (or specification 
environment). This way, RuleBase can be used to obtain much better veri
tion than is possible using simulation alone, even for designs that are too l
for complete model checking.

One of the ways of dealing with the size problem is to reduce the design un
verification. Reduction is accomplished by analyzing the environment des
tion provided by the user as well as the specification to be checked, and e
nating any logic that has no bearing on the specification under the
environment. Using the techniques of reduction in combination with renoun
IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM
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ment of the proof of truth is known as over-reduction. For instance, instead
describing the complete environment of the design under test, the user m
choose to describe a subset of that environment.  RuleBase uses the env
ment to reduce the design to a size that is suitable for model checking.  T
another subset of possible behaviors can be described. Thus, the user ha
plete control over the reduction process.  An answer of “true” for a specific
tion under a specific environment indicates that in this specific environmen
the specification is true, but it does not indicate anything about the truth o
sity of the specification under other environments.

1.1.1 About This Document

The remainder of this document is structured as follows:

• CHAPTER 2: Getting Started – explains how to access RuleBase, how to set u
a verification environment, and how to prepare a design for formal verification

• CHAPTER 3:  Tutorial – provides a hands-on introduction to RuleBase in the
form of a tutorial. The tutorial presents a small design of a buffer and shows how
verify it under RuleBase.

• CHAPTER 4:  Describing the Environment –explains how to specify environ-
ment behavior and discusses arrays, non-determinism, fairness, clocks, and m

• CHAPTER 5:  Sugar – The RuleBase Specification Language –describes both
CTL and Sugar, and the models on which they operate.

• CHAPTER 6:  Sugar – Formula Examples – includes a list of useful formula
patterns, mainly for novice users.

• CHAPTER 7:  Managing Rules, Modes, and Environments –suggests how to
manage verification projects.

• CHAPTER 8:  Size Problems and Solutions –discusses the techniques used to
extend the design size limit as far as possible.

• CHAPTER 9:  Debugging Aids –describes various debugging aids that are pa
of the RuleBase tool.

• CHAPTER 10:  Graphical User Interface: Tool Controls and Options –
describes the tool controls and options available, and how to set them from th
graphical user interface.
RuleBase: a Formal Verification Tool
Provided by special agreement with IBM
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• CHAPTER 11: Design for Formal Verification – presents some practical design
guidelines to aid in formal verification.

• CHAPTER 12:  Coverage Methodology – describes some ways to approach th
problem of completely covering the block when proof of truth is not possible
because of size problems.

• CHAPTER 13:  Advanced Verification Engines (RuleBase Premium) –
describes additional verification engines that are included in the RuleBase Pr
mium version.

• APPENDIXAPPENDIX T:  Option tables – describes different settings and
options which can be adjusted in order to enhance RuleBase’s performance.
IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM
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2.1 Accessing RuleBase

Before running RuleBase for the first time, perform the following:

Note:The instructions below are for csh users; if you are using another sh
use the appropriate replacements.

• In your home directory, in the file.cshrc, add the following lines:
setenv RBROOT  <directory>
alias  rb “$RBROOT/guirb.bat”

where <directory> is the full path to the directory in which RuleBase bina
files are installed.

• To bring these settings into effect, entersource .cshrc.
• Check to make sure you have access to $RBROOT.

If you do not, call the local RuleBase focal point, or contact us (see the
cover page for our email address).

• Copy the following files from $RBROOT to your home directory:
Guirb , Scope, Cctdag, Analyze
RuleBase: a Formal Verification Tool
Provided by special agreement with IBM
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2.2 Preparing the Verification Environment

This section provides an example of how to quickly build a working enviro
ment. These instructions should help you create an initial environment wit
which to experiment, and are not meant to give you a complete understan
of working with RuleBase.

Note:Some of the file names (e.g., envs and rules) are only recommendat
and you may select other names for these files.

You must first create a new directory in which the verification process will ta
place. Your verification files will be located in this directory, and RuleBase w
also create various files and sub-directories in this directory.

Before running the first rule, prepare:

• The design to be verified

• File rulebase.setup

• File envs

• File rules

• File run

We describe each of these items in the following sections.

Note:RuleBase supports several hardware description languages (VHDL,
DSL, Verilog) and several translation/synthesis paths. “Design Translation
on page 20 details how to prepare the design for verification.  If your desig
environment is not mentioned, please contact us. CHAPTER 11:  Design 
Formal Verification suggests design rules that can ease the verification proc
(e.g., proper partitioning).
IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM
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2.2.1 "rulebase.setup"

This file should exist in the verification directory and must include (at least)
following four lines:

• setenv entity <DESIGN_NAME>
This is the name of the top-level entity of your design (in upper case).
 “Design Translation” on page 20 explains what is considered an entity 
each of the translation paths.

• setenv name <design_name>
This is the name of your top-level design file (without the extension).
 “Design Translation” on page 20 explains what is considered a name i
each of the translation paths.

• setenv SYNTHESIS <path>
This is your translation path: it can be either DSL, HIS, HIS_VERILOG,
SYNOPSYS, or VIM.
See “Design Translation” on page 20 to determine which of these to us
If you need the Compass translation path, please contact us for instruc

• setenv databaseenvs
The file envs is where your environment models and rules are written.  
file is described below.

RuleBase only reads the rulebase.setup file once, at the beginning. Any ch
to this file requires that you either exit and re-start RuleBase or select the “
Read rulebase.setup” menu option.

2.2.2 "envs"

This file should include environment models. Although it is possible to mix
models and specifications, we recommend that you separate them. Hence
environment models are in theenvs file and specifications are in therules file.

On the first line of fileenvs write:

#include “rules”
RuleBase: a Formal Verification Tool
Provided by special agreement with IBM
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This way, RuleBase knows it should read the filerules.  If you wish to write
your environment models in several files, connect the other files toenvs using
the#include command.

To start working, you must give a behavior to everyinput  signal of your
design.  To provide full legal behavior for each of your input signals, see
CHAPTER 4: Describing the Environment before proceeding. In addition,
recommend that you read CHAPTER 4:  Describing the Environment befo
beginning real verification work.

If you just want to try out RuleBase, you can give a simple (possibly incorre
behavior to your input signals. For each signal choose one of three possib
behaviors:

define SIGNAL1 := 0;
define SIGNAL2 := 1;
var SIGNAL3 :boolean;

The first two possibilities assign a constant value to the input signal. The t
one gives an input signal totally free behavior: SIGNAL3 may change on ev
cycle. A signal given this behavior is called “a free variable”.  At this stage
you do not want to leave too many variables free because it may cause a q
explosion of the state space. However, if you are only interested in seeing y
design function,  it is reasonable to leave five to ten signals as free variab
this stage.

Note: In some translation paths, all signal names of the design are conver
to upper case.

Pay special attention to theresetand clock signals. For a complete discussion
on how to model these signals, see “Modeling Reset” on page 105 and “M
eling Clocks” on page 102. For now, the simplest clocking scheme - one clo
is assumed to be sufficient.

1. Assign the clock signal the constant value ‘1’:
define CLOCK := 1;      -- where CLOCK is the clock name in your design.
IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM
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2. Assign the reset signal the following behavior:
var reset_state : 0..3;     -- Assuming that three cycle reset is required
assign

init (reset_state) := 0;
next(reset_state) :=

case
           reset_state < 3 : reset_state + 1;

else                 : 3;
esac;

define RESET := (reset_state != 3);         -- where RESET is your reset signal

If your design needs more than three cycles of active reset, you may incre
the cycle length by changing ‘3’ to the desired number.

2.2.3 "rules"

Write your specifications in therules file. Here, as in theenvs file, you may
write the rules in several files and use the#include directive to connect them.

Each rule should have the following format:

rule  <name>{
    “ <a comment describing the rule>”

    formula
        “ <a comment describing the formula>”

{  <sugar-formula>}
    ...

    formula
        “ <a comment >”

{ <another sugar formula >}

}

A rule must have a unique name and may contain any number of formulas
Comments are optional in both the rules and formulas. In addition, a rule m
contain environment models that override the default environment. For mo
information, see “Defining Rules and Modes” on page 149.
RuleBase: a Formal Verification Tool
Provided by special agreement with IBM
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The most important part of the rule is its specification, written as a Sugar 
mula. We describe Sugar, the RuleBase specification language, in CHAPT
5.

To get started with writing rules for RuleBase, choose an (important)output
signal of your design, and write the following rule in yourrules file:

rule start{
    “getting started”

formula
       “just to see a rule running”

{ AG AF ( <output-signal>) }

}

The above formula states that on every path, always, a state will exist in wh
<output-signal> has the value one.

You may write more formulas (either in rulestartor in separate rules) to check
real properties of your design. The most simple form of a formula is

formula  { AG !( <some-bad-event> ) }

where <some-bad-event> stands for a Boolean expression that should nev
true in your design.  For example, ifenable1 andenable2 are two signals that
should never be active at the same time, the following formula can be use

formula  { “enable1 and enable2 are mutually exclusive“AG( !enable1 | !enable2 ) }

For additional  formula patterns, see CHAPTER 6:  Sugar – Formula Exam
ples.

2.2.4 "run"

Therun file is only needed for batch runs.  However, we recommend that y
prepare it now. Copy this file from $RBROOT to the working directory.
IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM
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2.3 Running RuleBase

After preparing the four items described in the previous section, you are re
to run RuleBase.

1. Typerb  in your verification directory.
The RuleBase window will appear. A list of the rule names you defined (S
“"rules"” on page 16) should appear on the left side. In our case, the ru
“start” will appear.
To the right of the rule list is a column of yellow push buttons that activa
commonly used commands.  There is also a large text area for displayi
files. At the top of the window, there is a menu bar and a message line.

2. Select thestart rule from the rule list and press theRun push button. Rule-
Base will start to run your rule.

Watch the log of your run as it appears in the RuleBase window. If the log
scrolls too fast, you can use the scroll bar on the right hand side. When yo
touch the scroll bar, the bottom rightFreeze button turns red and changes to
Frozen. To see the updated log and free the display, press the redFrozen but-
ton.

The following describes the verification process:

First, the design is translated into an internal representation. The translate
design is kept on the disk for use in future runs. The translation process w
only be repeated for a new version of the design.

Next, RuleBase loads the design, the environment models, and the formu
into memory. At this time, RuleBase performs many types of checks, and g
warning messages where necessary.

Press theWarning  push button to see a list of all the warning messages pro
duced during the run. After you press theWarning  button (or any other but-
ton), press theLog push button to display the log again.
RuleBase: a Formal Verification Tool
Provided by special agreement with IBM
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Note:Pay attention to the warning messages as they may indicate serious
problems.

Then, Reduction takes place. Reduction removes parts of the design that
not required for the verification of the formulas of the current rule. It also lin
those environment models that resolve essential input signals to the desig
Information regarding the size of the design (in terms of flip-flops and gates
displayed before and after the reduction.

After reduction, the actual verification process begins. During verification, t
types of messages appear continuously: ‘nodes allocated <number>’ and
ation <number>’. Whenever ‘nodes allocated’ grows too much, dynamic BD
ordering will try to reduce the number of nodes. Hopefully, at this stage of
experimentation the reduced design is fairly small.  That is, ‘nodes allocat
are less than 500,000, ‘iteration’ is less than 200, and the total run time is a
minutes. Otherwise, you will have to reduce the design further by restrictin
some free inputs, or employ more advanced methods, as described later in
manual.

3. At the end of the run, press theResults quick button.
Your rule will be displayed with one of three possible results: ‘failed’,
‘passed’, or ‘vacuously’.  If you get an ‘unknown’ result, it means that yo
pressed theResults button too early and your run was not finished.
Press theLog push button to see the log again.

If the result is ‘failed’, it means that your formula does not hold true in you
design, and a counter-example was produced.  If the result is ‘passed’, yo
formula holds true. To see the counter-example of a failed formula, click th
left mouse button near the word ‘failed’, then drag the mouse and chooseShow
timing diagram. See CHAPTER 9:  Debugging Aids for instructions on how
to use the timing diagram browser.  If the result is ‘vacuously’, no timing d
gram exists for this formula.  This result may indicate a problem in the for-
mula, environment or design (see “Debugging Aids” on page 166 for an
explanation of vacuity).
IBM Haifa Research Laboratory, Israel
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Some of the formulas may have failed because the environment behavior
wrong, as some of the free inputs have unexpected behavior. We suggest
you use this opportunity to refine the environment model. You can try to ma
use of your short experience with the tutorial, or read CHAPTER 4:  Desc
ing the Environment to learn more about environment modeling.

4. After changing your environment or adding formulas, save the editor’s
buffer. Then, select the rule that you want to run from the rule list (if it is n
already selected), and press theRun button again.
If the name of a newly created rule does not appear in the rule list, selec
“File/Refresh” menu option.

5. Repeat the process of refinement and analysis until all the rules that sh
pass, do pass.
You may also add rules and formulas to cover all the interesting proper
of your design.

Note: To learn more about formulas and rules, read CHAPTER 5:  Sugar –
The RuleBase Specification Language, CHAPTER 6:  Sugar – Formula E
ples, and CHAPTER 7:  Managing Rules, Modes, and Environments.  Bro
through the other chapters to learn more about tools and methods that Ru
Base provides to ease successful verification.

To exit RuleBase, select the “File/Quit ” menu option.

2.4 Design Translation

RuleBase supports several Hardware Description Languages (HDLs) and
eral translation paths. Wherever possible, it uses existing tools of the desi
environment—compilers and synthesizers—to translate the HDLs into a lo
level representation that only consists of basic gates and flip-flops. The fo
ing sections describe how to translate the design in some of the environme
If none of the environments described here meet your needs, please cont
RuleBase: a Formal Verification Tool
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2.4.1 CLSI and HIS / VHDL

The following section describes setting environment variables for CLSI an
HIS/VHDL users.

2.4.1.1 Setting Environment Variables

To set the environment variables, add the following lines to therulebase.setup
file in your verification directory:

setenv name <TOP>

# <TOP> is the top-level entity in your design (in capital letters)

setenv entity <TOP>

# <TOP> is the top-level entity in your design (in capital letters)

setenv SYNTHESIS HIS

setenv SRC <directory>

#  The directory in which the VHDL files are located (optional)

setenv sources “<VHDL-files >”

# <VHDL-files > is a list of VHDL file names separated by spaces.
# The files should appear in bottom-up reference order.
# The entire list should be written as one line.

It is usually enough to set the above environment variables in order to wor
with HIS/VHDL.

Note: You only need to read the next two sections  if you encounter proble
We recommend that you review  the HIS compilation messages in order to
locate possible problems.
IBM Haifa Research Laboratory, Israel
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2.4.1.2 Setting CLSI and HIS Variables

The RuleBase focal point usually only needs to perform this setup once p
site, in which case you may skip the rest of this section.

The $RBROOT/../his_aix/clsi.local file stores site-specific settings. It conta
the following information:

setenv VTIP <vtip>

# <vtip> is the directory in which the clsi compiler is located.

setenv LM_LICENSE_FILE <CLSI licence file>

For each of the VHDL libraries you use, add the following two lines:

setenv  dls_<lib>  <directory>

# <lib> is the library name in lower-case

setenv  <LIB>  dls_<lib>

# <LIB> is the library name in upper-case

Check to make sure that the libraries are CLSI-compiled, and that compila
is performed in bottom-up reference order.

You can have your own copy of the clsi.local file. If clsi.local exists in the v
ification directory, it is read instead of the central clsi.local.

2.4.1.3 Hints

1. If the VHDL attribute BTR_NAME is used with an entity, this entity will be
synthesized as a black box, unless attribute RECURSIVE_SYNTHESIS
set to 1. RECURSIVE_SYNTHESIS can either be specified in an entity d
RuleBase: a Formal Verification Tool
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inition or in a component instantiation. There is no way to specify it glo-
bally.

2. The GEN directiverange is not supported; useleft andright  instead.
     Wrong way:  GEN: for I in DataIn’range generate
     Right way:    GEN: for I in DataIn’left downto DataIn’right generate

3. HIS needs to know all the pins that should be treated as bidi’s.  You can
this in one of the following two ways:

• Attach attribute IO_PHYSICAL_DESCRIPTION =
BI_DIRECTIONAL to each inout port.

• Attach attribute PHYSICAL_PINS = TRUE to the Entity (then all its
inout ports are considered bidi’s).
HIS will split every bi-directional signal into two signals (input and
output) for the purpose of formal verification with RuleBase

4. Look for the string “DUMMY” in the compilation log file. If it appears, a
cell library was missing and the compilation considered the cell to be a
black box.

2.4.2 HIS/Verilog

The following section describes setting environment variables for HIS/VER
ILOG users.

2.4.2.1 Setting Environment Variables

Add the following lines to filerulebase.setup in your verification directory:

setenv name <TOP>

# <TOP> is the top-level module in your design

setenv entity <TOP>
IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



Getting Started            24

-
e

me
fer-
# <TOP> is the top-level module in your design (in capital letters)

setenv SYNTHESIS HIS_VERILOG

setenv SRC <directory>

# The directory in which the Verilog source files are located (optional)

setenv sources “<Verilog-files >”

# <Verilog-files > is a list of Verilog file names separated by spaces.
# The entire list should be written as one line.

2.4.3 TexVHDL

Note: The following information may become inaccurate as a result of com
piler changes. In cases of doubt, consult the TexVHDL Compiler Referenc
Manual.

setenv name <ENTITY>

# <ENTITY> is the top-level entity in your design

setenv entity WORK.<ENTITY>.<ARCHITECTURE>

# <ENTITY> is the top level entity in your design and <ARCHITECTURE> is the top
level architecture (both in capital letters)

setenv SYNTHESIS TEXVHDL

setenv sources <makefile>

# <makefile> is the name of a file that contains a list of VHDL source file names, one na
in each line.  Files are listed in bottom-up order - referenced files appear before the re
encing file.

setenv VHDLPATH <path>
RuleBase: a Formal Verification Tool
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# <path> is a list of directory names, separated by colons, in which the source VHDL fi
not including library source files, reside.

setenv DBIN <path>

# <path> is a list of directory names, separated by colons, in which the  compiled pro
including library protos, reside.

setenv TEXSIM_DIR <dadb_install_dir>

# If you define TEXSIM_DIR, RuleBase will load DaDb tools from this directory. Othe
wise, the tools will be loaded from $RBROOT (the RuleBase installation directory).

2.4.3.1 Working with TexVHDL Libraries

If the libraries are not yet compiled, compile them by following the instruc-
tions in the TexVHDL Compiler Reference Manual. Then, for each library a
the following to the “rulebase.setup” file in the verification directory:

1. Define an environment variable whose name is the library name (in upp
case) that points to the library source files. For example:
   setenv  IEEE  .../vhdl/source/ieee

2. Add the directory with the compiled protos to DBIN. For example:
   setemv  DBIN  “${DBIN}:.../vhdl/protos/ieee”

Library source files should not be included in the makefile.

2.4.4 Synopsys / VHDL

With the Synopsys translation path, you must compile the design into a ga
level description outside of RuleBase. The result should be a single gate-
VHDL file, <name>.vhdl, that only consists ofnot andand VHDL operators,
and the component SYNOP_BASIC_FF.  You can use the following dc_sh
commands to create gate-level VHDL.

1. vhdlout_write_components = false

2. vhdlout_equations = true
IBM Haifa Research Laboratory, Israel
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3. verilogout_equation = true

4. verilogout_write_components = false

5. target_library = “gtech.db”

6. read -format vhdl { <vhdl_file1>, <vhdl_file2>, ... } /* Read VHDL files */

7. current_design = <top_level_entity_name>  /* Specify name of top-leve
entity */

8. compile -no_map   /* Compile with low effort */

9. replace_synthetic -ungroup

10. ungroup -all -flatten   /* Sometimes more flattening is needed */

11. write -no_implicit -format vhdl -o <name>.vhdl /* Write gate-level VHDL
*/

12. quit

Add the following lines to therulebase.setupfile in your verification directory:

setenv name <name>

# <name> is the gate-level VHDL file name without the extension

setenv entity <NAME>

# <NAME> is the same as <name> but in capital letters

setenv SYNTHESIS SYNOPSYS

2.4.5 Synopsys / Verilog

The Synopsys/Verilog path is very similar to the Synopsys/VHDL path. In fa
there are two paths:
RuleBase: a Formal Verification Tool
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• Verilog to gate-level Verilog
Use the instructions in “Synopsys / VHDL” on page 25, but replace ‘-form
vhdl’ by ‘-format verilog’ in lines 6 and 11.  Then, translate gate-level Ve
ilog to gate-level VHDL using the v2v tool provided with RuleBase. (This
a temporary workaround.)

• Verilog to gate-level VHDL
Use the instructions in “CLSI and HIS / VHDL” on page 21, but replace
format vhdl’ by ‘-format verilog’ in line 6.

2.4.6 DSL

RuleBase can read standard DSL files, including DSB library files. The on
special preparation needed is for latches and flip-flops.

If you use the master outputs of a master-slave latch, or if you do not use 
ter-slave latches or edge-triggered flip-flops, contact us for instructions to le
how to map your memory elements to standard RuleBase elements.

If you use master-slave latches and only use slave outputs, or if you use e
triggered flip-flops, follow the directions in “Mapping Master-slave Latches
and Edge-triggered Flip-flops” on page 27, to map your latches and/or flip
flops to standard RuleBase elements.

After mapping your memory elements, follow the directions in “Setting Env
ronment Variables” on page 29  to set up a DSL environment for formal ve
cation.

2.4.6.1 Mapping Master-slave Latches and Edge-triggered Flip-flops

1. Your DSL file should instantiate a device that represents the memory e
ment (it should not make direct use of the “Register” statement of DSL)

2. Replace the desblo file that represents your basic memory element wit
desblo file that instantiates the standard RuleBase register NBITREG.
IBM Haifa Research Laboratory, Israel
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An NBITREG is a 1-32 bit memory element that represents a simple
master-slave latch or D-flip-flop. It has the following inputs:

• CLK – the clock.

• DATA_IN(0..N) – the data input.

• ASYNC_SET – an asynchronous set.

• ASYNC_RESET – an asynchronous reset

and the following output:

• DATA_OUT(0..N) – the data output.

If your master-slave latch or flip-flop has scan pins or other circuitry not
directly related to the functionality of the memory element, they should be
ignored (left unconnected).

Below is an example that maps a master-slave latch called “latch4l” with s
pins to the standard RuleBase memory element NBITREG. As you can se
the example, the scan pins and the slave clock are left unconnected.

     /* 1 TO 32 BIT SRL REG  */
      SIM = SYN
      CALL CHECKPARM  ‘width’  1 32 1
      CALL CHECKPARM   ‘set’      0 1 0
      CALL CHECKPARM  ‘reset’     0 1 0
      CALL CHECKPARM  ‘nl2’       0 1 0
      CALL CHECKPARM  ‘hide’     0 2 0
      CALL CHECKPARM  ‘bhc’      0 3 0
      CALL CHECKPARM  ‘type’     0 6 0

      GENERATE
      BLOCK

       INPUT
             DI #bitrange#,
RuleBase: a Formal Verification Tool
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             SHIFTCLK            IS B”0”,
             MASTERCLK,
             SLAVECLK          IS B”0”,
             SCIN                     IS B”0”,
             SETL1                   IS B”0”,
             RESETL1_            IS B”1”;

       OUTPUT
             PL2OUT #bitrange#;

       DEVICE   U  :  NBITREG (width=#width#)
       MASTERCLK. . . . . . . | CLK                    |
       DI#bitrange#. . . . . . . . .| DATA_IN           |
       SETL1. . . . . . . . . . . . . | ASYNC_SET      |
       RESETL1_. . . . . . . . . .| ASYNC_RESET  |
                                            | DATA_OUT        | PL2OUT#bitrange#;
       END BLOCK
       END GENERATE
       END SIM=SYN

If you have neglected to perform this step (mapping of memory elements 
standard RuleBase memory elements), RuleBase will notify you with the f
lowing message:

   Unknown box type: <a lowest-level register name>

2.4.6.2 Setting Environment Variables

These instructions use the following notation:

• <top>.dessrc – the top-level DSL file.

• <dir> – the directory in which formal verification will take place.
IBM Haifa Research Laboratory, Israel
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Add the following lines to therulebase.setup file in the verification directory.

setenv name <top>
setenv entity <TOP>       # Same as <top> but in capital letters
setenv SYNTHESIS DSL
setenv database envs # Name of environments file
setenv sources <top>.dessrc
setenv DSLPATH .:<directories containing relevant DSL files>
setenv DSBPATH .:<directories containing relevant DSB files>:$RBROOT
setenv DSLOUT . # Directories in the above lists are separated by co

2.4.6.3 Flip-flop Initialization

If you use a reset signal for initialization, connect it to the ASYNCH_SET 
ASYNCH_RESET appropriately. If another initialization scheme is used (e
through the scan chain), it can be translated to a set of EDL statements (s
CHAPTER 4:  Describing the Environment).  If you use Boeblingen-style s
initialization files, contact us.

2.4.6.4 Compilation Errors

In the case of compilation errors, see file compile.msg.

2.4.7 Koala Verilog Compiler

RuleBase comes with a native Verilog front-end, Koala, which can be invo
using the following settings:

setenv SYNTHESIS KOALA_VERILOG

setenv entity <TOP-LEVEL-MODULE-NAME>

# the value of this environment variable is the name of the topmost
# block in the design under test
RuleBase: a Formal Verification Tool
Provided by special agreement with IBM



31                                                                                                   CHAPTER 2

le,

s.
setenv name <TOP-LEVEL-MODULE-NAME>

# for historical reasons, there should also be a definition of environment
# variable $name, with exactly the same value as for $entity

setenv sources <SOURCE-FILE-LIST>

# the value of this environment variable is a blank-separated
# list of verilog source files.

Example:

   setenv SYNTHESIS KOALA_VERILOG
   setenv entity dunit
   setenv name dunit
   setenv sources “dunit.v mux16_4.v arbiter.v”

If there are a lot of files in the model, it is convenient to create a wrapper fi
for example “all_files.v”, which contains ‘include’ directives for the Verilog
preprocessor to include all the model files. Then, use the following:

    setenv sources all_files.v

2.4.8 Compass

If you wish to use the Compass translation path, contact us for instruction
IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



CHAPTER 3  Tutorial
 it

tml

 in
gs
ci-

ake
3.1 Introduction

This tutorial presents a small design of a buffer, and explains how to verify
under RuleBase. Since RuleBase supports both VHDL and VERILOG, we
cover both in this tutorial.

Note: You can find a more comprehensive tutorial on our web site at:
http://www.haifa.il.ibm.com/projects/verification/RB_Homepage/tutorials.h

After completing this tutorial, you should feel comfortable enough to begin
using the RuleBase tool. However, we assume you have basic knowledge
logic design. It is important that you don’t override the special options settin
with which the tutorial comes, and that you perform all the steps in the spe
fied order. Moreover, since the tutorial does involve code modifications, m
sure that you start to work on a fresh unmodified copy.

All files referred to in this chapter can be found in the tutorial directory.

• The VHDL tutorial usually is located:
$RBROOT../tutorial/tutorial_vhdl.
RuleBase: a Formal Verification Tool
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• The VERILOG tutorial usually is located:
$RBROOT../tutorial/tutorial_verilog.

Make a private copy of this directory from which to run the tutorial.

We assume that you have access to $RBROOT and that you performed th
tial setup as described in “Accessing RuleBase” on page 12.

3.2 Specification

BUF is a design block that buffers a word of data (32 bits) sent by a sender
receiver. It has two control inputs, two control outputs, and a data bus on 
side, as shown by the block diagram:

Communication (on both sides) takes place by means of a 4-phase hands
ing as follows:

When the sender has data to send to the receiver, it initiates a transfer by
ting the data on the data bus and asserting StoB_REQ (sender to buffer
request). If BUF is free, it reads the data and asserts BtoS_ACK (buffer to
sender acknowledge). Otherwise, the sender waits. After seeing BtoS_AC
the sender may release the data bus and deassert StoB_REQ. To conclu
transaction, BUF deasserts BtoS_ACK.

When BUF has data, it initiates a transfer to the receiver by putting the data
the data bus and asserting BtoR_REQ (buffer to receiver request). If the

BUF ReceiverSender

DI(0..31) DO(0..31)

StoB_REQ

BtoS_ACK

BtoR_REQ

RtoB_ACK
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receiver is ready, it reads the data and asserts RtoB_ACK (receiver to buf
acknowledge). Otherwise, BUF waits. After seeing RtoB_ACK, BUF may
release the data bus and deassert BtoR_REQ. To conclude the transactio
receiver deasserts RtoB_ACK.

3.3 BUF Implementation

An implementation of BUF, written in VHDL, is described in theBUF.vhdfile
(See “BUF implementation in VHDL” on page 44).
The VERILOG implementation resides in thebuf.v file (See “Implementing
BUF in VERILOG” on page 47).

From the source file, you can see that it consists of four parts:

1. State machine SENDER_INTERFACE – controls the interface with the sender state
machine.

2. RECEIVER_INTERFACE – controls the interface with the receiver.

3. OCCUPIED_FLAG – a flag that indicates whether BUF has data.

4. DATA_BUFFER – a register that holds the 32 bit data.

Knowledge of implementation details is not mandatory, unless you want to
fully understand the bug fix in the sequel. In this case, we suggest you read
source file: VHDLBUF.vhd or the VERILOG buf.v.

Depending on the user’s design environment, RuleBase supports several 
matic translation paths of the implementation to a lower level format suitab
for verification.

• For VHDL users:
No specific VHDL translation path is set for this tutorial, and the VHDL fil
is already translated for you.

• For VERILOG users:
RuleBase implicitly translates this file.
To make the appropriate design available for verification, typesetup1in the
unix command line.
RuleBase: a Formal Verification Tool
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3.4 Modeling the Environment

This section explains how to assign behavior to primary inputs. If inputs a
left unspecified, unexpected input sequences may induce incorrect behavio
the implementation. These are calledfalse negatives - “bugs” which result
from a behavior that is impossible in the real environment.

Environment models are described in EDL (Environment Description Lan-
guage). Models for this example are in theenvsfile. For the sake of clarity, all
models are written in a uniform style. First, a module that describes the be
ior is defined, and then the module is instantiated. This is similar to definin
function and then calling it. Both the sender and receiver require models.

The sender model (see below) has one state variable with two states: idle
busy. It begins in the idle state, in which it has no data to send. If the prev
transaction has terminated (BtoS_ACK=0), the sender non-deterministica
decides if it wants to send data. When it decides to send data, it goes to t
busy state and raises StoB_REQ. It stays there for an arbitrary amount of t
at least until BUF acknowledges the acceptance of data (BtoS_ACK=1). T
delay is arbitrary because the specification doesn’t force the sender to rel
StoB_REQ immediately. The sender then returns to the idle state.

module sender ( reset, ack )( req )   -- two inputs and one output

    “The sender initiates data transfers ‘at random’ and stays active for

      an arbitrary long time.”                     -- a textual description

    {

var state : { idle, busy };                       -- has two states

assign

init (state) := idle;                               -- begins in the idle state

next(state) :=                                     -- next-state function

case

            reset : idle;                                     -- remains idle during reset

            state=idle & !ack : { idle, busy };     -- if idle and ack is inactive,

                                                                 --   can go to busy

            state=busy &  ack : { idle, busy };    -- if busy and ack is active,
IBM Haifa Research Laboratory, Israel
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                                                                 --   can return to idle

else : state;                                     -- else stay in the same state

esac;

define req := state=busy;                       -- req is active when sender is busy

    }

instance sender : sender ( RST, BtoS_ACK )( StoB_REQ ); -- instance of module sen

By using non-determinism,all possible situations are checked. It is not a ran
dom selection of one or a few execution paths. The simple, abstract mode
resents all possible variations of a real sender, no matter how complicated
are, provided that they adhere to the specified protocol.

The receiver model (below) is surprisingly similar to the sender (in fact thi
tutorial could use the same module but they are left separate for clarity.)

module receiver ( reset, req )( ack )

    {

var state : { idle, busy };

assign

init (state) := idle;

next(state) :=

case

            reset : idle;

            state=idle &  req : { idle, busy };

            state=busy & !req : { idle, busy };

else : state;

esac;

define ack := state=busy;

    }

instance receiver : receiver ( RST, BtoR_REQ )( RtoB_ACK );

A behavior is assigned to the reset (RST) signal; it is asserted for one cyc
the beginning of execution.

module reset1 ( )( RST )
RuleBase: a Formal Verification Tool
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    “A one cycle reset at the beginning”

    {

var RST:boolean;

assign

init (RST) := 1;

next(RST) := 0;

    }

instance reset : reset1 ( )( RST );

Since RuleBase runs the clock itself (in the case of a design with a single
clock), the clock (CLK) is stuck at ‘1’, as follows:

define CLK := 1

See “Modeling Clocks” on page 102 for a complete explanation of clocks.

Note that we didn’t assign behavior to data inputs, since the first rules tha
are going to write do not refer to data, and control is not affected by data. 
32 bit register and the data inputs will be dropped automatically during red
tion.

3.5 Specifying Properties for Verification

Now we want to verify certain properties (rules) of BUF. You can find the f
text of these rules in therulesfile. The first property claims that neither over-
flow (two reads without a write in between) nor underflow (two writes witho
a read in between) can occur. Actually, this example claims that the input
acknowledge and output acknowledge operations are interleaved. The firs
mula says the following: “it is always true that if RST is not active and
BtoS_ACK is asserted, then beginning from the next state, RtoB_ACK will
asserted before BtoS_ACK is asserted again”. The second formula is sim
As you can see,  explanatory comments may be embedded for the rule an
each formula.

rule ack_interleaving {“input acknowledge and output acknowledge are interleaved”
IBM Haifa Research Laboratory, Israel
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      “No overflow: RtoB_ACK is asserted between any two BtoS_ACK assertions”

    { AG (  !RST & rose(BtoS_ACK) ->
AX  ( rose(RtoB_ACK)before rose(BtoS_ACK) ) ) }

formula

      “No underflow: BtoS_ACK is asserted between any two RtoB_ACK assertions”

    { AG ( !RST & rose(RtoB_ACK) ->
AX  ( rose(BtoS_ACK)before rose(RtoB_ACK) ) ) }

  }

3.6 Performing Verification

The rulebase.setup file describes the verification environment: VHDL or
VERILOG file name, VHDL or VERILOG entity name, the file that contain
environment models and rules, and the translation path.

Note for VHDL users:To avoid specific compiler dependency, the translatio
path assumes an input generated by Synopsys.

To activate RuleBase, typerb.
RuleBase will then run as a background process.
(To exit from RuleBase, select the menu optionFile/Quit .)

Look at the RuleBase front panel. We only use four parts of the front panel
this tutorial:

1. A status window with red lines at the upper part.

2. A list of rules to be verified (on the left). This list currently has three entri
Sometimes the rule name is preceeded by a status letter, such as ’D’ (Do
’R’ (Running), or ’K’ (Killed).

3. A column of yellow push buttons to control verification and its options.

4. A big text window that occupies most of the work area, and is used to d
play important information.
RuleBase: a Formal Verification Tool
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To verify the property specified above, select the ruleack_interleaving and
press theRun button.

FIGURE 1. Front panel of RuleBase

While the rule is running, a log of its execution is displayed in the text windo
At present, the only interesting information is the final result, which is: the fi
formula failed and the second one passed.  The term “light proof” has to d
with the specific verification algorithm. The failure means that there is a cas
which there are two consecutive BtoS_ACK with no RtoB_ACK in betwee

3.7 Problem Analysis

To view the results, press theResultsbutton. Information about the two formu
las will be displayed in the text window. The area for each formula consist
IBM Haifa Research Laboratory, Israel
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three parts: verification results, an English description of the verified prope
(a display of the comment coded by the user), and the actual formula.

1. Click the mouse button anywhere in the area of the first formula. A pop
menu will appear.

2. To selectShow timing diagram, drag the mouse to this entry and release
the button. Wait a few seconds until the timing diagram appears and dis
plays a counter-example. All relevant signal names are shown. (To disp
diagrams for additional signals, click their names in the left list. For a
detailed description of the waveform display, see CHAPTER 9: Debugg
Aids.)

FIGURE 2.

A counter-example is a trace that demonstrates a failure of the design to f
a specified requirement.

Here we see an example in which the first formula fails: BtoS_ACK is asser
in both cycles 9 and 15 while RtoB_ACK is constantly high.

To better understand the problem, look at the interaction between BtoR_R
and RtoB_ACK. The four-phase handshaking is broken in cycle 10, in whi
BtoR_REQ is asserted although RtoB_ACK is active. This occurs becaus
condition under which BUF can initiate a new transaction to the receiver is
RuleBase: a Formal Verification Tool
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incorrect (the relevant line in BUF.vhd or buf.v is marked as a comment). B
only looks at the OCCUPIED flag and it also has to wait for RtoB_ACK to
become inactive.

3.8 Fixing Problems and Rerunning Rules

To fix the problem

1. Type setup2 at the unix command line.

2. Close the timing diagram (using the File/Quit menu option) and press the
Run. Wait a few seconds. Both formulas will now pass (as tautologies).

This replaces the incorrect line with the line next to it (currently a commen
and recompiles the design.

3.9 Witness

Suppose that for some reason (due to a problem either in the design or the
ronment models), BtoS_ACK can never be asserted, or that it is only asse
once and RtoB_ACK is never asserted. In both cases, the formula will pas
because there was no violation of the property.

This hides a problem of which you should be aware. It is called avacuous pass,
and it is a form of afalse positive answer. To show that the pass was not vac
ous, awitnessis generated. A witness is a timing diagram that exhibits an int
esting execution trace that demonstrates one case in which the formula is t
An interesting execution trace is one in which each event mentioned in the
mula appears.

In our example, there is a “(w)” near the “passed” message. This means t
witness is available. To display the witness, pressResults, click the mouse
anywhere in the area of the first formula, and selectShow timing diagram.
This time the diagram displays a witness, rather than a counter-example. 
is, this trace is an interesting positive example of the truth of the formula.
IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



Tutorial            42

rom
ent

he

re-
-

om

e

Close the timing diagram.

3.10 Data-Path Rule

1. If you have not already run ’setup2’, run ’setup2’ now.
Next, verify that the data sent to the receiver is the same data received f
the sender. The value of DI (data in) when BtoS_ACK is asserted (mom
of transfer to BUF) must be the same as the value of DO (data out) at t
next time RtoB_ACK is asserted (moment of transfer to receiver).
forall  x(0..31):boolean:

formula

  { AG ( !RST & rose(BtoS_ACK) & DI(0..31)=x(0..31) ->
next_event(rose(RtoB_ACK))(DO(0..31)=x(0..31) ) ) }

 (The operators are described in Chapter 5.)

2. Select rulekeeping_data from the rule list and press theRun push button.
RuleBase stops with a fatal error: design inputs DI(0)  to DI(31)  are un
solved. Since DO is referred to in the formulas and the value of DI influ
ences DO, you must declare the DI vector. At first, it is given a fully free
behavior, which means that it can always change its value.

var DI(0..31) :boolean;

3. This environment model already exists in theenvsfile. To activate it,
remove the two dashes in front of the line#define WRONG_DATA at the
beginning of theenvs file.

4. Press theRun push button again and wait a few seconds.
Both formulas failed.

5. Press theResults push button, click the formula and selectShow timing
diagram.

You can see that the value of DO when RtoB_ACK is asserted is different fr
the value of DI when BtoS_ACK is asserted.  This happened because our
server environment model is not adhering to the requirement of keeping th
data stable while StoB_REQ is active. You will often see “bugs” that result
RuleBase: a Formal Verification Tool
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from incorrect modeling of the environment. A common practice to avoid su
problems is writing rules that verify the correct behavior of the environmen
models.

 The following is a fixed version of DI:

var DI(0..31) :boolean;

assign

next(DI(0..31)) :=

case

            !StoB_REQ : nondets(32);

else : DI(0..31);

esac;

To activate the fix

1. Remove the two dashes in front of the line#define CORRECT_DATA at
the beginning of the fileenvsand add two dashes in front of the line#define
WRONG_DATA .

2. Press theRun push button again.
Both formulas passed.

3. To see a witness, pressResults, click the first formula and selectShow tim-
ing diagram.

3.11 Reducing the Size of the Data Model

Sometimes testing the data consistency of all the vector’s 32 bits at once 
work very well, especially in large models. One technique is to test a single
instead of the whole vector. So, instead of comparing DI(0..31) with
DO(0..31), you can compare DI(0) and DO(0), while setting all other DI inp
vector elements to a constant, for example, of 0.

The above rule can be simplified as follows:

rule keeping_1bit {
IBM Haifa Research Laboratory, Israel
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forall  x: boolean:
formula

  { AG ( !RST & rose(BtoS_ACK) & DI(0)=x ->
next_event(rose(RtoB_ACK))(DO(0)=x ) ) }

}

To test the rule

1. Remove the two dashes in front of the line #define WRONG_DATA

2. Add two dashes in front of the line #define CORRECT_DATA.
The rule  keeping_1bit should fail quickly .

3. Remove the two dashes in front of the line:
#define CORRECT_ONE_BIT,and add two dashes in front of the line
#define CORRECT_DATA. The keeping_1bit rule should now pass very
quickly.

3.12 Exiting RuleBase

To exit from RuleBase, select theFile/Quit menu option.

3.13 Exercise

So far in this tutorial, we have not mentioned rules that cover the entire bu
specification. We encourage you to think of additional properties and formu
rules accordingly.

We recommend reading the remainder of this manual, or at least reviewin
Chapter 5, which describes the specification language Sugar.

3.14 BUF implementation in VHDL

library IEEE;

 use IEEE.std_logic_1164.all;
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 use IEEE.std_logic_unsigned.all;

entity BUF is port (

  CLK, RST     : in     std_logic;

  StoB_REQ, RtoB_ACK : in     std_logic;

  DI           : in     std_logic_vector (31 downto 0);

  DO           : buffer std_logic_vector (31 downto 0);

  BtoS_ACK, BtoR_REQ : buffer std_logic );

end BUF;

architecture RTL_VIEW of BUF is

  type S_STATES is (S_IDLE, S_READ, S_DONE);

  signal S_STATE : S_STATES;

  type R_STATES is (R_IDLE, R_SEND);

  signal R_STATE : R_STATES;

  signal OCCUPIED, READ : bit;

  begin

    SENDER_INTERFACE: process

    begin

      wait until CLK’event and CLK=’1’;

      if (RST = ‘1’) then

        S_STATE <= S_IDLE;

      elsif (S_STATE = S_IDLE) then

        if (StoB_REQ = ‘1’ and OCCUPIED = ‘0’)

          then S_STATE <= S_READ;

        end if;
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      elsif (S_STATE = S_READ ) then

        S_STATE <= S_DONE;

      elsif (S_STATE = S_DONE ) then

        if (StoB_REQ = ‘0’)

          then S_STATE <= S_IDLE;

        end if;

      end if;

    end process;

    RECEIVER_INTERFACE: process

    begin

      wait until CLK’event and CLK=’1’;

      if (RST = ‘1’) then

        R_STATE <= R_IDLE;

      elsif (R_STATE = R_IDLE) then

        if (OCCUPIED = ‘1’)                   -- !

--      if (RtoB_ACK = ‘0’ and OCCUPIED = ‘1’)

          then R_STATE <= R_SEND;

        end if;

      elsif (R_STATE = R_SEND) then

        if (RtoB_ACK = ‘1’)

          then R_STATE <= R_IDLE;

        end if;

      end if;

    end process;

    OCCUPIED_FLAG: process

    begin

      wait until CLK’event and CLK=’1’;

      if (RST = ‘1’) then

        OCCUPIED <= ‘0’;

      elsif (OCCUPIED = ‘0’) then

        if (READ = ‘1’)
RuleBase: a Formal Verification Tool
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          then OCCUPIED <= ‘1’;

        end if;

      elsif (OCCUPIED = ‘1’) then

        if (RtoB_ACK = ‘1’ and BtoR_REQ = ‘1’)

          then OCCUPIED <= ‘0’;

        end if;

      end if;

    end process;

    DATA_BUFFER: process

    begin

      wait until CLK’event and CLK=’1’;

      if (READ = ‘1’)

        then DO <= DI;

      end if;

    end process;

    READ  <= ‘1’ when (S_STATE = S_READ) else ‘0’;

    BtoS_ACK <= ‘1’ when (S_STATE = S_DONE) else ‘0’;

    BtoR_REQ <= ‘1’ when (R_STATE = R_SEND) else ‘0’;

end RTL_VIEW;

3.15 Implementing BUF in VERILOG

 module buffer (CLK, RST, STOB_REQ, RTOB_ACK, DI, DO, BTOS_ACK,
BTOR_REQ);

    input CLK, RST, STOB_REQ, RTOB_ACK;

    input [31:0] DI;

    output [31:0] DO;
IBM Haifa Research Laboratory, Israel
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    reg [31:0] DO;

    output BTOS_ACK, BTOR_REQ;

    parameter S_IDLE = 2’h0, S_READ = 2’h1, S_DONE = 2’h2;

    reg [1:0] s_state;

    parameter R_IDLE = 1’h0, R_SEND = 1’h1;

    reg r_state;

    wire read;

    reg occupied;

    always @(posedge CLK)

       begin :SENDER_INTERFACE

if (RST)

s_state <= S_IDLE;

else

case (s_state)

S_IDLE:

if (STOB_REQ && !occupied)

s_state <= S_READ;

S_READ:

s_state <= S_DONE;

S_DONE:

if (!STOB_REQ)

s_state <= S_IDLE;

endcase

       end

always @(posedge CLK)

        begin :RECEIVER_INTERFACE

if (RST)

r_state <= R_IDLE;
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else

case (r_state)

R_IDLE:

if (!RTOB_ACK && occupied)

// wrong:

// if (occupied)

r_state <= R_SEND;

R_SEND:

if (RTOB_ACK)

r_state <= R_IDLE;

endcase

    end

always @(posedge CLK)

        begin :OCCUPIED_FLAG

if (RST)

occupied <= 0;

else

case (occupied)

1’b0:

if (read)

occupied <= 1;

1’b1:

if (RTOB_ACK && BTOR_REQ)

occupied <= 0;

endcase

    end

always @(posedge CLK)

        begin :DATA_BUFFER

if (read)

DO = DI;

    end
IBM Haifa Research Laboratory, Israel
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assign read = (s_state == S_READ);

assign BTOS_ACK = (s_state == S_DONE);

assign BTOR_REQ = (r_state == R_SEND);

endmodule
RuleBase: a Formal Verification Tool
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4.1 Overview

This chapter describes the syntax and semantics of EDL constructs, sugg
modeling techniques and demonstrates them with some examples. Before
ing to write your environments, we recommend you read CHAPTER 7:  M
aging Rules, Modes, and Environments.

4.1.1 Describing Environment Models

RuleBase checks the properties specified for every possible input sequen
However, most chips are not designed to accept every possible input sequ
Designers often assume a correct behavior of the target environment and
plify the design by ignoring illegal behaviors.

RuleBase must be made aware of the environment’s legal behavior, other
it might produce “false negatives”, which are counter-examples that result fr
illegal input sequences. The way to specify environment behavior is to wri
environment models, which are the logic that drives the inputs of the desig
be verified.
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Every input of the design must be assigned some behavior. Some inputs 
kept constant (e.g., configuration inputs), others remain completely free (n
deterministic), while the control signals of interest are usually assigned
detailed and exact behavior.

Environment models are written in the RuleBase Environment Description
Language (EDL), a dialect of the SMV language. EDL is somewhat simila
common hardware description languages (HDLs), but it also supports non
determinism and multiple environments.

Environments are linked to the design and to other environments by signa
names. Signals produced by the environment will match and drive design
nals that have the same name even if they are internal to the design, which
way to abstract by overriding, described later. Signals (both output and inte
signals) produced by the design will match and drive environment models
require these signals. In some translation paths, design signals are conver
upper-case.

Writing good environment models is an art. Good environments should be
small andsimple, while allowingall and only the legal behaviors. Environ-
ments should be small to avoid overloading the model-checker, and simpl
order to be easily written, read, and maintained. Good environment mode
should not produce illegal behavior, or else false-negative results will be p
duced. On the other hand, they should model all the legal behaviors becau
un-modeled behavior is a good place for bugs to hide. An attempt should 
made to hide as much detail as possible using abstraction techniques (as
explained later).

The following are the stages of environment modeling:

• Study the block interfaces in detail. The behavior of every input and eve
relevant output must be understood. This information can be gathered 
standard bus protocols, design documents, and communication with th
designers.
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• Plan the hierarchical structure of the environment models, grouping rela
signals and reusing components where possible.

• Decide how to model each input. Some inputs are held constant, at leas
ing the initial stages of verification. Usually there is a set of interesting c
trol inputs that need detailed modeling. We have to design and impleme
logic to drive these signals.

• Code the logic in EDL.

4.2 Language Constructs

An environment is made up of a few type of statements. These statement
described in the following sections. The order of the statements is unimpor
and keywords are not case-sensitive; they can be in either upper or lower

4.2.1 Expressions

4.2.1.1 Variables and Constants

The basic expressions are numbers, enumerated constants, or variable re
ences.

A number is a decimal if it has only decimal digits and no suffix (e.g., 1276).
binary number consists of binary digits and ends with ‘B’ (e.g., 1011B). A
hexadecimal number begins with a decimal digit, has hexadecimal digits, 
ends with ‘H’ (e.g., 7FFFH, 0FFH). RuleBase infers the width of constants
from the context in which they are used andnot from their format. For exam-
ple, 0010B can be assigned to any bit vector that has at least two bits.

One of the symbolic values a variable can take on is an enumerated cons
For instance, if we declare the following:

var state: {idle, st1, st2, st3, waiting};
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then each of the five symbolic values “idle”, “st1”, “st2”, “st3”, and “waiting
is enumerated constants.

A variable reference has one of the following formats:

• name -- simple variable

• name(number) -- one bit of array

• name(number..number) -- a range of bits

• prev(name) -- refers to the value of name on the previous cycle

The use ofprev results in additional state variables, one for each variable t
which it refers. However, multiple references to the same variable will only
add one extra variable.

For more information on variables see Section 4.2.2.
For more information on arrays, see in Section 4.3.

4.2.1.2 Operators

An expression can be a combination of sub-expressions, connected by op
tors:

Boolean connectives:

! exprnot

expr & exprand

expr | expror

expr ^ expr    (or: expr xor expr)xor

expr -> exprimplies

expr <-> expriff  (xnor)

(Boolean operations can be applied only to boolean expressions.)

Relational operators:

expr = exprequals

expr != exprnot equals
IBM Haifa Research Laboratory, Israel
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expr > exprgreater than

expr >= expr greater than or equals

expr < exprless than

expr <= exprless than or equals

(>, >=, < and <= can be applied only to integer or boolean expressions.)

Arithmetic operators:

expr - exprminus

expr + exprplus

expr * exprmultiplication

expr / expr division(since / is also legal in a signal name, make sure to surround it with space

exprmod exprmodulo

(Arithmetic operators can be applied only to integer and boolean expressions.)

4.2.1.3 Operator Precedence and Associativity

The following operators are listed in decreasing order of precedence and
strength:

++   (concatenation)

!      (not)

+  -

*  /  mod

=  !=  <  <=  >  >=

Temporal operators (will be introduced in CHAPTER 5)

&    (and)

|      (or)

xor  ^

<->  (iff)

->    (implies)

All the operators, except ->, have left to right associativity.
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Use parentheses in any case that you don’t know or don’t remember the p
dence. Even if you know, others may find explicit parenthesizing easier to r
and understand.

4.2.1.4 Case and If Expressions

EDL provides two constructs that express a choice between two or more
expressions.  They are thecase andif  expressions, described below.

Thecase expression has the following format:

case

   condition1 : expr1 ;

   condition2 : expr2 ;

   ...

   else : exprn ;

esac

A case expression is evaluated as follows:  condition1 is evaluated first. If it is
true, expr1 is returned. Otherwise, condition2 is evaluated. If it is true, expr2 is
returned, and so forth.  Although theelse part is not essential, we recommend
you use it as the default entry if you are not certain that the other conditio
cover all the cases. Falling through the end of a case statement may have
unpredictable results. Notice that from the description of the case express
above, it follows that an earlier condition takes precedence over a later on
That is, if two conditions are true, the first takes precedence.

The if expression is shorthand for a case with two entries. If has the follow
format:

if condition then exprA elseexprB endif

In the aboveif  expression,exprA is returned ifcondition is true, andexprB is
returned ifcondition is false.
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Note:This section deals withif/case expressions rather than statements (if/
casestatements are allowed only inside sequential processes. See Section
Youcannot write, for example:
if c then assign a := x; b := y; else assign a := z; b := w; endif;
Instead, you should write:
assign a := ifc then x else zendif;   b := if  c then y else w endif;

4.2.1.5 Non-deterministic Choice

RuleBase uses non-determinism to describe many possible behaviors at o
Section 4.8 describes non-determinism in detail. In this section, the non-d
ministic constructs are briefly mentioned for completeness. The non-deter
istic constructs of RuleBase have the following format:

{ expr1, expr2, ... , exprn }a non-deterministic choice

expr1 union expr2 another way to express {expr1, expr2}

n1 .. n2 another way to express {n1, n1+1,..., n2}

4.2.1.6 Other Expressions

The following are also expressions:

( expr ) a parenthesized expression

expr in {v1, v2, ... , vn} shorthand for ((expr = v1) | (expr = v2) | ... (expr = vn))

4.2.1.7 Built-in Functions

The built-in functionsfell() androse() have the following functionality:

• fell(expr) is true if expr is 0, and was 1 on the previous cycle

• rose(expr) is true if expr is 1, and was 0 on the previous cycle
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The use offell androse results in additional state variables, one for each
expression to which they refer. However, multiple references to the same 
able will only add one extra variable.

4.2.2 Var Statement

A var statement declares variables.  It has the following format:

var name, name, ... : type;      name, name, ... : type;       ...

Note:The variables are always state variables as long as the declaration is
within a sequential process (see Section 4.3).

var name, name, ... : type;      name, name, ... : type;       ...

The type can be one of the following:

• Boolean

• { enum1, enum2, ... }

• number1 .. number2

(For information on arrays, see Section 4.3.)

For instance, the following are legalvar statements:

var request, acknowledge:boolean;

var state: {idle, reading, writing, hold};

var counter: {0, 1, 2, 3};

var length: 3 .. 15;

The first statement declares two variables, “request” and “acknowledge”, to
of type Boolean. The second statement declares a variable called “state” w
can take on one of four enumerated values:  “idle”, “reading”, “writing”, or
“hold”.  The third statement declares a variable called “counter” which can
take on the values 0, 1, 2, and 3.  The fourth statement declares a variabl
IBM Haifa Research Laboratory, Israel
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called “length” which can take on any of the values between 3 and 15, inc
sive.

A var statement only declares state variables. Theassignstatement, described
below, defines the behavior of these variables.

4.2.3 Assign Statement

An assign statement assigns a value to a variable declared with avar state-
ment.  It has one of the following formats:

• assign init(name) = expression; assigns an initial value to a variable (co
binational or state.

• assign name = expression; assigns a value to a variable (combinational
state).
assign next(name) = expression; defines the next-state function of a sta
variable.

A state variable is simply a memory element, or register (flip-flop or latch)

Note:Usingassign nextwithin a sequential process causes the variable to 
a state variable (see section 4.3 ). Variables outside a process are already s
variables by definition.

The following are examples of legalassign statements:

assign init(state) := idle;

assign next(state) :=

case

         reset : idle;

         state=idle : { idle, busy };

         state=busy & done : { idle };

else : state;

esac
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The keywordassignmay be omitted for the second and following consecutiv
assign statements.  Thus, the following:

assign var1 := xyz;

            init(var2) := abc;

            next(var2) := qrs;

is equivalent to:

assign var1 := xyz;

assign init(var2) := abc;

assign next(var2) := qrs;

4.2.4 Define Statement

A define statement is used to give a name to a frequently-used expression
much like a macro in other programming or hardware description languag
Thedefine statement has the following format:

define name := expression;

For instance,  the following are legaldefine statements:

define adef := (q | r) & (t | v);

define bb(0) := q & t;    cc := 3;

As with theassign statement, the keyworddefine may be omitted in the sec-
ond, and following, consecutivedefine statements.

4.2.5 The Difference Between Assign and Define

A state variable (flip-flop or latch) must always be declared with thevar state-
ment.  If assigned an explicit value, theassign init() andassign next() state-
ments are used (if either is omitted, the initial and next values, respectively,
considered to be completely non-deterministic).
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For a combinational variable (output of combinational logic), you may use
eitherassign or define. Users of SMV or of previous versions of RuleBase
may recall that there were subtle differences between theassign anddefine
statements which made it more efficient to use one or the other in certain s
tions. These differences are no longer present in RuleBase, which will con
from one to the other as needed in order to make the model checking more
cient.

Only the following semantic distinctions exist betweenassign anddefine:

• assign must refer to a variable defined withvar.
• define must NOT refer to a variable defined withvar.
• An assign statement can be thought of as a variable assignment, while

define statement should be thought of as macro text substitution.  Thus
the following:

VAR v,v1,v2,d1,d2: boolean;

assign v := {0,1};

assign v1 := v;

assign v2 := v;

define d := {0,1};

assign d1 := d;

assign d2 := d;

It is true that v1=v2, because both are equal to the value of the variable v.
However, it is not true that d1=d2, because the macro text substitution ha
made the assignments to d1 and d2 equivalent to:

assign d1 := {0,1};

assign d2 := {0,1};

so that each non-deterministic assignment is completely independent of th
other. If you code something similar to the above, RuleBase will issue a w
ing that a non-deterministicdefine expression is used multiple times.
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4.2.6 Module Statement

An environment file can be totally flat, with no hierarchy at all. In this case,
statements are considered to be enclosed by one big main module. Howev
is usually more appropriate to write a modular and hierarchical environme
Themodule andinstance statements are used for this purpose.

A module statement is used to define a module that can be instantiated a 
ber of times, as in hardware description languages. It has the following form

module module_name ( inputs ) ( outputs )

{

    statement;

    statement;

    ...

}

whereinputs is a list of formal parameters passed to the module,outputs is a
list of formal parameters produced by the module, andstatements is any
sequence ofvar, assign, define, fairness, andinstance statements.  The input/
output parameters can be thought of as input/output signals.  Input param
are produced elsewhere, and they drive the module, while output parame
are produced by the module itself and can be used elsewhere.  A signal th
appears as an output parameter of a module must be defined and assigne
value in that module (var or defineor instanceoutput). If a signal that appears
as an input parameter of a module is not used in that module, RuleBase w
issue a warning.

For instance, the following is a legalmodule statement:

module delayed_and (s1, s2) (out)
{

var out :boolean;
assign

init (out) := 0;
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next(out) := s1 & s2;
}

Modules cannot bedeclaredinside other modules but they can beused(instan-
tiated) by other modules.

4.2.7 Instance Statement

A modulestatement is only a definition—it has no effect until it is instantiate
(called). Theinstancestatement instantiates a module using the following fo
mat:

instance instance_name : module_name ( inputs ) ( outputs );

whereinstance_name is the name of the specific instance (one module can
multiply instantiated),module_name is the name of the module being instant
ated,inputsis a list of expressions passed as inputs to this instance, andoutputs
is a list of output parameters that connect the instance outputs to real signa
the design or the environment.  An instance name is optional.

For example, the following is a legalinstancestatement, instantiating the two
input and-gate defined in Section 4.2.6:

instance da : delayed_and(q,r)(t);

4.2.8 Fairness Statement

A fairness statement is used to describe a fairness constraint. We describ
use of fairness in detail later in this chapter.  Briefly, afairness statement
describes a condition that must be met an infinite number of times. It is an
important tool in specifying abstract environment models.  Thefairness state-
ment has the following format:

fairness expression;

The following is a legalfairness statement:
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fairness state != busy;

Currently, the fairness expression cannot contain temporal operators. This
itation protects users from commonly encountered mistakes. RuleBase su
ports other types of fairness constraints, which are detailed in Section 4.8
Advanced Fairness Types.

4.2.9 Scope Rules

Statements inside a module cannot reference variables outside that modul
globalsymbols). External signals and variables needed by the module mus
passed as parameters to the instance.  A module can only assign values 
external signals and variables by passing them as output parameters.

On the other hand, it is possible to reference internal signals of an instanc
from outside that instance.  For example, if module M has an internal sign
Sig, and Ins is an instance of module M, one can refer to signal Sig as Ins
(‘/’ is the hierarchy character).  This allows formulas to refer to the interna
state of instances without the burden of exporting state variables. It also all
you to easily override parts of existing modules without changing the mod
definition.  For further detail on overriding, see Section 4.6.

4.2.10 Comments, Macros, and Preprocessing

There are two types of comments in environment description files:

1. Text beginning with “--” and ending at the end of line.

2. Text beginning with “/*” and ending with “*/”.

RuleBase ignores comment text. You can insert a comment anywhere a s
is legal (except in text strings).

Before processing the environment description files, RuleBase calls a stan
preprocessor, cpp, to filter these files. The mechanisms provided by cpp ca
used to facilitate the development of environment models.  The most usef
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mechanisms are macros, conditional compilation (#ifdef, #if, #endif, ...) an
#include.  See “man cpp” on your unix system for more details.

The cpp preprocessor may issue errors when the ’ character appears insi
commented text; therefore, we recommend you avoid the use of this char
within comments.

RuleBase provides additional preprocessing abilities in addition to cpp. Th
are the %for and %if constructs described below.

4.2.10.1 %for

The%for construct replicates a piece of text a number of times, with the po
bility of each replication receiving a parameter.  The syntax of the %for co
struct is as follows:

%for <var> %in <expr1> .. <expr2> do

...

%end

 or:

%for <var> in <expr1> .. <expr2> step <expr3> do

...

%end
   -- step can be negative

or:

%for <var> in { <item> , <item> , ... , <item> } do

...

%end

•  <item> is either a number, an identifier, or a string in double-quotes.

• When the value of an item is substituted into the loop body (see below),
double quotes will be stripped.
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In the first case, the text inside the %for-%end pair will be replicated expr2
expr1+1 times (assuming that expr2>=expr1). In the second case, the text
be replicated (|expr2-expr1|+1)/expr3 times (if both expr2-expr1 and expr3
positive or both are negative).  In the third case, the text will be replicated
according to the number of items in the list.

During each replication of the text, the loop variable value can be substitu
into the text as follows. Suppose the loop variable is called “ii”. Then, the c
rent value of the loop variable can be accessed from the loop body using 
following three methods:

• The current value of the loop variable can be accessed simply using “ii”
“ii” is a separate token in the text.  For instance:

%for ii in 0..3 do
   define aa(ii) := ii > 2;
%end

is equivalent to:
define aa(0) := 0 > 2;
define aa(1) := 1 > 2;
define aa(2) := 2 > 2;
define aa(3) := 3 > 2;

• If “ii” is part of an identifier, it can be accessed using %{ii} as follows:

%for ii in 0..3 do
  define aa%{ii} := ii > 2;
%end

is equivalent to:
define aa0 := 0 > 2;
define aa1 := 1 > 2;
define aa2 := 2 > 2;
define aa3 := 3 > 2;

• If “ii” needs to be used as part of an expression, it can be accessed usi
%{<expr>} as follows:
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%for ii in 1..4 do
  define aa%{ii-1} := %{ii-1} > 2;
%end

is equivalent to:
define aa0 := 0 > 2;
define aa1 := 1 > 2;
define aa2 := 2 > 2;
define aa3 := 3 > 2;

4.2.10.2 %if

The syntax of the %if construct is as follows:

%if <expr> %then

...

%end

or:

%if <expr> %then

...

%else

...

%end

The%if  construct is similar to the #if construct of the cpp preprocessor. H
ever, %if must be used when <expr> refers to variables defined in an enca
lating %for.

4.2.10.3 Operators in Preprocessor Expressions

The following operators can be used in pre-processor expressions:

=   !=   <   >   <=   >=   -  +   *   /   %
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In the current version, operators work only on numeric values, for example
is acceptable to write:

%for i in 0..3 do

        %if i != 3 %then   +...  %end

%end

But it is not possible to write:

%for command in {read, write} do

...

    %if command = read %then-- doesn’t work!

...

%end

4.2.11 Reserved Words

The following words are keywords and should not be used as identifiers:

^ ~ < << <= <-> = => > >= >> | |=> || |-> - -> -- , ; : := ! != / .. (
)  [  ]  {  }  *  &  &&  +  ++  A  ABF  ABG  AF  AG  always  AND
ANDVECTOR  AR  as_in  assign  assume  attributes  AWR  AX  before
before_ before! before!_ boolean bvtoi case coverage define E EBF E
EF  EG  else  endcase  endif  env  envs  ER  esac  eventually  EWR  EX
fairness  false  fell  fg  forall  formula  formulas  gf  goto  hint  hint_
holds_until  holds_until_  if  in  inherit  init  instance  invar  itobv  max  min
mod  mode  module  never  next  next_event  next_event!  next_event_f
next_event_f! next_event_g next_event_g! nondets NOT ones OR origi
ORVECTOR override prev process reduce_instance rep restrict rose r
stable_until  stable_until!  test_pins  then  trans  true  U  union  until  until_
until!  until!_  V  var  W  whilenot  whilenot_  whilenot!  whilenot!_  within
within_  within!  within!_  xor  zeroes

If a keyword is prefixed with the ‘\’ character, it becomes a regular identifie
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4.3 Arrays

It is often convenient to define arrays of state variables and to apply operat
to entire arrays or to ranges of indices. Boolean arrays (buses, bundles) ar
most common, but other types of arrays (integer sub-range, enumerated c
stants) are also useful. Hence, RuleBase is primarily oriented toward Boo
arrays, but also supports other types of arrays .

4.3.1 Defining Arrays

An array of state variables is defined as follows:

var name ( index1 .. index2 ) : type ;

It actually defines (|index2-index1|+1) state variables named name(index1
name(index2), where index1 can be either greater or less than index2.

Examples:

var

   addr(0..7) :boolean;    -- 8 boolean variables, addr(0), addr(1), ... , addr(7)

   counter(4..5) : 0..3;      -- 2 integer variables, each can have the values 0,1,2,3

   status(3..0) : {empty, notempty, full };

                                      -- 4 variables, each can have the values empty, notempty, full

An array can also be defined with adefine statement:

define name( index1 .. index2 ) := <expr>;

Example:

define masked_sig(0..3) := sig(0..3) & mask(0..3);

Note that the following line

var x(0..3) : { 5, 7, 13 };
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defines an array of four integer variables, each of them can have the values
or 13.  This isnot a non-deterministic bit vector.  To define a bit vector and
assign to it the three values non-deterministically, do the following:

var x(0..3) :boolean; assign x(0..3) := { 5, 7, 13 };

4.3.2 Operations on Arrays

Reference:

The simplest operation on an array is a reference to a bit or a bit range. On
of an array is referenced asarray_name(N)whereN is a constant. A range of
bits is referenced asarray_name(M..N).  It is always necessary to specify the
bit range when referencing an array.

It is possible to access an array element using variable index:
array_name(V: index1..index2)    whereV is an integer variable, and

index1..index2 are constants that indicate its range.  Example:

var source(0..7):boolean;   V: 0..7;

define destination := source(V:0..7);  -- assuming that the behavior of V is defined else
where

Other operations that can be used with any type of arrays are:

:=   =   !=   if   case   prev

Examples:

aa(0..7) :=if  bb(0..2)=cc(0..2)then dd(0..7)else ee(1..8)endif;

aa(0..7) :=prev(bb(2..9));

The rest of the  operators can only be applied to Boolean arrays (bit vecto
IBM Haifa Research Laboratory, Israel
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Boolean connectives (bitwise):   &  |  ^  ! ->   <->

Both operands must be of the same width (unless one of them is constant)
result will have the same width as the vector operands.

Example:

 v(0..7) := x(0..7) & y(0..7) | !z(0..7);

Relational:   =   <   >   <=   >=

Both operands must be of the same width (unless one of them is constant)
result will be a scalar Boolean value.

Examples:

c := v(0..7) > x(0..7);      d := v(0..7) <= 16;

Arithmetic (unsigned):    +   -   *

Both operands must be of the same width (unless one of them is constant)
result will have the same width as the vector operands.

Examples:

    define cc1(0..7) := aa(0..7) + bb(0..7);

              cc2(0..7) := aa(0..7) + 1;

              cc3(0..7) := 10 * aa(0..7);

In order not to lose the most significant bits of the result, pad the operands
zeroes on the left.

Examples:

    define aa(0..7) := zeroes(4) ++ bb(0..3) * zeroes(4) ++ cc(0..3);
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              co++sum(0..7) := 0++a(0..7) + 0++b(0..7);

(++ is the concatenation operator, described below. zeroes(4) is a vector of four zeroe

Shift:  >>   <<

The first operand must be a Boolean vector and the second operand must
integer constant or variable. The result is a Boolean vector of the same widt
the first operand.  These operations perform the logical shift, (i.e., vacated
positions are filled with zeroes).

Examples:

define cc(0..7) := aa(0..7) << 2;

var shift_amount: 0..5;

define dd(0..7) := bb(0..7) >> shift_amount;

              ee(0..8) := 0++ff(0..7) << 1;

4.3.3 Converting  Bit Vectors to Integers and Vice Versa

Bit vector to integer:

bvtoi( a_vector )

Integer to bit vector:

itobv( an_integer )

Example:

assign next( counter(0..7) ) :=itobv( bvtoi( counter(0..7) ) + 1 );

Constant integers are converted to bit vectors implicitly, you do not need t
apply itobv.  We recommended that you use bit vectors instead of big inte
variables, if possible.
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4.3.4 Constructing Bit Vectors from Bits or Sub-vectors

The concatenation operator (++) is used to make bit vectors out of bits or
smaller vectors:

expr ++ expr

Example:

define wide(0..5) := narrow(2..3) ++ bit1 ++ bit2 ++ another_narrow(0..1);

If expr is a constant, it should be either 0 or 1.  Wider constant vectors sho
be split into separate bits.

define x(0..5) := y(0..2)++1++0++z;  -- allowed

define x(0..5) := y(0..2)++10B++z;    -- not allowed

The concatenation operator can also appear on the left-hand-side of an a
or define statement.  For instance, the following statement:

define a ++ b ++ c(0..2) := d ++ 1 ++ 0 ++ e(0..1);

is equivalent to the following four statements:

define a := d;  b := 1;  c(0) := 0;  c(1..2) := e(0..1);

The built-in construct rep() can help construct arrays of repeated elements:

rep (expr, N) is equivalent to expr concatenated with itself N times. For exa
ple, you can use the following assignment to make each bit of array ‘arr’ n
deterministic:

assign arr(0..3) :=rep({0,1},4);           --  {0,1}++{0,1}++{0,1}++{0,1}

Shorthands:

   zeroes(N) is equivalent torep(0,N)

   ones(N) is equivalent torep(1,N)

   nondets(N) is equivalent torep({0..1},N)
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4.3.5 Array Notes

• The exact range must be specified in the operation.
 “a = b” is not equivalent to “a(0..3) = b(0..3)”.  b(0..3) represents variab
b(0) through b(3) while b represents one variable with no index.

• Operands can take any ranges, provided that their widths are compatib
For example, “a(0..3) & b(1..4)” is legal, but “a(0..3) & b(0..4)” is not.

• If one of the operands is a Boolean vector and the other is a numeric c
stant, the constant is considered an array of bits.  For example, “a(0..1)
10B” is equivalent to “a(0)=1 & a(1)=0” and  “a(1..0) = 10B” is equivalen
to “a(1)=1 & a(0)=0”.

• “var v(0..3): { 5, 7, 13 }” defines four state variables, each of them can ta
the values 5, 7, or 13.  This is sometimes confused with
“var v(0..3):boolean; assign v(0..3) := { 5, 7, 13 };” that defines a vector
of 4 bits, and the whole vector can take the values 5, 7, or 13.

• Arrays can be used as formal parameters of modules and as actual pa
ters of instances. The actual parameter width must match the width of t
formal parameter.

• If you write “#define N 7” and later “a(0..N)”, leave a space around the tw
dots: a(0 .. N).  Otherwise, the standard preprocessor (cpp) used by Ru
Base will identify ..N as a token and will not replace N by 7.

4.3.6 More Array Examples
var a(0..3), b(0..8), c(0..2) :Boolean;

define d(0..3) := b(5..8);-- different sub-ranges

define e(0..2) := b(2..0) & c(0..2);-- different directions

var x_state(0..2), y_state(0..2): {s1, s2, s3 };

define same_state :=  x_state(0..2) = y_state(0..2);

var nda(0..2):boolean;

assignnda(0..2) := {001b, 010b, 111b}; -- non-deterministic assignment to a vec
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assign next( a(0..2) ) :=

case

      reset : 0;

      a(0..2) = b(0..2) : c(1..3);

      a(0..1) = 10B : d(0..2);

else : a(0..2);

esac;

var counter(0..7) :boolean;

assign

init ( counter(0..7) ) := 0;

next( counter(0..7) ) := counter(0..7) + 1;

module and_or ( a(0..7), b(0..7), c(0..7) )( d(0..7) )

{ define d(0..7)  := a(0..7) & b(0..7) | c(0..7); }

instance a1 : and_or( x(0..7), y(7..0), z(0..7) )( w(7..0) );

4.4 Sequential Processes

Process constructs of EDL are similar to “process statements” of VHDL and
“always blocks” of Verilog.  They can be useful in situations when it is awk
ward to write explicit concurrent definitions for signals. Using process con
structs, you can write your code in the form of sequences of statements, w
are “executed” in each cycle to compute the needed values of signals. The
statements allowed in a process are variable declarations, variable assignm
IF statements, and CASE statements.

As a simple example,

process {

var foo: boolean;

    foo := d1;
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if  c then foo := d2endif;

}

is equivalent to the concurrent assignment

assign foo := if  c then d2else d1endif;

(Of course, in this example the concurrent form is simpler than the process construct

As a slightly more realistic example, suppose that we need to model a rip
carry adder in EDL, but for some reason cannot use the ’+’ operator:

process {

var sum(0..7):boolean;

var carry:boolean;

  carry := 0;

  %for  i in 7..0step -1 do

      sum(i) := x(i) ^ y(i) ^ carry;

      carry := (x(i) & y(i)) | (x(i) & carry) | (y(i) & carry);

  %end

}

The carry signal is assigned several times in the process, and each stanza
loop refers to the value of carry valid for this specific stanza. if some code
side this process refers to the carry signal, it will refer to the “final” value o
carry, which in this case is the overflow bit of the adder.

It is convenient to think about processes as sequential code which is “execu
each cycle, but what happens technically is that RuleBase analyzes the pro
construct, keeping track of interim assignments, and generates concurren
nitions for signals driven by the process.  This means, for example, that in
wave browser you will only be able to see the “final” values of signals.

If you are familiar with VHDL or Verilog, you will notice that EDL processe
are not explicitly associated with some clock signal or a sensitivity list.
Instead, they are implicitly clocked on the “system clock”, just like the conc
rent “assign next” construct.
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The following provides a closer look at the building blocks of a process co
struct.

• Variable declarations
The process construct should containvar declarations for all signals that are
assigned within the process. Thevar declaration of each signal should
appear before the first assignment to it. Currently there is a restriction o
chains ofvar declarations within a process: eachvar declaration should
start withvar keyword, for example:
    “var foo: boolean; bar:boolean;”

 is not allowed, but both

    “var foo, bar:boolean” and “var foo: boolean; var bar:boolean”

 are allowed.
While using a var outside a process defines a state variable, this is not 
case here, unlessassign next is used (see 2. below).

• Assignments
The three usual forms of RuleBase assignments are supported:

assign S := expr;

assign next (S) := expr;

assign init (S) := expr;

The keywordassign can be omitted.define constructs are illegal within a
process. S is a signal or a concatenation of signals.

The assignment of the first form:
   S := expr;

is similar to the VHDL variable assignment and to the blocking Verilog
assignment, in that references to S, which are “executed” after this ass
ment, will already refer to the new value of S. Therefore, the order of th
statements is important. For example,
   foo := 0;

   bar := foo;

foo := 1;

will assign 0 to bar (even though foo is re-assigned later on).
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The assignment of the form:
next (S) := expr;

behaves more like the VHDL signal assignment  and to non-blocking Ve
ilog assignment, in that it doesn’t influence the values of S that can be
observed in this cycle.

The use ofnext makes S a state variable.
next (foo) := 0;

   bar := foo;

will assign the current-cycle value of foo, which is not necessarily 0, to b
The next-cycle value of foo will be 0 (in the absence of further assignme
to ``next (foo)” in the process).

The assignment of the form:
init  (S) := expr;

is very special in that it will only be “executed”  in the very first cycle, an
will have no effect on subsequent cycles.

• CASE statements
case

  guard1:  stat1;

    guard2:  stat2;

    ...

    guardn:  statn;

else:  state;

esac;

Each guardi is a Boolean expression. The else clause is optional. Each si
is either a single assignment, or anarbitrary sequence of statements
enclosed in braces.

• IF statements
IBM Haifa Research Laboratory, Israel
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The IF statement is less general than the CASE statement and can tak
of two forms:

if  conditionthen

        statements

endif;

or

if  conditionthen

statements

else

        statements

endif;

The following is an an example of a process construct that makes use of d
ent statements:

module server (start,grant)(request,done)

{

process {

var state: { idle, wait, busy };

init (state) := idle;

next(state) := state;  -- default behavior

var request, done:boolean;      -- state machine outputs

        request := false; done := false; -- their default behavior

case

            state=idle & start:

next(state) := wait;

            state=wait: {

                request := true;

if  grantthen
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next(state) := busy

endif;

            }

            state=busy: {

                done := {true,false};

if  donethen

next(state) := busy

endif;

            }

esac;

    } -- process

} -- module

4.5 Environment Constraints

Trans, Invar, assume, restrict, and hints are environment constructs that
enable you to set constraints on signals. They allow you to describe the e
ronment by declarative means instead of giving each signal a functional be
ior. These environment constraints can be combined with other environme
constructs such as var, assign, define, etc.

4.5.1 Initially and Trans

The initially  statement enables you to specify a boolean expression that m
hold true at the very first cycle. RuleBase will cut off from the model all initia
states that do not hold the boolean expression specified within the initially
statement.

The syntax of the initially construct is as follows:
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initially  <expr>

 -- Where <expr> is a boolean expression

<expr> can include both environment and design signals.

The trans statement enables you to specify a set of legal transitions betwe
states of the design, thus ignoring all other transitions, which are illegal. R
Base willforce the model to hold the boolean expression specified within t
trans statement at every cycle.

The syntax of the trans construct is as follows:

trans <expr>

 -- Where <expr> is a boolean expression

<expr> can include both environment and design signals.

The statement trans <expr> implies that all transitions which do not comp
with <expr> are cut off.

Note that <expr> should not be just any boolean expression, but a boolea
expression that describes transitions between states of the design. If <exp
does not contain any next() expression, then it does not refer to any trans
therefore nothing will be cut off; in other words, such a trans statement will n
have any effect. This implies that <expr> should contain at least one ’next

For example:

rule transexamp {

var a,b,c: boolean;

trans next(a) = next(b);

initially  (a=c)

formula { AG (a | b | c) }

}
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4.5.2 Invar

The invar statement enables you to specify a boolean invariant that you w
to be true at any cycle. RuleBase willforce the model to hold this invariant at
every cycle.

The following shows the syntax of the invar construct:

invar  <expr>

 -- Where <expr> is a boolean expression.

The Boolean expression within the invar can include both environment an
design signals.

Example:

Given a design with the inputs request1, request2, and request3, the de
should only work properly under the constraint that one request, at mos
can be active at any given cycle.

This can be specified by:

var request1, request2, request3: boolean;

invar  (request1 + request2 + request3 <= 1)

request1, request2,and request3 signals can have any non-deterministic
behavior that holds the above invariant.

4.5.3 Assume

Assume can be seen as an extension of the invar construct. It enables yo
write more expressive assumptions on your model, which tell RuleBase to
force your model to hold those assumptions. The assumptions are written
Sugar properties.

The syntax of the assume construct is as follows:
IBM Haifa Research Laboratory, Israel
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assume {sugar_formula}

Most of the Sugar safety formulas can be used within the assume. These S
formulas are the same formulas that can be verified on the fly.

Examples:

• read and write are inputs to a design.

• read should not be followed bywrite (one or two cycles later).
This can be specified by:

var read, write: boolean;

assume {AG (read -> ABG[1..2] (!write))}

Note: AG andABG, andAX andbefore_ and sequences, mentioned in the
sequel, are constructs of the Sugar specification language, described in CH
TER 5.

Additional requirements:

• The first input command must be a write.
assume {write before_read}

• A sequence of three consecutivewrites is illegal.
assume { {[*], write[3]}(false) }

Assume can help you define complex behavior of inputs.

Using the assume construct, you can start the verification process with an
tial free environment, and you can add environment assumptions when yo
encounter “false negatives” (counter-examples that result from illegal inpu
sequences).

Writing an environment with assumptions enables you to apply compositio
verification to your design using the assume-guarantee approach.
RuleBase: a Formal Verification Tool
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The assume-guarantee approach is as follows:

1. Assume that the input signals obey some assumptions.

2. Take those assumptions and guarantee they hold by turning them into 
and verifying them on the blocks that produced them.

Consider a design that is partitioned into two blocks: block1, block2 (see
Figure ). In the verification of block1, one can write environment assumptio
on the input signals generated by block2 using the assume construct. Lat
when proceeding to the verification of block2, the already written assumpti
can be turned into formulas and verified on block2.

FIGURE 3.  Design partitioned into two blocks that uses the assume construct for
compositional verification

Assumptions cannot be written inside the module or process.

Notes:

•  In some cases, the assume construct can cause state space explosion
lems by introducing many variables. (These variables are needed to co
struct a deterministic automata that represents the assume construct.) 

block1 block2

rulesenvs

assume
IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



Describing the Environment            86

aint
way

d in

of y
he

ves:

the
.,
m-
i-
a
”:
such cases, it may be more convenient for the user to use other constr
constructs, such as invar or restrict, or define the behavior in the usual 
using define and assign.

•  Non-deterministic variables may cause false negatives, if they are use
the same assume but in different points of time, for example:
var x,y,z:boolean;

assign next(x) := x;

assume {AG(y=x -> AX (z=x))};

  . . .

The user may get a counter example to some formula in which the value
for one cycle differs from the value of z for the next cycle (i.e., violates t
assume).

The other example (with the same meaning and same problems) is:
forall  x assume {AG(y=x -> AX (z=x))}

The two cases can be rewritten as follows, without causing false negati
assume {AG(y=0 ->AX (z=0))};

assume {AG(y=1 ->AX (z=1))};

In general, assumes are most useful in free environment.

• There is an additional  case of false negatives, as seen by users when 
counter example does not show the restricted behavior, but is final ( i.e
would necessarily show such behavior if prolonged). Such counter exa
ples can be eliminated by writing the same assume on the “causing var
ables”. The following provides a simplified example of eliminating such 
counter example by writing the same assume on the “causing variables

var x, y: boolean;

assign init(x) := {0,1};

assign next(x) := x;
RuleBase: a Formal Verification Tool
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assing init(y) := 0;

assing next(y) := !x;

assume {AG(!y) }

rule dummy {

formula  {AG (y) }

}

The user gets the counter example of length 1  where x=0 and y=0. Th
trace only has the next state in which y=1 and x=0 is forbidden according
the assumption. Thus, the trace the user gets in this example is not rea
tracing back to the forbidden behavior of y, one can see that it is forbidd
for x to be 0. By replacing the existing assume with
     assume {AG(x) }

on the same formula, the user gets the real counter example of length 
where y=0 and x=1. (In this case, real means that it can be prolonged to
length.)

4.5.4 Restrict

The restrict environment construct is used to limit the state space exploratio
certain paths. The restrict looks like a regular expression, and its semanti
resemble the semantics of a regular expression. Only paths that match th
ular expression will be checked.

The syntax of therestrict  construct is as follows:

restrict {regular_expression}

• Where the regular expression events can be any of thesequence events.

Example:

restrict { !read[*], read, !read[*] }

• Restrict RuleBase to check only paths with at most one read command
IBM Haifa Research Laboratory, Israel
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Restrict does not have any meaning when it starts with a [*], since every c
putation path is a prefix of such a restrict; hence, this restrict will not force
limitation on the model.

There are several motivations for the use of restrict, including:

1. A ‘guide/direct’ search to start with specific behavior.
Example: Every path should start with two reads followed by a write
restrict  {read[2], write, [*]}
Note:The [*] at the end of the above restrict is necessary; if you omit it,
RuleBase will only check paths with the length of three.

2. An easy way to define an input that behaves according to a specific pa
tern.
Example:
Bus is defined as follows:

var bus: {idle, BOP, data, EOP};
We restrict the bus behavior to the following pattern:

restrict  { {bus=idle[*], bus=BOP, bus=data[4], bus=EOP}[*] }
That is, there can be any number of transactions, with any number of id
cycles in between, in which each transaction starts with BOP, followed 
four cycles of data and terminated with EOP.

3. A quick way to verify that a specific design failure does not exist in the
‘design after fix’:
Given a formula that failed and a trace that shows a counter example for
formula, we fix the design and would like to verify (quickly) that we will
not get the same failure that we had before.

4. To convert the inputs of the trace into a restriction that describes the
inputs value in each cycle
• Click theResults button

• Click the formula that failed and select ‘Generate restrict (inputs)’

• Run the formula again including the file which contains restrict you ge
erated.
The GUI will give you its name; it resides in your working directory.
RuleBase: a Formal Verification Tool
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If the counter example no longer exists, you will receive a vacuous result
the new run. This run is quick since it restricts the search space to a ve
specific pattern of inputs.

4.5.5 Hints

The hint list can be seen as a generalization of theinvar  construct. RuleBase
uses each hint in the list to restrict the search of the state space in the same
as invar, by switching to the next hint in the list when no additional states 
be explored using the current one.

Syntax:

hint expr, ...,hint expr[NUM], ...;

Semantics:

• hint expr – continues to search reachable states with the transition rela
constrained byexpr until the fixpoint is reached.

• hint  expr[NUM] –  only performsNUM of steps with the constraint.

• RuleBase automatically addshint TRUEat the end of the list, so you do not
need to do it.

• When a hint ends (either the fixpoint is reached or a given number of cyc
has passed), it passes on to the next one.

In the case of a liveness formula with hints, every liveness formula is chec
on the fly at every fixpoint that is reached that has a hint.

Examples:

var cmd: { read, write, flush, stall };

hint cmd = read, hint cmd = write, hint cmd != flush[5];

Hints may be combined with liveness and counters as follows:
IBM Haifa Research Laboratory, Israel
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• liveness + hints
RuleBase does not execute liveness algorithms that use hints in the ca
lated fixed point as some  may expect (CAV99 - Ravi & Somensi).
Instead, it performs the following algorithm, which is related to liveness
the fly for all hints (according to their order):

1. Compute the reachable states using the hint (exactly like in on-the-fl
mode).

2. Before changing to the next hint, build the transition relation, simplifie
according to the reachable states (like in liveness on-the-fly).

3. Evaluate the formula with the classic algorithm on this partial model

4. If the formula fails, generate a counter example; otherwise, move to
next hint.

• This is exactly like liveness on the fly, which is executed after every hin
fixed point instead of after every ’n’ iterations.
counters mode + hints
RuleBase turns off during the on the fly model checking.
It executes the liveness + hints algorithm described above with the follo
ing change: Every time the transition relation is built, the counters are ad
to the model. When RuleBase continues reachability with hints, the
counters are removed again.

4.5.6 Additional Environment Constraint Examples

• cmd, busy are design inputs.busy is active one cycle aftercmd:
var cmd, busy : boolean;
assume{ AG (cmd -> AX busy) }

• When sending a command,cmd should be active for three cycles, and the
inactive for at least two cycles.
var cmd: boolean;
assume { {[*], ! cmd, cmd}( ABG[1..2] (cmd) }
assume { {[*], cmd[3]}( ABG[1..2](!cmd)) }

• The above environment written with restrict:
var cmd: boolean;
restrict  { {! cmd[*],  cmd[3], !cmd[2]}[*] }
RuleBase: a Formal Verification Tool
Provided by special agreement with IBM



91                                                                                                   CHAPTER 4

s, to
sig-

 rec-
hat
duc-

. To
e

• Consider a design block that should work properly under the following
assumptions:

•  start, end (the input signals) are pulses.

• start andend are interleaving (i.e., there is always a start between two
ends and vise versa).

•  The first end will be proceeded by astart.

var start, end: boolean;
assume { AG (start -> (AX endbeforestart)) }
assume { AG (end ->(AX start beforeend)) }
assume { AG !(start & end) }
assume {  start beforeend }

• The above environment written with restrict:
var start, end : boolean;
restrict  { {(! start & !end)[*], start & !end, (!start & !end)[*], ! start & end}[*] }

4.6 Linking the Environment to the Design

In RuleBase, the name connects (links) the design and environment. Thu
give behavior to an input signal of the name “reset” in your design, give a 
nal, of the same name, behavior in your environment, using either thedefine
statement (see “Define Statement” on page 61), or thevar statement (see “Var
Statement” on page 59) in combination with theassignstatement (see “Assign
Statement” on page 60).

It is important to make sure that you use the name of the signal exactly as
ognized by RuleBase (including capitalization). A list of the design signals t
RuleBase recognizes can be found under the “Debugging/Signals before re
tion” menu option.

4.7 Overriding Design Behavior

The environment can be used to override the behavior of part of the design
override the behavior of an internal design signal, give it behavior using th
IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



Describing the Environment            92

e-

spe-

 “pre-

e

tion
ting
n-

ter-

ing
tali-
d

define statement, or the var statement in combination with the assign stat
ment, which specifiesoverride as follows:

define override sig := ...

or:

var override sig:boolean;

assign  init(sig)   := ...

            next(sig) := ...

Overriding design behavior is especially useful if you have implemented a
cific behavior of a signal, but want to make sure the design works for any
behavior of the signal. For instance, suppose that we have a signal called
dict” that implements a complicated predict function. Some other piece of
logic uses the “predict” signal in its calculations. Suppose our formula is th
following:

AG (predict ->AX [2] !low_priority_request)

Also suppose that this formula should be true regardless of the implementa
of the predict function. We can make the job of RuleBase easier by elimina
all of the logic driving “predict”, and overriding it with a totally non-determi
istic behavior, as follows:

var override predict:boolean;

Now, predict can  have any behavior. For another example of overriding in
nal signals, see “Abstraction of Internal Parts” on page 159.

When overriding design signals, it is important to make sure that you are us
the name of the signal exactly as recognized by RuleBase (including capi
zation).  A list of the design signals that RuleBase recognizes can be foun
under the “Debugging/Signals before reduction” menu option.
RuleBase: a Formal Verification Tool
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4.7.1 Overriding Initial Values

Sometimes, it is necessary to override the initial value of a flip-flop in the
design without modifying its next-state function. In these cases, specify the
tial value as follows:

assign init(abc) := 1;
assign init(def) := {0,1};

The first statement above assigns an initial value of 1 to signal abc. The se
statement assigns a non-deterministic initial value to signal def.  In other
words, the value of signal def at power-on is not known.

4.7.2 Using Original Design Behavior

When design behavior is overridden with anoverride statement, it is some-
times necessary to use the original behavior of the design in addition to th
overriding one. In such cases, the original design behavior can be access
specifyingoriginal , as follows.

For example, suppose ack is a signal in the design.
If you write the following:

mode check_override {

  var override ack:boolean ;

  assign ack := 0 ;

}

rule override_original {

  envs check_override ;

  formula { AG (original(ack) = 0) }

}

RuleBase will check the formula according to the original behavior of ack a
not according to the behavior that overrides it.
IBM Haifa Research Laboratory, Israel
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When the original behavior of ack is accessed, an auxiliary signal
NET_original_ack is created and it takes the original behavior of ack. How
ever, the behavior of ack shown in the scope will be the overriding behavio
not the original one, and NET_original_ack will not appear in the scope.

Note for advanced users: The reason that NET_original_ack is not shown in
the scope is that it is filtered out of the SMV log and the scope (like all sig
whose names begin with NET_).

To see NET_original_ack in the scope

• Insert the following two lines to your relubase.setup file:
setenv SMVFLAGS “$SMVFLAGS -no_filter_synopsys”

setenv rb_dont_filter_names 1

Or:

• Add the following definition to your envs file:
define orig_ack := NET_original_ack

You will then be able to view orig_ack in the scope.

4.8 Using Non-determinism and Fairness

It may not yet be clear to you how an environment is used to describeevery
possibleinput sequence. This is important if we are to fulfill the promise ma
that formal verification is equivalent to exhaustive simulation.  To achieve 
exhaustiveness, we use non-determinism.

This section discusses non-determinism and its uses.  It is necessary to u
stand this subject thoroughly in order to use formal verification.  Afterward
we discuss fairness, a closely related concept. Fairness is a way of limitin
non-determinism so that the paths that we filter out the paths that we do n
want to consider.
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A non-deterministic environment is an environment in which we specify m
than one possibility for the behavior of a given variable. When we make a n
deterministic assignment, we are indicating to RuleBase thatall possibilities
must be considered. Do not confuse a non-deterministic assignment with th
value sometimes used in simulation, or with a don’t care assignment as use
synthesis. A don’t care assignment gives a measure of freedom to the synt
tool—it indicates that any value chosen by the tool is acceptable. In synth
the actual logic will either have one value or the other. A non-deterministic
assignment, on the other hand, does not give any freedom.  Rather, it forc
RuleBase to consider the exact outcome of all possible choices.

This section assumes that the rules checked are of the form “for all possib
execution paths, some property holds true.” If rules of this type are proven
an abstract system, it will also hold true in every concrete system that imp
ments the abstract system. Experience has proven that most of the rules us
practice are of this type.

4.8.1 Coding Non-determinism

4.8.1.1 Free Variables

A free variable is any variable that is declared, but not assigned a behavio
using anassign statement. For instance, assume the following is part of an
environment that models a CPU driving a memory bus:

var command: {read, write, none};

Since we have not specified any behavior for thecommandvariable, RuleBase
must consider all possible sequences of commands.

A non-deterministic choice between values of a variable can also be made
enumerating all possible values. Thus, we could have made the command
able free, as follows:

var command: {read, write, none};
assign command := {read, write, none};
IBM Haifa Research Laboratory, Israel
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4.8.1.2 Non-deterministic Choice

Many times, we do not want a variable to be completely free, but rather co
strained in some way while still exhibiting non-deterministic behavior in ce
tain cases. For this purpose, we can use non-deterministic choice among
expressions. The non-deterministic choice is an expression that indicates
choice between a number of values. For instance, the following expressio

{write, none}

indicates a non-deterministic choice between the values “write” and “none
Suppose that our CPU contains a MESI-state cache. Then, it will never is
the read command unless it is in an invalid state. However, the write comm
may be issued in any case. We would then model our CPU as follows:

var command: {read, write, none};
assign command :=

case
         mesi_state = invalid:   {read, write, none};

else                        :   {write, none};
esac;

In this environment we have specified that the command can be any of the t
declared values if the variable mesi_state equals invalid. Otherwise, the v
able command can take on either the value “write” or the value “none”.

Example:

Say we have an arbiter that receives two commands: c1 and c2.  If both c
mands have the value “none”, then the arbiter outputs “none”.  If one of th
command is something other than “none”, then that command is chosen. 
both commands are something other than “none”, then the arbiter may ch
either command non-deterministically.  We can model this as follows:

module an_arbiter (c1, c2) (output_command)
{

var output_command: {read, write, none};
assign output_command :=
RuleBase: a Formal Verification Tool
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case
             (c1 = none) & (c2 = none):   none;
             (c1 = none):                         c2;
             (c2 = none):                         c1;

else            :                        {c1 , c2};
 esac;

}

4.8.1.3 Auxiliary Non-deterministic Variables

The arbiter shown above is rather simplistic. To complicate things, let us
assume that command c1 comes with address a1, and command c2 come
address a2.  Then, if we choose command c1, it makes no sense to choo
In this case we must choose a1. One way to associate one non-determini
choice with another is to use an auxiliary non-deterministic variable. The f
lowing example illustrates this point.

FIGURE 4. Another arbiter

module another_arbiter (c1, a1, c2, a2) (output_command, output_address)
{

var choose: {1,2};
var output_command: {read, write, none};
var output_address:boolean;

assign output_command :=
case

              (c1 = none) & (c2 = none): none;
              (c1 = none): c2;
              (c2 = none): c1;

else            : case choose = 1: c1; 2: c2; esac;
esac;

assign output_address :=
case

              (c1 = none) & (c2 = none): {0,1};
              (c1 = none): a2;
IBM Haifa Research Laboratory, Israel
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              (c2 = none): a1;
else            : case choose = 1: a1; 2: a2; esac;

esac;
}

By using the free auxiliary variable “choose”, we have tied the non-determi
tic choice between c1 and c2 to that between a1 and a2. Notice that in the
where both c1 and c2 are none, we let the address be free.  This is an ac
picture of an arbiter in which the address is undefined in the case that no 
mand is chosen.

4.8.2 Using Non-determinism to Create an Abstract Model

Suppose we need to model an arbiter that uses a round-robin or other algo
in order to ensure that every requestor gets a turn.  Now, assume that this
ter is not part of the model under test, but a piece of logic that we know is
rect. Creating an exact model of the arbiter will be time-consuming and er
prone. We would probably spend a good amount of time debugging the m
rather than verifying our design under test.

If the properties to be verified only depend on the fact that the arbiter even
ally gives every requestor a turn, and not on the specific algorithm used b
arbiter, then we may want to use non-determinism to make our modeling 
easier.  By using a non-deterministic arbiter, as shown in Section 4.8.1, w
ensure that any property we prove will be true in the case that the real arbit
used. This is because a non-deterministic arbiter models all possible seque
of events wherever the non-deterministic choice appears. Since the real b
ior is one of the possible choices, it follows that anything proved for the no
deterministic arbiter is true for the real arbiter. A model that includes more
behavior than the entity being modeled is called an abstract model.

There is one catch, however. Since our non-deterministic arbiter models a
possible behaviors, it also models the behavior in which c1 is always chos
whenever a non-deterministic choice is to be made. We need a way to filter
this possibility and the way to do so is throughfairness.
RuleBase: a Formal Verification Tool
Provided by special agreement with IBM



99                                                                                                   CHAPTER 4

hat
, the

4

ut

er.
ire-

want.

cifi-
ifica-
4.8.3 Fairness

Recall that thefairness statement has the following format:

fairness expression;

The meaning of thefairness statement is that we are only interested in
sequences in which the expression specified will happen infinitely often. T
is, we are not interested in input sequences in which, at some point in time
expression becomes false and stays that way forever.

By making the following two fairness constraints within the arbiter of Figure

fairness choose = 1;
fairness choose = 2;

we indicate to RuleBase that we are only interested in input sequences in
whichchoose takes on the values 1 and 2 infinitely often. That is, we filter o
sequences in which, at some point in time,choose gets stuck at either value.

4.8.3.1 Advanced Fairness Types

In the example above, suppose that we wantchoose to take on the value 1 infi-
nitely often only on those paths in which c1 is not stuck at value ‘none’ forev
(That is, for paths on which  c1 is stuck at ‘none’ forever, we have no requ
ments fromchoose.) For this purpose, thefairness statement described above
is too strong; we need a weaker type of fairness to filter out the paths we 
The statement

GF->GF  c1 != none,choose = 1;

will leave the paths we want in the model.

Note: GF andFG, mentioned in the sequel, are constructs of the Sugar spe
cation language, described in CHAPTER 5:  Sugar – The RuleBase Spec
tion Language.
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The following additional fairness types are supported:

• FG p ;
Leaves in the model only paths on which, from some point onward,p holds
forever.

• FG->FG p , q ;
Leaves in the model only paths on which if a point from whichp holds for-
ever, then a point also exists from whichq holds forever.

• FG->GF p , q ;
Leaves in the model only paths on which, if a point from whichp holds for-
everexists, thenq holds infinitely often .

• GF->GF p , q ;
Leaves in the model only paths on which ifp holds infinitely often, thenq
also holds infinitely often.

4.8.3.2 Danger of Fairness

Fairness is a powerful, but dangerous tool.  The danger of fairness is that
many paths may be unintentionally filtered out, some of which may includ
violations of our formulas.  Here is an example:

module server (start) (ready)
{

var state : { idle, busy, done };
assign

init  (state) := idle;
next (state) :=

case
                 state=idle & start : busy;
                 state=busy : { busy, done };
                 state=done : idle;

else : state;
esac;

define ready := state=idle;
   fairness state = done;
}

RuleBase: a Formal Verification Tool
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In the above example, we give the variable “state” a non-deterministic beha
while it is busy. We also constrain RuleBase with afairnessstatement so that it
only checks paths on which the machine does not stay busy forever. Howe
this is a dangerous formulation of the fairness requirement.  Since for eac
“done” there is one “start”, the paths left in the model also have “start” infi
nitely often.  If some deadlock condition in the verified design prevents sta
from being asserted, this deadlock will not be detected, because the fairn
constraint filtered out paths on which start is not asserted infinitely often.

To overcome the problem in the above example, thefairnessstatement should
be formulated in a way that prevents state from staying busy, while having
side effects:

   fairness state!= busy;

4.9 Using Counter Files

Counters in the design may induce many iterations during reachability ana
sis, because only one counter state is reached at each step. If you have b
counters and experience this problem,  try the following:

If your design is small, first try to run without reachability: Set options/verifi
cation/reachability=no and verify-safety-OnTheFly=no. This may solve yo
problem.

If your design is not small, or if the above solution resulted in BDD explosio
try the “counters trick”:

1. Set options/verification/reachability=yes and verify-safety-OnTheFly=no

2. Create file “counters” in the verification directory that contains the names
the counter variables, one at each line (vectors should be split into sing
bits).

3. Add the following line to rulebase.setup:
setenv SMVFLAGS “$SMVFLAGS -counters_file ../counters”
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Note: This will result in approximate reachable state space, so errors cann
be detected on the fly.

If you expect errors in early iterations, we recommend that you clean them
in OnTheFly mode (options/verification/reachability=yes and verify-safety-
OnTheFly=yes), and only then use the counters trick.

4.10 Modeling Clocks

To use formal verification properly, it is essential to understand the way R
Base deals with clocks, and to choose the proper clock scheme.  This sec
assumes that the clock signal is generated externally and drives the verifi
design through input clock pins.

The most simple case is a design that only has one clock, in which only o
level or edge of the clock is used in the design. In this case, the clock inpu
should be held constant at the value ‘1’:

define CLK := 1;    -- CLK is the clock input pin                                            (*)

RuleBase understands it as the clock being active in every cycle. This wo
even when some of the flip-flops are gated. The gated flip-flops will work o
when the gate is active.

The next scheme has one clock, but both levels (or edges) are used in the
design. In this case, we define the clock as having alternate values 0 and
follows:

var CLK: boolean; assign init(CLK) := 0; next(CLK) := !CLK;            (**)

Notes:

• If your design uses master-slave latches, then the master latches will ch
on one level of the clock, and the slave latches on the other. However, if
only use of the master latches is to drive the slaves (i.e., there is no use
the master latch output other than by its slave), then you can still use th
simpler clock scheme described above, which will give you better perfo
RuleBase: a Formal Verification Tool
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mance. To do this, you must model the master-slave pair as a single ed
triggered flip-flop or latch (see CHAPTER 2:  Getting Started for model
of latches).

• Although (**) may be used in designs that have one clock with one pha
model-checking of (*) is more efficient.

• When the clock is defined as in (**), formulas should include explicit refe
ences to the clock signal.  For example, the following formula:
   “AG( p ->AX  q )”

should be rewritten as:
 “AG( (p&CLK ) -> next_event(CLK)( q) )”

This rewriting may also be necessary in the more complicated clock
schemes described below. If all signals in the formula refer to the same
clock, as in the examples above, RuleBase can rewrite the formula aut
ically. To do that,  write
AG( p ->AX  q ) :: clk = CLK

See section 5.4: “Multiple-Clocks in Formulas” for more details.

Before continuing further with more clock schemes, it is important to note th
complex schemes usually contribute to size problems more than simpler o
When planning the micro-architecture of the design, it is advised to partitio
the design in a way that each part will have the simplest scheme possible,
erably one clock.

The next scheme has multiple synchronized clocks. For example, assume
there are two clocks, with a 1:3 ratio between their frequencies. In this case
fix the faster clock at value ‘1’ (always active), and generate a pulse every t
cycle for the slow clock:

define FAST_CLOCK := 1;

var clock_counter: 0..2;

assign next(clock_counter) := (clock_counter +1)mod 3;

define SLOW_CLOCK := clock_counter = 0;
IBM Haifa Research Laboratory, Israel
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In contrast to clocks in real systems, whose duty cycle is usually 50%, slo
clocks in RuleBase should only be active foronecycle each time. (If this is a
problem because the clock is generated internally, contact us.)

A similar case is a ratio of  2:3 :

var clock_counter: 0..5;

assign next(clock_counter) := (clock_counter +1)mod 6;

define SLOW_CLOCK := clock_counter in { 0, 3 };

define FAST_CLOCK := clock_counter in { 0, 2, 4 };

If the clocks are not synchronized, some tricks are necessary in order to w
in a synchronous framework. One case is presented to demonstrate the ran
possibilities. In general, even when the clocks are not synchronized, the r
of frequencies is kept within a limited range. Assume, for example, that th
ratio can range from 1:2 to 1:3, which means (among other things) that so
times the faster clock beats twice (and possibly three times) before the slo
clock beats once. One possible solution is to model a slow clock that non-
deterministically generates a pulse once every two or three cycles:

define FAST_CLOCK := 1;

var clock_counter: 0..2;

assign next(clock_counter) :=

      {(clock_counter +1) mod 2 , (clock_counter +1)mod 3};

define SLOW_CLOCK := clock_counter = 0;

Even if the clock scheme in your design is a complex one, we recommend
you begin verification with the simplest scheme possible.WHAT/WHO  is
likely to detect some of the design errors regardless of the scheme.

Only after the simplified design seems to be error free, should you move t
more complex and realistic scheme and hunt for the problems that otherw
cannot be detected.
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4.11 Modeling Reset

Another important signal that appears in most of the designs is the reset sig
Usually, reset is activated for some time after power-up, and then deactiva
for normal operation. Reset must be active long enough to initialize all me
ory elements with the correct values. In many designs, a few cycles (1 to 
are enough. The following example shows an environment model that gen
ates a 4-cycle active-high reset:

var reset_counter : 0..4;

assign

init (reset_counter) := 0;

next(reset_counter) :=if  reset_counter=4then 4 else reset_counter+1endif;

define RESET := reset_counter != 4;

It is important to identify the optimal duration of reset.  It should be long
enough for correct operation, but not too long. A big counter may contribute
the size problem inherent to formal verification and may result in unnecessa
long counter examples.
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5.1 Overview

Sugar is the specification language of RuleBase. It is used to formally desc
properties to which the design under verification must adhere. Sugar is an
extension of the temporal logic CTL (Computational Tree Logic). CTL is
designed with academic orientation, and needs some adjustments in order
used in industry. Particularly, complex CTL specifications are difficult to re
and write. Sugar adds, on top of CTL, a small set of new operators that si
plify formulation of complex properties. It is fully backward compatible with
CTL.

The following sections describe both CTL and Sugar. Section 5.2, Seman
Model, provides background on the underlying model on which CTL and
Sugar operate (it is not necessary for the understanding of the rest of the 
ter and you can skip it if you like).  Section 5.3, CTL Operators and Sectio
5.4, Sugar Operators describe the CTL and Sugar operators, and the rema
sections offer some practical advice.  Before you start to write formulas, w
recommend that you read CHAPTER 7:  Managing Rules, Modes, and En
ronments.
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5.2 Semantic Model

RuleBase is used to verify that a given finite-state machine satisfies a given
of properties. The machine consists of a design, usually written in a hardw
description language, composed with an EDL (Environment Description L
guage) description of the target environment in which the design is expecte
run. There are cases, such as in protocol verification, where both the design
the environment are written in EDL. The finite state machine has no free
inputs; every input of the design is driven by some signal of the environme
and every input of the environment is driven by the design. While there ar
free inputs, the machine usually has multiple choices when moving to the n
state, because some of the state-variables, mainly those that model the en
ment, have non-deterministic behavior.

A non-deterministic finite state machine can be unfolded into an infinite tre
that represents the machine’s computations. The tree root represents the 
state of the machine, each tree node corresponds to a state in the machin
the edges that emanate from a state are the possible transitions to other s
The infinite paths of the tree, beginning at the root, are the machine’s comp
tions. A machine with multiple initial states is unfolded into multiple trees. 
the unfolded tree, different nodes may correspond to the same state of th
machine.  Figure 5  shows an example of a machine and its computation 
IBM Haifa Research Laboratory, Israel
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FIGURE 5. Example: A finite-state machine and part of its computation tree

It may be useful to keep this computation tree structure in mind when writ
rules, because RuleBase formulas are interpreted over such trees.

Within RuleBase, rules are written in the specification language Sugar. Sug
built on top of CTL (Computational Tree Logic).  CTL, and hence Sugar, is
specially designed to work with the computation trees described in the pre
ous paragraphs. In the temporal logic CTL, time is discrete, and the world
sists of a current state, mapped to a specific node in the computation tree
of many possible futures (all computation paths emanating from this state
CTL has no way to refer to the past. The only way to reason about the past
have information stored in state variables.

An important premise in CTL is that time is infinite. A computation is an in
nite sequence of points in time, which start at the current state. Thus, from
point in time (any “current state”), there are many infinite computations
(branches) into the future. In Figure , the beginning of one path (recall tha
paths are infinite) is shown in bold. In this figure, and in later figures, the o
reason that some points do not show a future is lack of space.Every point in

done idle

busy

busy
done

busy

idle

idle

busy

idle

idle    ...

busy   ...

done   ...

busy   ...
done   ...

busy   ...

busy   ...

idle    ...
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time has a future. To simplify the figures, state names are sometimes omitt
from tree nodes.

FIGURE 6.  Beginning of one possible path

5.3 CTL Operators

CTL formulas have the following syntax:

1. Signal names and constants are CTL formulas.

2. CTL formulas combined with boolean operators are also CTL formulas
!f1,    f1 & f2,    f1 | f2,    f1 -> f2,   f1 <-> f2,    f1 xor f2,

3. If f, f1, and f2 are CTL formulas, then the following are also CTL formula
AX f,    EX f,   AG f,   EG f,   AF f,   EF f,   A[f1 U f2],   E[f1 U f2]
These eight operators are calledtemporal operators.

Boolean operators have their usual meaning.

You are here now
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Temporal operators are used to reason about events that take place along
time interval.  Each temporal operator consists of two letters. The first lett
eitherA or E, whereA means “the formula holds in all paths beginning in th
current state”, andE means “the formula holds in at least one path beginning
the current state”.  The second letter isG, F, X, or U, whereG means “the for-
mula holds from now on”,F means “the formula holds now or will hold in the
future”, X means “the formula will hold in the next point of time”, and “f1U
f2” means “f2 holds now or f1 will hold until (but not necessary including) f
holds”.

The temporal operator letters and their meanings are:

• A =All

• E = Exists

• G = Globally

• F = Future

• X = neXt

• U = Until

The following sections detail the eight temporal operators.

Temporal operators take precedence over Boolean operators. Therefore, 
should use parentheses to enclose the formula to which the temporal ope
is applied.

5.3.1 AG and EG

By combining the meaning ofA with the meaning ofG, the resultingAG
means “for all paths, from now on”.  This is depicted in Figure 7 below. Th
points in time affected by the operator are marked with a black triangle.
RuleBase: a Formal Verification Tool
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FIGURE 7. AG

As can be seen by looking at Figure 7 , all points in time on paths that sta
the current state are marked. Consider an example with two signals, “read”
“write”, which should never be active simultaneously. This fact can be state
CTL as follows:

AG !(read & write) (For. 1)

Because the Boolean formula “!(read & write)” is prefixed byAG, it will be
checked at every point in time starting at the current state.

EG, on the other hand, means “for some path, from now on”. This is depic
in Figure 8 below.

current state
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FIGURE 8. EG

In Figure 8 , you can see that all points in time along one infinite path are
marked. This illustrates the fact that in order forEG to be satisfied, you need
at least one path where every point in time satisfies the demand. For exam

EG (transaction_starts -> read) (For. 2)

states that there is a possible computation (infinite branch) in which all the
transactions are reads.

5.3.2 AF and EF

By combining the meaning ofA with the meaning ofF, we find thatAF means
“for all paths, now or at some future point in time”. This is depicted in Figur
below.

current state
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By examining Figure , we can see that starting at the current state, along e
possible path, at least one future point is marked. For example, say that a
current state, a request has been made and it requires an acknowledge. T
acknowledge may take place at different points in time, depending on the 
cumstances, but it must always eventually take place. This can be express
CTL as:

AF ack (For. 3)

The above formula is not very useful, since in real life a request is made a
many points in time and under many circumstances. In real life, our world
would probably look more like this:

current state
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FIGURE 10. AF in the real world

In Figure 10 , a request is made at three different points in time. Starting a
each point where a request is made, there are many infinite paths. For eac
of those paths, at least one future point is marked. This can be expressed
CTL as:

AG (req ->AF ack) (For. 4)

where “->” is the “implies” operator. Thus, this formulas can be read as: for
paths, at every point in time, if there is a request, then for all paths emana
from that point, at some future time, we must receive an acknowledge. In 
pler terms: whenever there is a request, eventually there is an acknowledg

There are still some open questions regarding Formula 4. Why isAG required
in Formula 4? Why not simply state:

req ->AF ack (For. 5)

current state
req

req

req
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The answer is that Formula 5 refers only to the initial state. For a hardwar
model, the initial state is located at power on. Thus, Formula 5 refers only
request that occurs at power on. In order to express events that take place
power on, you must always enclose the formula in one of the eight basic t
poral operators (AG, AF, AX, AU, EG, EF, EX, EU). Specifically, in order to
express a request that can happen at any time, you must enclose Formula
the temporal operatorAG. )

EF, on the other hand, means “for some path, at some point in time”.   Th
depicted in Figure   below.

FIGURE 11. EF

By examining Figure , you can see that there is some point in some future
from the current state which is marked. For example,EF can be used to
express that it must always be possible for our state machine to return to 
“idle”, as follows:

AG EF (state = idle) (For. 6)

current state
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which reads as: for all paths, at all points in time, there is some path in wh
at some point in time, the state will be idle. In simpler terms: it is always tr
that a path exists to idle. Thus,EF can be used to express a lack of deadlock

5.3.3 AX and EX

AX  means “for all paths, at the next point in time”. This is depicted in Figu
below.

FIGURE 12. AX

In Figure 12 , along all paths that start in the current state, the very next p
in time is marked. For example, if a request is made at the current state, an
acknowledge is required at the very next time step. This is expressed as:

AX  ack (For. 7)

As is the case withAF described above, Formula 7 is not practical, since in
real life a request is made at many points in time and under many circum-
stances. In real life our world would probably look more like Figure 13 .

current state
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FIGURE 13. AX in the real world

In Figure 13 , a request is made at three different points in time. Starting a
each point where a request is made, there are many infinite paths. For eac
of those paths, the very next point in time is marked. This can be express
CTL as:

AG (req ->AX   ack) (For. 8)

Formula 8 can be read as follows: for every request, we must get an ackn
edge at the next point in time.

It is worthwhile to compare Figure 10 with Figure 13 . In the former, a reque
must be acknowledged eventually. In the latter, a request must be acknow
edged at the very next point in time.

EX means “for some path, at the very next point in time”. This situation is
depicted in Figure 14 below.

current state
req

req

req
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Once again, by studying Figure 14 , you can see that for some path from 
current state, the very next point in time is marked.

5.3.4 AU and EU

AU has two operands, and is used as follows:

A [q U r] (For. 9)

which reads: for all paths, q is true until r is true. Note that:

• r must occur eventually.

• r can occur in the current state, in which case q may not appear at all.

• q need not hold at the time r holds.

This is depicted in Figure  below.

current state
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FIGURE 15. AU

By examining Figure , you can see that from the current state, all points on
infinite paths are marked until a point where r holds is reached. The mark
points are those in which q must be true. For example, suppose that you wa
ensure that a busy signal is asserted from the moment a request is made
until the time that an acknowledge is received. This is expressed in CTL a

AG (req ->A[busyU ack]) (For. 10)

In this case, Figure  represents a subset of the complete time tree, with a
request that occurs at the current state.

TheAU operator requires that the terminating condition eventually happen
That is, there are two ways Formula 10 can fail. First, if the busy signal is in
tive somewhere between req and ack, and second, if the ack never occurs
Because it makes a demand on its terminating conditions,AU is known as a
strong operator.

current state r

r r

r
r

r

r

r
r

r
r
r

r

q q q

q
q q
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EU means “for some path, until”. The computation tree forEU is left as an
exercise for the reader.

At this point, the eight basic CTL operators AG, EG, AF, EF, AX, EX, AU,
andEU have been covered. While combinations of the basic CTL tempora
operators presented here can provide a lot of expressive power, complex 
formulas are difficult to read and write. To overcome this limitation, RuleBa
provides higher-level operators that add more expressive ability.

5.4 Sugar Operators

Sugar adds several operators on top of CTL in order to answer real needs
arise in practical formal verification. Although many Sugar formulas can b
expressed in pure CTL, many other formulas are practically impossible to
express in CTL because they would be too complex. Sugar is also stronger
pure CTL in the theoretical aspect, mainly in its ability to express any regu
expression, as described in  Section 5.4.6.

Experience shows that in CTL it is easy to write formulas that are syntactica
correct, but their meaning is completely different from what the user had in
mind. Sugar protects you from making these kinds of mistakes in two way
One way is to limit the formulas syntactically. For example, in some fields 
certain Sugar operators only Boolean expressions are allowed.  The othe
is to produce a warning when a formula is suspected of having a wrong m
ing.  For more details see Section 5.7, Writing Correct Formulas.

Experience indicates that almost all useful formulas fall into the ACTL [SG9
subset of CTL, (i.e., they require that properties will hold alongall paths rather
than insome paths). For this reason, the new Sugar operators should be in
preted as being applied toall paths (as if there is anA in front of them).

Another observation is that the strong versions of the CTLuntil  operator (AU
andEU) are not suitable for the formulation of many properties. Expressin
weakuntil  (in which there is no demand that the terminating condition mus
eventually occur) in CTL is laborious and error prone. Sugar provides the w
RuleBase: a Formal Verification Tool
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until  operator, and in addition,  provides both weak and strong versions o
some higher-level operators (next_event, within , etc.).  A strong operator
name has ‘!’ as its last character (e.g.,within! ).

The following sections describe Sugar operators, beginning with the simp
ones.

5.4.1 Bounded-Range Operators

5.4.1.1 AX[n]

The first Sugar operator isAX [n]. This is simply shorthand for n timesAX . For
example,

AG(req ->AX [3] ack) (For. 11)

is equivalent to

AG(req ->AX AX AX  ack) (For. 12)

This can be read as “whenever there is a request, an acknowledge will be
received three clocks later”.

5.4.1.2 ABF

The operatorABF[i..j](f) constrains the future of the operatorAF between i
and j clocks from where it is applied. For instance, the following example
exhibits the rule “whenever there is a request, an acknowledge will be rece
within 1 to 3 clocks”:

AG (req ->ABF[1..3](ack)) (For. 13)

The equivalent CTL expression of this simple fact is:

AG (req ->AX  (ack | AX  (ack | AX ack))) (For. 14)
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5.4.1.3 ABG

The operatorABG[i..j](f) constrains the future of the operatorAG between i
and j clocks from now. For example, the following expresses the rule “whe
ever there is a request, the busy signal is locked and stays locked for the n
clocks”:

AG (req ->ABG[0..4](busy)) (For. 15)

The equivalent CTL expression is:

AG (req -> (busy &AX (busy &AX  (busy &AX  (busy &AX  busy))))) (For. 16)

5.4.2 Until Operators

5.4.2.1 until

As discussed in Section 5.3.4, theAU operator is a strong operator. That is, th
formula

A [p U q] (For. 17)

means that q must eventually occur, and that p must be true on all paths un
occurs. Theuntil operator is the weak version of theAU operator. It is written:

p until  q (For. 18)

and means that for all paths, p is true until q occurs. However, the weakuntil
does not require that q eventually occur (in that case p must be true forev
For example, to express the rule “always, once a transaction starts, there w
no additional transaction starts before the end of the first transaction”, you
use the following Sugar formula:

AG (trans_start -> AX (!trans_startuntil  trans_end)) (For. 19)
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Formula 19 does not require that every transaction end, only that a new o
does not start before the first one ends.

Another way to write the weakuntil  operator is:

A [p W q] (For. 20)

which uses syntax that mimics that of CTL.

5.4.2.2 until!

Theuntil ! operator is a strong version of theuntil  operator. It is equivalent to
the CTL operatorAU.

5.4.2.3 until_

Formula 18 requires that p be true until, but not including, the cycle on whic
is true (if there exists such a cycle). The statement

p until_  q (For. 21)

means “p until q” and also requires that at the first cycle where q is true (if
all), p is also true.

5.4.2.4 until!_

Theuntil !_ operator is a strong version of theuntil_  operator.

5.4.3 Before Operators

5.4.3.1 before

Thebefore operator has the format

p before q (For. 22)
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and means that on all paths, the first p must happen before or together with
first q. Thebeforeoperator is a weak operator, that is, it does not require tha
eventually happen.

5.4.3.2 before!

Thebefore! operator is a strong version of thebefore operator. Thus, the for-
mula:

AG (req -> (data_receivebefore! ack)) (For. 23)

requires that after request, data_receive is asserted before or together with
and data_receive must eventually be asserted.

5.4.3.3 before_   and   before!_

(p before_ q) and (pbefore_! q) are similar to (pbefore q) and (pbefore! q),
but require that the first p happen strictly before (and not together with) the
q.

5.4.4 Next_event

next_event is a conceptual extension of theAX  operator.  WhileAX talks
about the next cycle,next_eventtalks about the next time a certain event
occurs.  Variations ofnext_eventare extensions of theAX [n] andABG[i..j]
operators.

5.4.4.1 next_event(p)(q)

The operatornext_event(p)(q) means that the next time that p occurs, q will
occur. For instance, imagine an arbiter in which requests are processed in
order they are received, unless there is a high priority request, in which ca
must be processed immediately. For simplicity’s sake, assume that there is
one requestor that can send high priority requests. Then a rule might be:
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Provided by special agreement with IBM



125 CHAPTER 5

igh

 must
h pri-
ust
y

he

or-

ntu-

ll
t be
at is,
“whenever a high priority request is received, the next grant must be to the h
priority requestor”. Here is the rule in Sugar:

AG ((req & high_priority) -> AX (next_event(grant)(dst = high_priority_requestor)))(For. 24)

It is important to note that the operator next_event(p)(q) does not require that
the event p eventually happen. It only states that if p does happen, then q
happen. Thus, Formula 24 can be more precisely read as: “whenever a hig
ority request is received, if there is eventually a grant, then the first grant m
be to the high priority requestor”. Because this operator does not make an
demands on the eventual occurrence of p, it is known as the weaknext_event
operator. The strongnext_eventoperator, presented in Section 5.4.4.2, has t
added semantics of “p must eventually occur”.

There is one limitation on the use ofnext_event(p)(q) and all its incarnations.
While q can be any Sugar formula, p must be a Boolean formula, (i.e., a f
mula with no temporal operators).

5.4.4.2 next_event!(p)(q)

The operatornext_event!(p)(q) is called the strongnext_event operator. It
means the same asnext_event(p)(q) with the additional meaning that p must
occur. Thus, the strong version of Formula 24:

AG ((req & high_priority) -> AX (next_event!(grant)(dst = high_priority_requestor)))(For. 25)

states that “whenever a high priority request is received, a grant must eve
ally occur, and the next grant must be to the high priority requestor”.

5.4.4.3 next_event(p)[n](q)

The operatornext_event(p)[n](q) means “on the nth time that p occurs, q wi
occur”. For example, suppose that for every request, 4 ready signals mus
sent, and that on the last one, a signal called last_ready must be sent. Th
after a request, the 4th ready signal must be accompanied by the signal
last_ready. This can be expressed in Sugar as:
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AG (req -> AX (next_event(ready)[4](last_ready))) (For. 26)

As with next_event(p)(q), this operator is a weak operator—it does not requ
that p occur the specified number of times. For the corresponding strong o
tor, see Section 5.4.4.4.

5.4.4.4 next_event!(p)[n](q)

This is the strong version of thenext_event(p)[n](q) operator. It has the same
meaning as the corresponding weak operator of Section 5.4.4.3, with the 
tional meaning that p must occur at least n times. Thus, the strong version
Formula 26:

AG (req -> AX (next_event!(ready)[4](last_ready))) (For. 27)

states that after a request, there must be at least 4 ready signals, and the
ready signal must be accompanied by the signal last_ready.

5.4.4.5 next_event(p)[i..j](q)   and   next_event!(p)[i..j](q)

The formula

next_event (p)[2..4](q) (For. 28)

states that in the second, third, and fourth times that p occurs, q occurs as w
Formula 29 is a stronger version of Formula 28, which also requires that p
occur at least 4 times on every possible path.

next_event!(p)[2..4](q) (For. 29)

5.4.4.6 next_event_f(p)[i..j](q)  and   next_event_f!(p)[i..j](q)

The formula

 next_event_f(p)[3..4](q) (For. 30)
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states that in one of the third or fourth times that p occurs, q should occur
well. Formula 31 is a stronger version of Formula 30, which also requires 
p should occur at least 3 times on every path where q occurs on the third p,
at least 4 times on others.

 next_event_f!(p)[3..4](q) (For. 31)

5.4.5 Within and Whilenot

The behavior of many reactive systems is repetitive, and consists of a few b
types of transactions that take place again and again. In such systems, the
properties that are only interesting  within transaction boundaries. Thewithin
andwhilenot operators can help formulate such properties by limiting the
scope of formulas to given intervals. By handling boundary conditions,within
andwhilenot let you focus on the actual properties to be checked, without w
rying about extreme cases.

5.4.5.1 within(p,q)(r)

The operatorwithin (p,q)(r) means that “formula r is true in the period of tim
starting when p is true and ending one cycle before q is true”. For instance
can express the requirement “between a request and its acknowledge, the
signal must remain asserted” as follows:

AG( within (req,ack)(AG busy ) ) (For. 32)

Compare this formula with Formula 15, where we knew exactly how long bu
should be asserted.  In Formula 32, we express the fact that the busy sign
should remain asserted for a period of time without knowing in advance
exactly how many clocks that will be, or whether it is exactly the same num
of clocks each time.

within is a weak operator—it does not require that either of the conditions p
q ever happen. But, if in some computation, p occurs and q never follows, t
the formula r should hold at p and remain true forever. For the correspond
strong operator, see Section 5.4.5.2
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The effect of thewithin (p,q)(r) operator onAF is more interesting. Recall that
the standard meaning ofAF is “for all paths, at some point in the future”. By
restricting theAF operator with thewithin (p,q)(r) operator,AF means “for all
paths, at some point (in the future) between p and q”. For instance, suppo
you want to express the fact that before an acknowledge can be sent, data
be received. This can be done using the following Sugar formula:

AG (within (req, ack)(AF data_receive)) (For. 33)

Because theAF operator is restricted bywithin , its scope ends at the acknow
edge. Thus, the formula expresses the fact that for all paths that start at the
of a request, at some time in the future but before an acknowledge signal
asserted, data is received.

In the general case,within (p,q)(r) trims the tree of computations and check
the validity of formula r on this trimmed tree rather than on the full tree of
computations. The trimmed tree only contains the cycles of every path betw
p and a cycle before q. Thus, the trimmed tree could have finite paths as w
In fact, in the strongwithin !(p,q) operator (Section 5.4.5.2) one may think o
the trimmed tree as only having  finite branches.

5.4.5.2 within!(p,q)(r)

This is the strong version of thewithin (p,q)(r) operator. It has the semantics o
thewithin (p,q)(r) operator, with the additional requirement that p must even
ally occur and q must eventually follow (p may occur at the same time as 
Thus, the strong version of Formula 32:

AG (within !(req,ack)(AG busy)) (For. 34)

states that “after every point in time there is a request that is followed by a
acknowledge signal, and between the request and its acknowledgment, b
should be active”.
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5.4.5.3 whilenot(q)(r)

The operatorwhilenot(q)(r) means that in every computation formula r is tru
now and stays true at least until a clock before q is true. If q is true now th
whilenot(q)(r) is also true. For instance, Formula 32 can also be expresse

AG (req ->whilenot(ack)(AG busy)) (For. 35)

The operatorwhilenot(q)(r) is a weak operator, that is, it does not require th
q eventually happen.

whilenot(q)(r) is a derivative of thewithin  operator. It may be thought of as
within (now,q)(r).

5.4.5.4 whilenot!(q)(r)

This is the strong version of thewhilenot(q)(r). It has the same meaning as th
whilenot(q)(r) operator, with the addition that q must eventually happen.

5.4.6 Sequence

The sequence is a Sugar construct used to describe computation paths o
which some formula must hold. It looks like a regular expression, and its
semantics resemble the semantics of regular expressions. The sequence
the world of hardware design. It can be regarded as a textual representation
timing diagram, or as a generalized control program for simulation. Its ma
advantage is the simplicity of writing certain properties that are difficult to f
mulate using other CTL and Sugar operators.

The sequence has two parts, a list of events {e1, e2, ...} and a Sugar form
(f).

{ e1, e2, ... , en } (f) (For. 36)

The sequence can be regarded as anif  statement, in which the event list is a
condition that indicates when to check the formula. It means "if at some c
IBM Haifa Research Laboratory, Israel
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putation path all the events take place in the order they are defined, then 
formula must hold on this path at the last cycle of the last event in the list"
event may last more than one cycle). A comma between two events deno
move of one cycle forwards (however, if an event takes zero cycles, a com
either before it or after it is ignored).
An event can be one of the following:

1. p
 A Boolean expression ‘p’.
 The expression ’p’ holds for one cycle.

2. p[=i]
p is a Boolean expression.
p occurs exactly i times, not necessarily consecutively.

p[=3] is equivalent to {!P[*], P, !P[*], P, !P[*], P  !P}

Example

{read, write[=3], cancel}

3. p[>=i]
p is a Boolean expression.
p occurs at least i times, not necessarily consecutively.

p[>=3] is equivalent to {!P[*], P, !P[*], P, !P[*], P, true[*]}

4. p[>i]
p is a Boolean expression.

p occurs more than i times, not necessarily consecutively.
Examples
{read, write[>3], cancel}

5. p[<=i]
p is a Boolean expression.
p occurs at most i times, not necessarily consecutively.

6. p[<i]
p is a Boolean expression.
p occurs less than i times, not necessarily consecutively.
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7. p[>i,<j]
p is a Boolean expression.

p occurs more that i times but less than j times, not necessarily consec
tively.

i and j are natural numbers ( i>=0 , j>i+1).

8. p[>=i,<j]
p is a Boolean expression.

p occurs at least i times but less than j times, not necessarily consecuti

i and j are natural numbers ( i>=0 , j>i).

9. p[>i,<=j]
p is a Boolean expression.

p occurs more that i times but at most j times, not necessarily consecut

i and j are natural numbers ( i>=0 , j>i).

10. p[>=i,<=j]
p is a Boolean expression.

p occurs at least i times but at most j times, not necessarily consecutive

i and j are natural numbers ( i>=0 , j>=i).

true.
Skip one cycle.  Equivalent to “AX”.

‘ [*] ’.
Skips zero or more cycles.  Equivalent to “AG”.

11. ‘goto p’
p is a Boolean expression.
Go to the next time that p occurs.

Equivalent to {!p[*], p}.

Example

{req, goto ack,goto busy, end} (done)

12. ‘p holds_until q’,

p and q are Boolean expressions.
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p holds (true) until q occurs
Equivalent to {(p & !q)[*], q}.

Example

{req, busyholds_until done} (ack)

The following sequences match the above one:

{req, busy, busy, busy, done}

{req, done}

13. ‘p holds_until_ q’,

 p and q are Boolean expressions.

q holds until (inclusively) q occurs.
Equivalent to {(p & !q)[*], p&q}.

14. Q[n]
A sub-sequence Q followed by ‘[n] ’, where n is a positive integer.
The sub-sequence holds n consecutive times.

15. Q[*]
A sub-sequence Q followed by ‘[*] ’.
The sub-sequence holds  zero or more consecutive times.
(Note: If Q is not a simple Boolean expression, then this kind of event m
be followed by a simple Boolean event.)

16. Q[+]
A sub-sequence Q followed by ‘[+] ’.
The sub-sequence holds one or more consecutive times.
(Note: If Q is not a simple Boolean expression, then this kind of event m
be followed by a simple Boolean event.)

17. P || Q
Two sub-sequences P and Q separated by‘||’.  (or-between-sequence).
Either the first sub-sequence holds, or the second sub-sequence holds
example, the formula

AG ({p,{q,r} || {s,t},u}(v))

is equivalent to:
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(AG ({p,q,r,u}(v))) & (AG ({p,s,t,u}(v)))

18. P && Q
Two sub-sequences P and Q separated by‘&&’.  (and-between-sequence).
P and Q must occur at the same time (start and end at the same cycle)

P and Q must be of the same length (same number of cycles).

Examples

If read arrives before write and both read and write are not cancelled (a
get a grant) then

read will be serviced before write.

{[*],

{read, (!cancel)[*], grant_read}&&
{true, write, (!cancel)[*], grant_write}}

(operate_readbefore operate_write)

Exactly 3 write events should occur during the sequence:

{...... {req, read[+], flush, cancel}&&  {write[=3]} .......}( ... )

19. P[i..j]
P is a subsequence

i and j are natural numbers and  i>=0, j>=i, j!=0

P holds between i to j times.

Examples

{read, write[7..10], flush}

{read, write[0..3], flush}[1..4]

20. P[i..]
P is a subsequence.

i is a natural number and  i>=0

P holds at least i consecutive times.

Example

{read, write[7..], flush}[2..]
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21. P ~ Q
Two sub-sequences separated by ‘~’ (P~Q).

The first cycle of Q starts when P reaches its last cycle.

Examples

{ start, req,goto busy~done, end} (ack)

{ start,  {{read, busy[*]} || {write, flush }}~ {done, ready} } (ack)

 is equivalent to:

{start,  {{read&done}||{read,busy[*], busy&done}} || {write, flush&done}
,ready } (ack)

22. P ->Q
Two sub-sequences separated by ‘->’  (P->Q).
If a path that is compatible with P occurs, it must be followed (starting at the same cy
where P ends) by a path whose prefix is compatible with Q.

Examples

req -> (ackuntil (readyuntil  (busyuntil  end)))

is equivalent to:
{req} -> {ack[*], ready[*], busy[*], end}

{start, data1, data2, error} ->

                    (AX (cancel_data1, &

                          (AX (cancel_data2 &

                        AX(idle until  error)))))

is equivalent to:
{start, data1, data2, error} ->

           {true, cancel_data1,  cancel_data2,  idle[*],  error}

23. P =>Q
Two sub-sequences separated by ‘=>’ (P=>Q).
If some path compatible with P occurs, then it must be followed (starting one cycle af
ends) by a path whose prefix is compatible with Q.

Examples

{start, data1, data2, error} =>
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                    (AX (cancel_data1, &

                          (AX (cancel_data2 &

                        AX(idle unti l error)))))

is equivalent to:
{start, data1, data2, error}=>

           { cancel_data1,  cancel_data2,  idle[*],  error}

24. P ->Q!
P, Q are sub-sequences.
If a path that is compatible with P occurs, then it must be followed (starting at the sam
cycle where P ends) by a path that is compatible with Q and so, reaches Q’s end (i.e.
reaches the last cycle of Q):

Comments: Strong version of P->Q

Example:

{a,b} -> {c,d[*],e}!   - e must happen

{a,b} -> {c,d[*], e} - e may not happen (if d is ‘forever’) i.e.

               a, b&c, d, d, d, d, d,d ,d ..... - is a valid sequence

req -> (ackuntil  (readyuntil  (busyuntil!  end)))

{req} -> {ack[*], ready[*], busy[*], end}!

25. P => Q!
P, Q are sub-sequences.
The same as P->Q!, with the difference that Q starts one cycle after P reaches its end

Examples:

• Additional ways to expressAG (waiting ->AX next_event (done)(AX idle
)):

• {[*], waiting, !done[*], done, true}(idle)

• AG {waiting, goto done}(AX  idle )

•  {[*], waiting, goto done, true}( idle )

• The fourthready afterstart should be accompanied withresult=ok:

{[*], start, { !ready[*], ready }[4] }( result=ok )
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The next example is interesting from a theoretical point of view. It is a Sug
formula that cannot be expressed in bare CTL.  It expresses the fact that 
true at every even cycle (0, 2, ....):

{ {true, true}[*], true} (f)

Sequences may be useful for showing interesting paths, even if you don’t
intend to find bugs. Suppose that you want to see a scenario in which a c
line is modified, and later becomes exclusive without being invalidated in
between. The following sequence claims that this path is impossible, and 
counter example will demonstrate such a path (if one exists):

{ [*], modified, !invalid & !exclusive[*], exclusive } (false)

Falseis a formula that can never be true, so a counter example will be provi
if the sequence in braces is possible.

5.5 Multiple-Clocks in Formulas

Sometimes, the design under verification has more than one clock, and it
should be verified in several clock ratios.  Assume for example that there 
two clocks, clk_a and clk_b, that we want to verify in two ratios: 1:1 and 1
Assume also that the following formula is written for ratio 1:1.

AG(p-> AX  (q-> AX  (r until  s))) (For. 37)

If  signals p,q,r,s, only depend on the slower clock, clk_b, then the formula
should be written differently for ratio 1:2.

AG((p &clk_b) ->AX [2] (q -> AX [2] ((r|!clk_b) until  (s&clk_b)))) (For. 38)

To avoid the need to change formulas when the clock ratio is changed, the
can specify the clock according to which the formula should behave, and 
translation will be done automatically. In our example, the user should spe
the clock as follows:

AG(p-> AX  (q-> AX  (r until  s))) ::clk=clk_b (For. 39)
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5.6 Quantification Over Data Values

When specifying the behavior of data, it is often necessary to refer to spe
data values. For example, suppose that we want to say that the data read i
ing areadoperation will be written out in the nextwrite operation. One way to
do this is to write a formula for each data value:

%for  i in 0..31 do            -- assuming that the data type is 0..31

    formula { AG( (read & data_in=i) ->next_event(write)(data_out=i) ) }

%end

This may be inefficient and even impossible if there are too many values. 
above can be done in one formula using theforall  construct as follows:

forall  i: 0..31:

  formula { AG( (read & data_in=i) ->next_event(write)( data_out=i) ) }

The syntax offorall  is:

forall  variable : type :

wherevariable is an EDL variable that is defined only for the purpose of qua
tification. It should not be defined elsewhere.typeis any legal type, including a
bit vector.

More examples:

forall  i(0..31):boolean:
  formula { AG( (read & data_in(0..31)=i(0..31)) ->
                          next_event(write)(data_out(0..31)=i(0..31)) ) }

forall  i: 0..15:

formula  { AG( counter=i ->AX  counter=(i+1)mod 16 ) }
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Although it looks natural to useforall with formulas, it is also possible to use it
anywhere else in EDL. For example:

forall  i(0..31):boolean:
define data_in_is_i   := data_in(0..31)=i(0..31);

             data_out_is_i := data_out(0..31)=i(0..31);

formula { AG( (read & data_in_is_i) ->next_event(write)(data_out_is_i)
) }

forall  adds extra state variables. In many cases, this will not cause size pr
lems, provided that you have a good BDD order that includes these variab

5.7 Writing Correct Formulas

The semantic model of CTL and Sugar, described in Section 5.2, is someti
counter-intuitive. While reasoning about computationtrees has its benefits,
users often think in terms ofpaths. Sugar operators are designed to prevent
problems that result from misunderstanding the semantic differences. How
ever, there are still cases in which you should be careful. This section attem
to characterize some of these cases.

In many cases, formulas that are notcausalhave a meaning that does not coi
cide with the intention of the user. Bycausal, we mean formulas in which an
event B depends on event A only if event A occurs no later than event B. F
example, assume that you want to state the following rule: “every grant is
immediately preceded by a request”. Since CTL cannot reason about the
one may be tempted to write:

AG( (AX  grant) -> request ) (For. 40)

This formulation relies on the future and is incorrect; it means “if grant hol
in all the next states of some state, request must be active in this state”.  I
misses all the states that have grant active on some, but not all, of their su
sors. The correct way is to write the following causal formula:

AG( !request ->AX  !grant ) (For. 41)
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We recommend that you donot use CTL formulas that contain theE operator
(EG, EF, EU, andEX) unless a property cannot otherwise be formulated (f
example, “AG EF p”  can find a weak form of deadlock). The main reason f
this recommendation is that it is impossible to produce a counter-example
when anE formula fails. The negation of anA formula (AG, AF, AU, and
AX ), or of a Sugar formula, is equivalent to someE formula, so we also rec-
ommend that you do not negate such formulas.

RuleBase employs two methods in order to protect users from these, and o
common mistakes. One method is to limit Sugar operators in a way that w
prevent unintended use. For example, thewithin  operator can take only Bool-
ean expressions (no temporal operators) in itsstart andend fields.  The other
method is to issue warnings for suspected formulas. The cases in which s
warnings are issued are:

• For any type ofuntil  or before operator with two temporal operands.

• If the right operand of anuntil  operator contains the ‘->’ operator.

• If the operand of anAF or anEF operator contains the ‘->’ operator.

• For a temporal sub-formula on the left side of an “->” or on any side of 
‘<->’ operator.

• When the operator ‘|’ (booleanor) has two temporal operands.

It should be emphasized thatthere are correct formulas that do not obey the
above rules. However, it is important to write these formulas very carefully
and to use them only if you are a very experienced user. Most of the prope
that are needed in daily use can be formulated while adhering to these ru

RuleBase can produce textual explanations of Sugar formulas as a formu
debugging aid. To see formula explanations select a rule and click theExplain
push button. These explanations may sometimes help find errors in formu
by presenting them in a different manner.
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5.8 Satellites – More Expressiveness

Although Sugar increases expressiveness capabilities, there are still prop
that cannot be expressed, and others that are too complicated to formulat
Satellites may provide solutions in many of these cases. A satellite is a sta
machine that records events that occur in the design under verification. Fo
las can then refer to these past events by accessing the satellite’s internal s
Satellites do not affect the design because information only flows from the
design to the satellite (except when fairness is used in certain ways).

For example, assume that a queue of depth k reads data on one side and
it on the other side. Assume that we want to prove that the queue never c
tains more that k data items. Formulation of this property in Sugar is diffic
but it becomes easy with a satellite. An up/down counter is defined, whos
range is 0 to k, and which is incremented on reads and decremented on wr
It is now necessary only to verify that the counter never exceeds k. We can
the same counter to check for an underflow: Its value should never be less
0.

Some formulas might have become easier if one could talk about past eve
Assume that we want to state that “if p occurs, then at that time q should b
activesince the last occurrence of r”.  We can define the operatorsince as a
module:

module since( e1, e2 )( e1_since_e2 )

{

var state:boolean;
assign next(state) :=

        case
                      !e1 : 0;

                      e1 & e2 : 1;

       else : state;

        esac;
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define e1_since_e2 := (e1 & e2) | (e1 & state);

}

and use it to formulate the required property:

instance i1 : since( q, r )( q_since_r );

formula  { AG ( p -> q_since_r  ) }
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Provided by special agreement with IBM



CHAPTER 6  Sugar – Formula Examples
e is
at-
f

s in
find

e
hem
6.1 Overview

In this chapter we present a list of useful formula patterns. Its main purpos
to help the novice user, but experienced users may also find interesting p
terns. We want to emphasize the fact that one does not need to know all o
these patterns to perform successful verification work. Most of the formula
an average project only employ a small set of patterns. However, you may
ideas that will simplify your work.

The following list is dynamic and we expect it to continue to grow. If you hav
additional patterns that may help others, send them to us and we will add t
to this list.

Note:This chapter is brought here in a very preliminary form.

6.2 Basic Formulas

• ok is always true:
AG ok
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• some_requirement is always true when reset is inactive:
AG ( !reset ->some_requirement )
Note:Many designs begin in an unspecified state, and are being stabiliz
during reset. Failure of a formula during reset is not interesting, so we filt
this time interval as shown above.

• Variablestate can never have the valueerror:
AG( state != error )

• Variablesstate1 andstate2 are never in the same state:
AG( state1 != state2 )

• Variablesstate1 andstate2 are never in statecritical together:
AG( state1 != critical | state2 != critical )
   or
AG !( state1 = critical & state2 = critical )

• If busy is true thenworking is also true:
AG( busy -> working )

• If almost_done is true now,done will be true in the next cycle:
AG( almost_done -> AX done )

• If hold becomes active, it remains active for at least one more cycle:
AG( rose(hold) -> AX hold )
Note: rose(hold) is true if hold is currently 1 and was 0 in the last cycle.

• got should rise 3 cycles afterget rises:
AG( rose(get) ->AX [3]( rose(got) ))

• If we aregoing_to_abort now, weabort within 0 to 4 cycles:
AG( going_to_abort -> ABF[0..4]( abort ) )

• If master1_needs_bus becomes active,master2_accesses_bus should be
inactive for at least 3 cycles, beginning from the next cycle:
AG( master1_needs_bus -> ABG[1..3]( !master2_accesses_bus ) )

• Counter is always between 3 and 7:
AG( counter >= 3 & counter <=7 )
   or
AG( counterin { 3,4,5,6,7 } )
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• Status never has the valueswarning or error or fatal:
AG !( status in { warning, error, fatal })
   or
AG( status != warning  & status != error  & status != fatal )

• At most one of the signalsx, y or z is 1 (mutual exclusion):
AG( x+y+z <= 1 )

• If error becomes active, it will remain active forever:
AG( error -> AG error )

6.3 Arrays

• Define a bit vector vec of 4 bits that may have at any moment any of the
ues 3, 8, or 14:
var vec(0..3): boolean; assignvec(0..3) := {3,8,14};
Note:The above isNOT equivalent to“var  vec(0..3): {3,8,14};” which
declares an array of four enumerated signals, each of them may have on
the values 3, 8, or 14.

• If the head pointer of a queue is equal to thetail pointer,queue_empty must
be true:
AG( (head(0..3) = tail(0..3)) -> queue_empty )

• The bitwiseand of vectorsvec(0..7) andmask(0..7) has at least one bit set:
AG( (vec(0..7) & mask(0..7)) != 0 )

• Exactly one bit of the bit vectorv(0..7) is 1:
AG( (%for  ii in 0..7do v(ii) + %end 0)  = 1 )

• The above is expanded to:
 AG( v(0)+v(1)+v(2)+v(3)+v(4)+v(5)+v(6)+v(7)  = 1 )

6.4 Before

• If a request occurs, then anack should occur (strictly) before the next
request:
AG( request -> AX (ackbefore_request) )

Notes:

• The secondrequest may not occur, in which caseack is not required.
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• before_ (with an underscore) means strictly before:request will come (if
at all) at least one cycle afterack.

• TheAX means that we expectackto come at least one cycle afterrequest.

• Another way to formulate the above requirement, which allows more
explicit specification of boundary conditions:
{ [*], request, !ack[*], request }( false )

Notes:

• The path begins with any sequence of events. Then arequest occurs, and
(beginning from the next cycle)ack is inactive for zero or more cycles.
Finally, there is anotherrequest. Thefalse on the right hand side means
that if such a sequence exists then the formula should fail.

• A technique we use is:
Instead of specifying what should happen, specify what should not hap
(as a bad sequence of events), and require false to be satisfied at the e
this sequence. Since false is a formula that may never be satisfied, e
ence of the bad sequence in our design will cause RuleBase to produ
counter-example.

6.5 Until

• If request is asserted, it will remain active until (inclusive)grant:
AG( request -> ( requestuntil_ grant ))

Notes:

• grant may never occur after thisrequest, in which caserequest must stay
active forever.

• until_  (with an underscore) means thatrequest must also hold at the first
cycle wheregrant holds.

• Another way to formulate the above requirement:
{ [*], request & !grant, !grant[*], ! request }( false )

• If request is asserted, it will remain active until (not inclusive)grant:
AG( request -> AX ( requestuntil grant ))
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• Other ways to formulate the above requirement:
{ [*], request, !grant[*], ! request & !grant }( false )
   or
{ [*], request, !grant[*] }( request )

6.6 Forall

• If data_in(0..7) has some value duringread, in the next time thatwrite is
activedata_out(0..7)will have the same value:
forall  x(0..7):boolean:

AG( (read & data_in(0..7)=x(0..7)) ->next_event(write)(data_out(0..7)=x(0..7) ) )

Notes:

• forall  is a means for applying a formula to multiple values at a time. It is
equivalent to writing a separate formula for each value that theforall  vari-
able can take:
  AG( (read & data_in(0..7)=0) ->next_event(write)(data_out(0..7)=0) )
  ...
  AG( (read & data_in(0..7)=255) ->next_event(write)(data_out(0..7)=255) )

• forall  has its penalty—an extra state variable (8 bits in the example abo
—but this variable does not usually contribute excessively to the size p
lem, if the BDD order is reasonable.

6.7 Eventuality

• If request is asserted,ack should be asserted in the future, beginning from
the next cycle:
AG( request -> AX AF ack )

• If request rises,ack should be asserted at the same cycle or in the future
AG( rose(request) -> AF ack )

• No matter what is the current state, it is always possible to reach a stat
wheremstate=idle:
AG AF mstate=idle
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6.8 More Sequences

• If grant is active, and there is noretry in the next cycle,busy must become
active two cycles aftergrant:
{ [*], grant, !retry }( AX busy )
  or
{ [*], grant, !retry, true }( busy )
  or
{ [*], grant, !retry, !busy }( false )
  or
AG( grant -> AX ( !retry -> AX busy ))

• The fourthdata_ready afterstart should be accompanied bylast_data:
{ [*], start, {! data_ready[*], data_ready}[4] }( last_data )

• The fourthdata_ready afterstart should be accompanied bylast_data,
unless there was anabort in the middle:
{ [*], start & !abort, {! data_ready & !abort[*], data_ready & !abort}[4] }( last_data )
IBM Haifa Research Laboratory, Israel
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7.1 Overview

There are many possible ways to structure a verification project. The basi
ments of all structures are the same: EDL statements, formulas, modes, a
rules. However, as the project becomes more complicated, spans a longe
period, and more people become involved, it becomes more important to u
standard methodology.

The main contributor to project complexity is Behavioral partitioning (see
“Behavioral Partitioning” on page 157). Behavioral partitioning is an effecti
method to attack the size problem. In this method, the environment is deg
ated in various ways to reduce the size of the design to be verified. Formu
should then be run in multiple reduced environments to cover the full envi
ment. Unless managed carefully, these multiple environments may get ou
control.

This chapter suggests a methodology of managing multiple rules, modes,
environments. The methodology is a result of our experience in many form
verification projects. Section 7.2, Defining Rules and Modes describes the
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tax and semantics of rules and modes. Section 7.3, Using Modes to Limit
Environment shows an example of how to approach the size problem by u
modes, and Section 7.4, Verification Project Management suggests how t
structure a verification project that has multiple environments.

7.2 Defining Rules and Modes

RuleBase is rule oriented. A rule is the basic entity that can run. A rule defi
a group of related formulas to be verified in one run. It may also re-define p
of the design or environment, thereby overriding the default behavior for th
specific run.

The rule syntax is as follows:

rule name {

   “optional textual description of the rule”

   -- at least one formula

formula  “optional textual description” { Sugar-formula }

formula  “optional textual description” { Sugar-formula }

   ...

   -- the rest of the statements are optional:

envs rule-name, rule-name, ... ;

formulas rule-name, rule-name, ... ;

test_pins  signal-name, signal-name, ..., rule-name, rule-name, ... ;

inherit  rule-name, rule-name, ... ;

   <EDL statements (var, assign, define, instance, fairness)>

}
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A mode is a rule that cannot be run by itself, and is used to group and nam
formulas and/or environments. It can only be inherited by rules or by othe
modes. The syntax ofmode is exactly the same as the rule syntax, except th
it begins with the keywordmode instead ofrule.

A rule must contain at least one formula (not required in mode). All the oth
parts are optional. The order of statements in a rule is unimportant, and a
kinds of statements may appear numerous times. We recommend that yo
the textual description of formulas and rules. This description may help dur
the analysis of verification results and facilitate maintenance.

Rules and modes can inherit formulas and EDL statements from other rul
and modes:

• Theformulas statement inherits formulas.

• Theenvs statement inherits EDL statements.

• Thetest_pins statement forces RuleBase to keep some signals during t
reduction stage, even if they are not needed for verification of the spec
rule. Sometimes these signals are needed to provide a better understa
of counter-examples. Test pins can also be inherited. The statement
    test_pins enable, command;

forces RuleBase to keep track of signals enable and command, even if
are not needed for verification. These signals can later be viewed in Sc
windows (the Scope waveform display tool is explained in “Scope Wave
form Display Tool” on page 166). The statement
    test_pins <rulename>;

inherits alltest_pinsstatements that appear in rule <rulename>.  If <rule
name> is also a name of a signal in your design, then the above stateme
ambiguous, and RuleBase will issue the following error message:
    Name collision: <rulename> is both a rule and a signal

• The inherit  statement can be used to inherit the environments, formulas
and test pins.  The statement
    inherit rule_name;

is equivalent to:
RuleBase: a Formal Verification Tool
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    envs rule_name;formulas rule_name;test_pins rule_name;

Rules and modes may include EDL statements (var, assign, define, fairness
andinstance). The behavior assigned to signals by these statements overr
the signals’ behavior in the default environment (all EDL statements outsid
rules or modes are considered as the default environment). A rule may inh
EDL statements from other rules or modes using theenvs statement. Inherited
statements override the default environment, but are overridden by statem
written directly in the body of the rule. The exact hierarchy of behavior is a
follows:

1. Signal definition in the default environment overrides the definition in th
design (HDL).

2. Inherited signal definition overrides the definition in the default environ-
ment.

3. Signal definition in the running rule overrides inherited signal definition.

7.3 Using Modes to Limit the Environment

One way to approach the size problem is to limit the behavior of the enviro
ment, as mentioned in “Behavioral Partitioning” on page 157.  RuleBase u
information from the restricted environment to automatically reduce the size
the model to be verified. To help reductions, some signals in the environm
may be set to constant values, or restricted to some other simple behavior.
over-reduction is usually done by using modes, rather than in the default e
ronment, as shown in the example below.

Suppose that a design obtains a command and an address from the envir
ment, in addition to other things. The default environment will include the 
lowing lines:

var command: { load, store, add, jmp };

define CMD(0..2) :=           -- these are the actual command inputs of the design

case

        command=load  : 010b;
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to
        command=store  : 111b;

        command=add   : 011b;

        command=jmp   : 100b;

esac;

var CMD_VALID: boolean;

var ADDR(0..15):boolean;

assign next(ADDR(0..15)) :=

if  CMD_VALID then ADDR(0..15)else nondets(16)endif;

    -- ADDR is stable when CMD_VALID is active, and is free to change otherwise

Now, suppose that the design is too large, or verification takes too long, e
though you have used all basic methods to cope with size problems (see
CHAPTER 8:  Size Problems and Solutions).  In this case, you may want 
perform behavioral partitioning, and define modes that restrict the default
behavior. Several possibilities of such modes are shown below:

mode load_add {

    “two commands only.  CMD(0..1) become constant”

var command: { load, add };

}

mode eight_addr_bits {

    “bits 0..7 are 0.  bits 8..15 retain their behavior”

define ADDR(0..7) := 0;

}

mode load_add.eight_addr_bits {

    “combining the above two modes”

inherit  load_add, eight_addr_bits;

}

RuleBase: a Formal Verification Tool
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mode another_way_to_do_the_same {

var command: { load, add };

define ADDR(0..7) := 0;

}

Now, rules can run in the restricted environment by inheriting the above
modes.  For example:

rule some_property {

inherit  load_add.eight_addr_bits;

formula  { ... }

}

Since over-reduction limits the model checking run to only a subset of the p
sible input sequences, multiple runs of the same rule using different enviro
ments are sometimes necessary to provide good verification.  Managing t
multiple environments is described below in Section 7.4.

7.4 Verification Project Management

A well-formed verification project usually consists of the following element

• Default environment

• Modes that define restricted environments

• Modes that group related formulas

• Rules

Default environment:
The default environment should model the full behavior of the environmen
When writing the default environment, we recommend that you “forget” th
small details of how you intend to attack the size problem. This does not m
that the environment is written without considering this problem—on the c
trary, the environment models should be abstract and small.  Specific redu
tions should only be reflected in modes, which are to be written at a later st
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Modes that define restricted environments:
In many cases the default environment does not cause enough reduction o
design to be verified. Behavioral partitioning is one of the methods that m
help in these cases. In behavioral partitioning, multiple reduced environme
are defined, each of them is represented as a mode. Then each formula is
all these modes. (See Section 7.3.)

Modes that group related formulas:
The necessity to run each formula in multiple environments suggests that
keep formulas in separate modes, to be inherited by rules.

Rules:
In this methodology, the list of rules is a matrix of environment modes and
mula modes, in which each formula may run in many environment.

Example:

-- environment modes

mode read_only {

define command := read;

}

mode write_only {

define command := write;

}

-- formula modes

mode no_starvation {

formula  { AG AF  grant1 }

formula  { AG AF  grant2 }

}

mode no_collision {

formula  { AG !(grant1 & grant2) }

}
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-- rule matrix

rule read_only.no_starvation    {inherit  read_only, no_starvation; }

rule read_only.no_collision      {inherit  read_only, no_collision; }

rule write_only.no_starvation   {inherit  write_only, no_starvation; }

rule write_only.no_collision    {inherit  write_only, no_collision; }
IBM Haifa Research Laboratory, Israel
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8.1 Introduction

Size is one of the major obstacles to using formal verification for any desi
RuleBase is limited to designs that have several hundred state variables (
flops) after reduction, or several thousand before reduction. The number o
state variables is a rough estimate of design complexity; the size limit depe
on the complexity of the logic as well as the number of memory elements.
This chapter discusses techniques you can use to push the size limit for y
design as far as possible.

8.2  Design Partitioning

The simplest method to overcome size problems is design partitioning. Th
instead of trying to verify the entire design at once, you may verify it unit-b
unit. (See also “Design Partitioning” on page 205) The partitioning method
ogy is as follows:

1. Split the design into manageable partitions, whose interfaces are well
defined and easy to model.
RuleBase: a Formal Verification Tool
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2. When verifying a partition, replace its neighbors by abstract models. Th
models should only represent the interfaces with the verified partition, h
ing unnecessary details.

3. Verify the correct behavior of the abstract models of the neighbors by w
ing specific rules for this purpose.

While partitioning can be quite effective, there are obviously properties tha
can only be verified when the entire design is considered.  Partitioning als
requires extra effort in studying internal interfaces and writing models for
neighboring blocks.

8.3  Rule Partitioning

Before beginning model checking, RuleBase performs static analysis of th
design, and discards any signals that do not affect the rule being run. For e
ple, assume that the design has two outputs, each of which is affected by
ferent (possibly overlapping) set of input signals. If you run formulas that
check these two signals under the same rule, RuleBase will have to build a
resentation of the entire model. However, if you separate the formulas into
groups, in which one group checks the first output and the second group ch
the other output, RuleBase can build a partial representation in each case

In effect, by partitioning the formulas into different rules, you enable RuleBa
to automatically partition the design by only using that part of the design
required to check the specific rule.

Note:Accumulating related formulas in one rule may save time if the formu
refer to the same part of the design.

8.4  Behavioral Partitioning

Behavioral partitioning is a technique in which the input sequences of a des
are restricted to a subset of the legal input sequences. In this way, you all
RuleBase to remove parts of the design that deal with behaviors that are n
IBM Haifa Research Laboratory, Israel
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seen under the restricted inputs. For instance, if a design has two modes:
and write, controlled by an input signalcommand,  you can verify each of the
modes separately. You can do this by declaring two separate environments
command is constantly read, and the other is constantly write. This is the o
action that you need to take. When input signals are set to a constant valu
RuleBase will automatically eliminate the logic that is made redundant. Fo
example, if you setcommand to read, then RuleBase will know how to elimi-
nate all logic that is only activated under mode write.

8.5  Abstraction of the Environment

As we explained in CHAPTER 4 , writing environment models requires
extreme thought and attention. Models should be very abstract and gener
representing all possible behaviors of the real environment, while remainin
simple and small. Models with too much detail are not an advantage and 
result in unnecessary growth of the model.

For example, assume that the verified design is a cache controller, connect
a CPU on one side. It is not necessary to create a detailed model of the C
Rather, you can create an abstract model of the CPU to model enough of
produce legal sequences of commands and control signals. Only a few do
state variables are needed to model this behavior, as compared to the hu
number required for the concrete CPU.

8.6  Gradual Enlargement

Attacking a new design with full blown environments is not very effective
when the design is large. Experience suggests a gradual process, such a

1. Begin with simple, restricted environment models that cause the design
beover-reduced.

2. Verify the reduced design, fix errors in the environment models, correct
wrong formulas, and clean coarse design errors.

3. When the reduced design is stable enough, refine the environment. This
ally increases the effective size of the design.
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This method is most efficient during the development of environment mod
and rules, since at this stage the process is iterative and the turnaround ti
must be short.

A main reason that this method works is that the model built by RuleBase fo
design that contains bugs is usually much larger than it is for a cleaner de
in which the state space is less well-behaved. Thus, even if we could not ve
the first ‘buggy’ design for all legal input sequences, perhaps it can be don
after some of the bugs have been removed.

The following example is taken from an architectural-level verification. Con
sider a multi-processor system in which a number of CPUs are attached to
or more control units. During initial debugging, only one CPU is hooked up
clean major bugs out of the design (and environment).  Once one CPU wo
another is hooked up, and so on.

8.7  Abstraction of Internal Parts

If some part of the design is too complex or memory-intensive, and if the in
nal logic of that part is not directly involved in the property to be verified, it ca
be replaced by an abstract model. In effect, the part will now be regarded a
environment.

The replacement can be easily done in RuleBase. Define an abstract mod
replace the part. This model should drive all the signals driven by the orig
part (it can also use signals used by the part). RuleBase does the remaind
the work, linking the model to the design and getting rid of the original par
Figure 16 illustrates this method.
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FIGURE 16. Abstraction of an internal part

For example, if a design includes an arbiter on which the rest of the desig
should work regardless of the exact arbitration algorithm, that arbiter can 
replaced by an abstract one that only guarantees mutual exclusion. Such 
abstract arbiter for N devices can be modeled using log(N)+1 bits.

8.8  BDD Ordering

RuleBase uses a data-structure called a Binary Decision Diagram (BDD) 
represent the model. In a BDD, every state variable has a distinct level, fro
to n, where n is the number of state variables. The order in which the levels
allocated to the state variables has a large impact on the size of the BDD.
example, a design whose verification with a good BDD requires 30 MB of
memory, may require 300 MB or more with a bad order. Therefore, it is imp
tant to find a good order.

RuleBase can perform BDD reordering during model checking. This is kno
as dynamic BDD ordering. Because BDD ordering is extremely CPU-inten
sive, it is inactive by default. You should turn it on for initial runs, and feed th
resulting order back into RuleBase for all consecutive runs.

model

part P
i1

i2

o1

o2

design

for P
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Since reordering is time-consuming, it is good to reserve the final order for
in later runs of the same rule and even of other rules.

To do this, open theBDD order section of theOptions dialog box. TheCopy
Now line has two fields.

• To copy the final order at the end of the run to the<rulename>.orderfile in
which<rulename> is the name of the rule, selectto <rule>.order.

• To use this order on the next run, set theUse Order File field to
<rule>.order.

• To copy the order file back to a pool or orders that can be used by all ru
click to orders pool.

• To save the order for use by other rules using the same or similar reducti
set theUse Order File field  toorders poolon subsequent runs.

To automate control over ordering, use the various fields in theBDD order
section of theOptions dialog box.  See CHAPTER 10 Graphical User Inter-
face: Tool Controls and Options for more details.

8.9  Verify-Safety-OnTheFly

In its normal mode of operation, RuleBase will compute the reachable sta
space before checking any formula (the reachable state space is the set o
states of the design that can be reached from the initial states).  For a cla
formulas known asSafetyformulas, RuleBase can in many cases determine
falsity of the formula before it has completed the search of the reachable 
space. This method is know as Verify-Safety-OnTheFly.

The Verify-Safety-OnTheFly method has several advantages:

• A counter example or witness is produced as soon as a state is found i
which the formula does not hold true. Crude errors (that usually stem fr
incorrect formulas or environment models) are detected and displayed
quickly.
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• The iterative process of searching for the reachable states is often muc
more expensive (in terms of memory and time) for states located far fro
the initial state. For example, stopping after half the number of total iter
tions can sometimes save 90% of the total run time.

• It is not necessary to build a full Transition Relation (TR). In normal mod
checking, RuleBase builds a TR that represents all possible state transi
of the design. Since the TR is a bottleneck in large designs, you save a lo
time and energy since you don’t have to build it.

• Design errors often increase the model built by RuleBase. Models of err
ous designs tend to grow because the reachable state-space may inclu
many unexpected states. Finding and fixing errors in early iterations wh
the state space reached is still small may decrease design size and allo
later runs to go farther.

If the Verify-Safety-OnTheFly option is enabled, RuleBase attempts to chec
as many formulas as possible during the search for the reachable state sp
Formulas that cannot be verified in this mode will be identified automatica
and checked with the normal algorithm. The formulas thatDO NOT suit Ver-
ify-Safety-OnTheFly can be characterized as follows:

• Formulas that mix theA andE path quantifiers.

• Formulas that contain the temporal operatorsAF, AU, or EG, or any strong
Sugar operator (an operator whose name ends with ‘!’); these are know
liveness formulas, rather thansafety formulas.

• Formulas in which there is a ‘|’ (theor operator) between temporal sub-for
mulas.

• Formulas in which a weakuntil  has a temporal sub-formula on the right
hand side.

TheVerify-Safety-OnTheFly option will sometimes need to add auxiliary
state variables. For this reason, the user can control the option.  It is advis
to try this option and see if the additional state variables are a problem for
RuleBase (because of size limitations). In most cases, this option can be a
RuleBase: a Formal Verification Tool
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siderable time and space saver. RuleBase will not add any state-variables
rules of the formAG(p), where p is a combinational formula.

A useful trick when using this technique is to “and” your formulas together
into one big formula. The advantage of this technique is that the overhead
checking formulas on the fly is reduced considerably. RuleBase has an op
to make this automatic and transparent to the user. To operate this option
the following line to your rulebase.setup file:

setenv RB_BIG_AND 1

Using this option, you will “and” all safety formulas, but the results will be
given as if they were run separately. The RB_BIG_AND option will only ope
ate if all formulas in the rule are safety formulas; otherwise, it will run in th
regular OnTheFly mode.

To access theVerify-Safety-OnTheFly option, press theOptions push button
and open theVerification  section of theOptions dialog box.

TheVerify Safety OnTheFly option menu has two entries:

• Yes.All Safety formulas will be checked OnTheFly. You can specify a
parameter (a two-digit integer number) that determines the trade-off
between memory and time consumption during the run. The default for t
parameter is 10. If a bigger number is specified, the run will consume le
memory, but counter-example production will take longer. If a smaller nu
ber is specified, the run is likely to consume more memory, but producin
counter-example will be easier. Therefore, if many of the formulas are lik
to fail, we recommend you specify a small number, and if most of them
likely to pass, a big number. A special case exists when specifying 0 as
parameter, which is similar to specifying ‘infinite’: the run will consume 
little memory as possible as long as no rule fails. However, if a counter-
example is needed, it will consume more time and space.

• No. Verify-Safety-OnTheFly is disabled.
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8.10   Using Real Memory Efficiently

Your memory quota is often much less than all of the real memory available
the system. The operating system may kill a running process when the quo
exceeded, although unused memory is still available. RuleBase users will
ally want to override this limitation. Incshell,for example, thelimit command
can be used to control and display the user’s quota.  A possible setting for
computer with 256 MB real memory is:

limit datasize 230000

limit memoryuse 230000

To view current limits, use the following command:

limit

RuleBase isvery slow when it runs out of real memory; therefore, it is not a
good idea to increase data-size above the size of the real memory.
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CHAPTER 9 Debugging Aids
y
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9.1Overview

NEED INTRODUCTION TO THE CHAPTER

We will describe additional debugging aids in other chapters:

• Vacuity explanation – “Displaying Vacuity Explanation” on page 200

• Formula explanation

• Test generation

• Lists of variables and signals, before and after reduction

9.2 Scope Waveform Display Tool

You can display the counter-example or witness generated by RuleBase b
invoking the Scope waveform display tool as described in Section 10.6.9. T
section describes the Scope waveform display tool.
RuleBase: a Formal Verification Tool
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9.2.1 Main Window – Scope

The Scope main window is shown below.  It consists of a number of areas

• Rule and formula display – located on the top of the window frame. It dis
plays the name of the rule and the formula number within the rule for wh
this trace was generated.

• Menu bar – located at the top of the window. It will be green if you have
setup the default colors by copying the file Scope from $RBROOT to yo
home directory as described in CHAPTER 2:  Getting Started.

• Signal list –  the rectangular area on the left-hand side of the window.

• Waveform display window – the large rectangular area in which the wav
form itself is displayed.

• Message panel – the small rectangular window below the waveform dis-
play window.

The following sections describe these areas in detail.

9.2.2 Menu Bar

The menu bar contains the following menu items:
IBM Haifa Research Laboratory, Israel
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9.2.2.1 File Menu Option

To open the sub-menu, click theFile menu option. You will be presented with
the following items:

• Print screen – prints a copy of the waveform display to the postscript file
scope.ps.
To print this file directly from Scope, add the following line to file Scope i
your home directory: “Scope*printCommand: <your print command>”.
For example “Scope*printCommand: qprt -Bnn -Pprt1 scope.ps”.

• Load state– prompts the user for a name of a Scope state file to replace
current state. (See Section 9.2.6, State Files for more information on th
Scope current state and state files.)
Create a state file using “Save state” or “Save state as” described below

• Append state– prompts the user for a name of a Scope state file, whose
nals will be appended to the currently displayed signals.

• Save state – saves the current Scope state, including the signals display
in the currently loaded state file. The saved state will be used the next tim
waveform for this rule is displayed.(See Section 9.2.6, State Files for m
information on the Scope current state and state files.)

• Save state as– prompts the user for the name of a Scope state file in wh
to save the state. This state can later be loaded using “Load state” desc
above.

• Quit  – exits the Scope waveform display tool.

9.2.2.2 Signals Menu Option
To open the sub-menu, click theSignals menu option. You will be presented
with the following items:

• Add all – adds all signals to the waveform display.

• Remove all– removes all signals from the waveform display.

• Vertical text – causes signals with text values (e.g., enumerated consta
to have a vertical display format.
RuleBase: a Formal Verification Tool
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• Horizontal text – causes signals with text values to have a horizontal di
play format.

• Sort/Unsort –  users of RuleBase can  ignore this option.

9.2.2.3 View Menu Option
To open the sub-menu, click theView menu option. You will be presented with
the following items:

• Zoom in – zooms in on the waveform display.

• Zoom out – zooms out on the waveform display.

• Show/Hide Toolbar –  users of RuleBase can ignore this option.

9.2.3 Signal List

The signal list contains a list of all signals in the design and environment t
remained after reduction. If a signal does not currently appear in the wavef
display, it can be added to the display by clicking it.

You can control the location of the display of a signal’s waveform in the fo
lowing manner.

1. To add signal ‘a’ above signal ‘b’ in the waveform (assuming that signal ‘
is already displayed), first mark signal ‘b’ by clicking its name (and NOT i
waveform) in the waveform display window.
Signal ‘b’ should now be marked by a rectangular box surrounding the 
nal name.

2. In the signal list, click the name of signal ‘a’.
The waveform of signal ‘a’ should now appear above that of signal ‘b’.

3. To move the waveform of signal ‘a’,  mark it as described above in step
Then drag and drop it into its new location.

4. To remove the waveform of a signal, right-click its name in the waveform
display window.
IBM Haifa Research Laboratory, Israel
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5. To add signal ‘a’ to the end of the waveform display, unmark all signals
clicking the name of the currently marked signal (the easiest way to do
is to double-click the name of any signal, which first marks it and then
unmarks it).

6. Click the name of signal ‘a’ in the signal list.
The waveform of signal ‘a’ should now appear as the last signal in the wa
form display.

7. To search for a signal name in the signal list, type its name (or part of it
name) in the small window above the signal list, and pressEnter. To
quickly clear the search window, right-click anywhere in the search wind

9.2.4 Waveform Display Window

The waveform display window displays an execution trace that is a counte
example or a witness to a formula. The number bar at the top of the displa
counts the clock cycles of the fastest clock. Signals that have a textual dis
(e.g., enumerated constant values) only display a change in the signal valu
no value appears at time X, find the current value by looking to the left for
value at the last time the signal changed.

9.2.4.1 Displaying an Infinite Trace: !LOOP:

There are formulas whose counter-example or witness must be displayed
infinite trace. For example, consider the following formula:

AG (p -> AF q)

If this formula is false, a valid counter-example is one in which ‘p’ is asserte
and then ‘q’ is never asserted. Never is an infinite amount of time, and thu
infinite trace is required to show that this formula is false. RuleBase displa
an infinite trace by displaying a finite prefix, and then a set of states compris
a loop.

The special signal !LOOP:, which appears first in the signal list, is used to i
cate the loop. A loop is indicated when the signal !LOOP: begins taking on
RuleBase: a Formal Verification Tool
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values ‘=’ and ‘-’ alternately, so that the entire loop is marked by a string of t
form “=-=-=-=-=-=”.

9.2.5 Message Panel

The message panel is used to display various errors, warnings, and inform
messages.

9.2.6 State Files

The current state of Scope consists of various aspects of the waveform dis
including the signals displayed, the zoom factor, and the window geometr
You can save the current state in a state file and use it in later sessions of S
To ease your work RuleBase performs basic management of Scope state
as follows:

1. You can choose if state files are saved in the rule’s directory, in which c
different rules have different state files, or in the verification directory, in
which case all rules share one state file. See “Per-rule state file” in Sec
10.6.3.5.

2. When Scope is invoked, it loads the default state file, if one exists. If “P
rule state file=No”, Scope loads smv.state from the verification directory
“Per-rule state file=Yes”, Scope tries to load rule_<rulename>/smv.state
this file doesn’t exist, Scope loads smv.state from the verification direct

3. After loading the default state file, signals that appear in the formulas a
appended.

4. You can save the current state in the current state file using the “File/Sa
state” menu option, or save it in another file using the “File/Save state a
menu option. (See “File Menu Option” on page 168.)

5. You can replace the current state by another state file using the “File/Lo
state” menu option.  You can add Signals of another state file to the cur
state using the “File/Append state” menu option. (See “File Menu Optio
on page 168.)
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9.3 Vacuity

When a formula passes in a trivial manner it is called vacuity. If vacuity de
tion is enabled (see Section 10.6.3.4) the status of the rule as displayed in
results window (see Section 10.6.9) is ‘vacuously’. For instance, if the form

AG (p -> AX q)

passes, but  ‘p’ is never asserted, then the formula is said to pass vacuou
Vacuity occurs when a sub-formula does not affect the truth value of the fo
mula. For instance, in the above formula, the sub-formula ‘AX q’ does not
affect the truth value of the formula, because ‘p’ is never asserted.  We ca
replace ‘AX q’ with any other sub-formula (even the sub-formula FALSE!),
and the rule will remain true. Since a trivially true formula is not intentiona
part of a specification, a vacuous pass usually indicates a problem in the 
in the environment, or in the design under verification. For this reason, we
strongly recommend that you do not turn off the vacuity checking option.  
vacuity checking is enabled, but full witness generation (see Section 9.4, 
ness) is turned off, minimal overhead is incurred.

In the above example, there is only one possible cause of vacuity.  Howev
sometimes the situation is more complex.  For instance, in the following fo
mula:

AG (start_transaction -> next_event(acknowledge)(read_enable | write_enable))

the vacuity may be because ‘start_transaction’ is never asserted, or becau
‘acknowledge’ is never asserted after ‘start_transaction’.  In both cases, th
sub-formula (read_enable | write_enable) does not affect the truth value o
formula.

To facilitate debugging of vacuous passes of this type, an explanation of t
vacuous pass is available as described in “Displaying Vacuity Explanation”
page 200.
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9.4 Witness

The knowledge that a formula passes only provides a measure of confiden
the correctness of the design under verification. One reason for lack of co
dence is that the pass may be vacuous, as discussed above in Section 9.3
ity.  However, even if a formula passes non-vacuously, there is the possib
that the formula does not express the property that you intended. One wa
achieve greater confidence that the formula does express your intentions 
examine a witness formula. A witness formula is a positive non-trivial exam
of the truth of the formula. A witness formula is created when full witness g
eration is enabled (see “Verification Control Panel” on page 194) and the 
passes non-vacuously. In this case, the status of the rule as displayed in t
results window (see “Results” on page 198) is ‘passed (w)’.  For instance,
the formula

AG (p -> AX q)

passes non-vacuously, then the witness trace will show a case in which ‘p
asserted and then the following clock ‘q’ is asserted.

We recommend that you enable witness generation at the beginning of th
mal verification process, and you examine a witness trace at least once fo
every formula. Once a witness formula has been examined and the formu
determined to correctly express the desired property, you can turn off witn
generation as described in “Verification Control Panel” on page 194.  At th
stage, model checking becomes a fully automated process in that it is eno
to determine that each formula passes non-vacuously, without examining
waveform displays for true formulas. We strongly recommend that you lea
vacuity detection on at all times.

9.5 Reduction Analyzer

As explained in CHAPTER 8:  Size Problems and Solutions, one way that
RuleBase deals with the size problem is by behavioral partitioning and ov
duction, in which parts of the design are eliminated based on the environm
IBM Haifa Research Laboratory, Israel
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and the formulas to be checked.  The reduction phase eliminates logic tha
not in the cone of influence of the formulas to be checked, propagates cons
from the environment forward, and eliminates redundant logic (that either w
there from the start, or that became redundant because of constant propa
tion). The reduction analyzer allows insight into these reductions.  Usually
there are two questions that the reduction analyzer can help answer:

• Why was signal X eliminated during reduction (why does it not affect th
truth of the formulas in this rule)?

• Why wasn’t signal Y eliminated during reduction (how does it affect the
truth of the formulas in this rule)?

The reduction analyzer is invoked from the ‘Debugging’ menu option as
described in “Debugging Menu Option” on page 188.  The reduction analy
can only be invoked  if creation of a circuit file was enabled as described i
“Debugging Control Panel” on page 196.
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9.5.1 Main Window – Reduction Analyzer

The main window of the reduction analyzer is shown below.

It consists of the following areas:

• Menu bar – located at the top of the window. It will be light blue if you
have setup the default colors by copying the file Analyze from $RBROOT
your home directory as described in CHAPTER 2:  Getting Started.

• Signal list – the rectangular area on the left-hand side of the window.

• Analysis display window – the large rectangular area in which the wave
form itself is displayed.

• Quick button menu  – the area below the signal list.

The following sections describe these areas in detail.
IBM Haifa Research Laboratory, Israel
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9.5.2 Menu Bar

The menu bar contains the following menu item:

9.5.2.1 File Menu Option

To open a sub-menu, click theFile menu option.You will be presented with the
following item:

• Quit  – exits the reduction analyzer.

9.5.3 Signal List

The signal list contains a list of all signals in the design. To choose a sign
click the desired signal.  To search for a signal name in the signal list, ent
name (or part of its name) in the small window above the signal list, and p
Enter.

9.5.4 Analysis Display Window

The analysis display window is used to display the reduction analysis info
tion.

9.5.5 Quick Button Menu

The quick button menu contains the buttons used to control the reduction
ysis. The following sections describe each button in detail.

9.5.5.1 Operation

The operation quick button is used to select the reduction analysis operatio
be performed.  Choose a value, then click a signal from the signal list. The
reduction analyzer performs the operation you requested. You control the d
of the analysis by the stop at quick button, described in the next section.
RuleBase: a Formal Verification Tool
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Possible values of the operation quick button include:

• Explain – asks the reduction analyzer to explain why a signal is dead, al
or has a constant value. If a signal is dead (deleted by the reduction an
lyzer), the reason will be shown. If it is alive, its influence on one of the f
mula signals or on a test pin will be explained by showing a chain of
influence from the selected signal through intermediate signals and fina
to a formula signal or test pin. If a signal has a constant value, the deriva
of that constant value from the environment through the design will be
shown.

• Cone – asks the reduction analyzer to show the cone of influence of the
selected signal. Some shortcuts may be taken. For instance, if signal x
defined as follows:
define xyz := xx & yy & zz;
and signal zz is a constant 0, then the cone of influence will not show lo
beyond the first “and” gate.

• Fullcone – asks the reduction analyzer to show the cone of influence of
selected signal without shortcuts. For instance, in the above example,
despite the fact that signal zz is a constant 0, the full cone of logic includ
that driving xx, yy, and zz will be shown.

• Sources – shows the signals that are inputs to the cone of logic that driv
this signal.

• Sinks – shows signals that are driven by this signal.

9.5.5.2 Stop at

The stop at quick button controls the depth of the analysis of the operation
described in the previous section.  Possible values include:

• Meaningful – analysis is continued until a meaningful signal name is
reached. A meaningful signal is one that was present in the original HD
code (i.e., was not added by the synthesis tool).

• Flip-flops –  analysis is continued until a flip-flop (or latch) is reached.

• Any – analysis stops at any signal. In other words, analysis stops at the
logic gate that drives the signal.
IBM Haifa Research Laboratory, Israel
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9.5.5.3 Write

This button writes the current contents of the analysis display window to a fi
You will be prompted for the file name.

9.5.5.4 Clear

This button clears the analysis display window.

9.6 Longest Trace

In model checking, the design and its environment are viewed as a finite s
machine that is traversed. If reachability analysis is enabled, the first step o
verification is a breadth-first-search traversal of the state space of the mod
starting from the initial state or states. The steps of this traversal are reporte
“iterations” in the log file of the run. The set of initial states is iteration 0, th
set of all states reachable in one step from some initial state is iteration 1,
so on. The last iteration includes all states that are as far from some initial s
as possible. A path from some initial state to a state in the last iteration is ca
a “longest trace”.

A longest trace can be useful in gaining insight into the design under verifi
tion, as a trace to some state in the final iteration is in some sense one of
most complicated traces that can be generated.  Frequently, examining a 
est trace can uncover a bug in the design or in the environment.

You can control longest trace generation from the verification control pane
described in “Verification Control Panel” on page 194. You can view the lo
est trace using the debugging menu option as described in “Debugging M
Option” on page 188.
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9.7 Multiple Traces

You may sometimes want to see more than one counter-example for a form
and the more different the counter-examples are from another, the easier 
for you to debug the design.

RuleBase provides the multiple traces feature for this aid, which uses the H
ming distance heuristic to search different traces. The user asks RuleBas
the desired number of traces, and gets them (or less, if not enough traces e

You can enable this feature by adding “-multiple_traces n” flag to $SMV-
FLAGS variable using File/Setenv menu as described in “File Menu Optio
on page 186 (in which n is the number of traces that the user wants to see

Note:Currently, you can see all the traces of a counter-example by pressin
the Get Next Trace button in the new Scope, which is given by request an
rently is not in the Rulebase package. The default Scope does not suppor
feature and only shows the first trace.

9.8 Prolong Trace

Looking at the counter-example, which is given to the point that contradicts
formula, you may want to know “what happens next”, (i.e., what are the valu
of signals on the following cycle, or even on the number of following cycles

RuleBase makes it possible to know what happens next by providing the p
long trace feature. The user asks RuleBase to prolong the traces by n cyc
and each trace (if any) is prolonged by the given number of cycles. A warn
is given if it is not possible, which occurs if the counter-example is finite an
has no continuation of given length because of environmental constraints
(invars, restricts, or assumes.)

You can enable this feature by adding the “prolong_trace n” flag to $SMV-
FLAGS variable using File/Setenv menu as described in “File Menu Optio
on page 186 (in which n is the number of cycles to be added to each trace
IBM Haifa Research Laboratory, Israel
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9.9 Reporting a RuleBase Bug to IBM

You may at some point believe that RuleBase itself has a bug. In this case
ask that you report it to IBM. The report should include the files and director
that enable IBM to reproduce the bug, normally as a gzipped tar file. While
possible to prepare, tar, and compress the appropriate files manually,
theutils directory contains a Perl script namedbug_report.pl that will do it
automatically. When you run the script from the verification working directo
it will produce the following two files:

• A gzipped tar file, which contains all relevant files and directories.

• A template for the actual bug reporting.

To run bug_report.pl,  type ’bug_report.pl’.
The script will guide you through the bug reporting preparation process

Note:We make the assmption that your Perl interpreter is installed as: /us
local/bin/perl.

9.10 Stand Alone Scope Utility

You usually get the Scope by choosing the result page of a specific rule fr
the RuleBase GUI, and then clicking the relevant formula. You can now laun
the Scope as a standalone application from the command line, bypassing
GUI. In this case, the red dots do not appear.

To launch the Scope, issue the following from within the verification workin
directory:

mt_scp <rule-name> <formula-name> [trace-num]

The trace-num is set to default (1), which is the only valid option in which
there are no multiple traces for the rule.
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The scope should show up promptly; if it does not, the parameters are prob
wrong.

9.11 RuleBase to VCD Converter

Theutils directory contains the log2vcd.pyutility that enables you to convert
a RuleBase log file into the VCD format. This utiilty is written in Python, and
it requires you to have a Python 1.5.2 or higher interpreter installed on yo
system.

Usage instructions

1. To set the environment variable to PF_SCOPE, add the line ’setenv
PF_SCOPE 1 ’ to your rulebase.setup.

2. Run the rule.

3. Run the script from the verification directory:
python $RBROOT/log2vcd/log2vcd.py

        --entity=<top-level entity>

        --vcd=<vcd file>

        --rule=<rule name>

        [--formula=<formula number>]

        [--trace=<trace number>]

Note:All of the options must appear on the command line. They are separa
for readability.

• <top-level entity>– the name of the top-level entity of the design, which
the value of the ’entity’ variable in rulebase.setup. You MUST specify th
option.

• <vcd file> – the name of the output VCD file. You MUST specify this
option.
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• <rule name> – the name of the rule. You MUST specify this option.

• <formula number> – the formula whose trace you would like to convert t
VCD. The default value is formula number 1.

• <trace number> – used in case there are multiple traces. The default va
is trace number 1.

For example, say you have just run the rule XXX on a design whose top-le
entity is named ZZZ and you would like to generate a VCD file for formula
to a file named xxx.vcd. Type the following command in your verification
directory.

python $RBROOT/log2vcd/log2vcd.py --entity=ZZZ --vcd=xxx.vcd
           --rule=XXX --formula=1

Problems and limitations:

The following are the problems you may run encounter when setting the
PF_SCOPE:

• Setting PF_SCOPE causes RuleBase to generate a file called PF_SIGN
It may take some time to generate (usually no more than a few second

• Setting PF_SCOPE will cause the default Scope to be the PathFinder S
(when you click the rule results in the RuleBase GUI). To prevent this fro
occuring, either remove this line from rulebase.setup and rerun the Rul
Base GUI or use File/Setenv from the GUI to set the variable PF_SCOP
0.

• The format of the resulting VCD file may not be compatible with your
Scope as the IEEE standard is not well defined.

9.12 Scope Resource File

The file Scope, located in the user home directory, is the resource file of t
RuleBase Scope. Fonts, for example, are controlled from this file.
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Each time a new user starts using RuleBase, this file is copied from $RBRO
to the user’s home directory.

9.13 Additional Debugging Aids

Other debugging aids are available under the “Debugging” menu of the R
Base main window. They are described in detail in “Debugging Menu Optio
on page 188.
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CHAPTER 10 Graphical User Interface:
Tool Controls and Options
 the
10.1Introduction

This chapter describes both the graphical user interface of RuleBase, and
tool controls and options that it manipulates.
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10.2 Main Window – Rule Base

The RuleBase main window is shown below.  It consists of a number of ar

• Menu bar – located at the top of the window. It will be green if you have
setup the default colors by copying the file Guirb from $RBROOT to you
home directory as described in CHAPTER 2:  Getting Started.

• Message panel – located below the main control panel. It is off-white.

• Rule list – the rectangular area on the left-hand side of the window.

• Quick buttons – the dark yellow buttons to the right of the rule list.

• Main text window – the large rectangular area to the right of the quick b
tons.

• Text control panel – located below the main text window.

The following sections describe each of the areas in detail. The most freque
used area of the RuleBase main window is the area that contains the quick
tons. If you are reading this document for the first time, we recommend th
you skip to “Quick Buttons” on page 190 for a description of the quick butto
before reading the remainder of this chapter.
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10.3 Menu Bar

The menu bar contains the following menu items:

10.3.1 File Menu Option

To open a sub-menu, click theFile menu option. You will be presented with
the following items:

• reFresh – updates the list of rules in the rule list. This is necessary if, fo
instance, you have added new rules since invoking RuleBase. There is
need to refresh if the changes you have made do not affect the rule list
Other changes will be seen automatically upon the next run of a rule. T
one exception to this is the file rulebase.setup.  As described in CHAPT
2:  Getting Started, the file rulebase.setup is read once upon invocation
RuleBase. Therefore, any changes to this file will not be seen automatic
nor will they be seen after choosing reFresh. To see changes to the file
base.setup, you must exit RuleBase and reinvoke.

• Cleanup – removes and/or compresses log and other files from previou
runs.

• Status of all rules– creates a summary file that shows the status of eac
rule (formulas passed/failed on last run, run time, etc.).

• Past status of rule – displays the status of previous runs of this rule in th
main text window, such as: formulas passed/failed, run time, etc.

• Setenv –allows you to set environment variables.You will be prompted f
the name and value of the variable to set.

• Read rulebase.setup –reads the current rulebase.setup file. You can use
to update environment variables, instead of using theSetenv option
described above. No ‘unsetenv’ is done, thus if a ‘setenv’ line was eras
from rulebase.setup file, reading it will not change the environment varia

• Quit  – exits RuleBase.
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10.3.2 Batch Menu Option

To open a sub-menu, click theBatch menu option. You will be presented with
the following items:

• Start – starts a batch file. You will be prompted for the name of the batc
file to be run.
To run a batch file from the unix shell

1. Create the batch file described below under “create batch file”.

2. Copy the file $RBROOT/run to the current directory.

3. Select options for the batch run, and save them as described in “F
Menu” on page 191.

4. From the shell, invoke the batch file.

• Kill  – kills the currently running batch process.

• Start at – schedules a delayed start of a batch file. You will be prompted
a start time and the name of the batch file to be run.

• Kill all at  – schedules the kill of all processes (batch or otherwise) of th
window at a later time. You will be prompted for the time at which to kill a
running processes.

• Create batch file – creates a batch file for later use. The batch file will co
tain all rules, and can be edited by an external editor if only a subset of
rules are desired. You will be prompted for the batch file name.

• Failed batch file– same as create batch file, but only rules in which at lea
one formula failed on a previous run will be included.

• Aborted batch file – same as create batch file, but only rules that did no
complete the previous run will be included.

10.3.3 RunUtil Menu Option

To open a sub-menu, click theRunUntil  menu option. You will be presented
with the following items:

• Pause/Continue – freezes a running rule. Choose it again to continue th
run.  A paused rule has aP to the left of its name.
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• Undo run – undoes the effects of a rule that was run by mistake. Works
only if this rule has been killed, and no other rule has been run since th
rule was started.

• Adopt – allows the run to be controlled by the RuleBase window from
which adopt is performed. Usually if a rule was run from a unix shell or
from another RuleBase window, it cannot be controlled by the quick butto
or the Options dialog.
Note:This will only work if the run that is to be adopted is on the same
machine as the RuleBase window that wants to adopt it.

• Unlock – forces lock deletion.
During execution, RuleBase locks the rule to prevent multiple simultane
executions. Sometimes, a run may abort without removing the lock. Ch
ing unlock forces lock deletion. Only unlock a rule if you are sure that it
not running (on any computer).

10.3.4 Debugging Menu Option

To open a sub-menu, click theDebuggingmenu option. You will be presented
with the following items:

• State variables – displays the names of the state variables for this rule
(valid after reduction).

• Signals before reduction– displays names of all signals in the design. In
some translation paths some of the internal names disappear and othe
added.

• Signals after reduction– displays names of signals after reduction that
were categorized as Deleted/Constant/Alive. Signals that appear in “Sig
before reduction” and do not appear here are not in the cone of influen
the formula. The information to the right of the “--” can be ignored; it is
used by the reduction analyzer.

• Circuit before reduction –  this option is currently not documented.

• Circuit after reduction  – this option is currently not documented.
RuleBase: a Formal Verification Tool
Provided by special agreement with IBM



189 CHAPTER 10

ee
ed
trol

r)
ble)

r)
ble)

a-

f
or

-

es-

the
• Reduction analyzer – invokes the reduction analyzer, which is useful for
debugging reductions performed by RuleBase. For more information, s
CHAPTER 9: Debugging Aids. The reduction analyzer can only be invok
if creation of a circuit file was enabled as described in “Debugging Con
Panel” on page 196.

• Where signal is used – displays the locations (file name and line numbe
in which a signal whose name matches a given pattern (wildcard is possi
is used in the environment by the selected rule.

• Where signal is driven– displays the locations (file name and line numbe
in which a signal whose name matches a given pattern (wildcard is possi
is driven in the environment by the selected rule.

• Show longest trace – presents a timing diagram generated by the verific
tion option “Gen longest trace”.  See “Options” on page 190.

• Save longest trace – similar to “Show longest trace” above, but instead o
being displayed, the timing diagram is stored in the “longest.trace” file f
inspection by the stand-alone scope tool.

• GenTest from longest trace – similar to “Show longest trace” above, but
instead of being displayed, the timing diagram is stored as a control pro
gram for simulation.

10.3.5 Help Button

TheHelp option opens the on-line help documentation.

10.4 Message Panel

The message panel is used to display warnings, errors, and informative m
sages.

10.5 Rule List

The rule list contains the list of rules coded by the user. It is derived from 
database file (usually called “envs”) pointed to by the rulebase.setup file.
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10.6 Quick Buttons

The quick buttons are the most frequently used buttons during verification
RuleBase. The following sections describe each in detail.

10.6.1 Run

To run the currently selected rule, click the rule name in the rules list. A ru
ning rule has anR to the left of its name. TheR becomesD when the rule ends.

10.6.2 Kill

To kill the run of the currently selected rule, click the rule name in the rule
list. A killed rule has aK  to the left of its name.

10.6.3 Options

This button opens the options box.  The options box consists of the follow
areas, each of which is described in more detail in the sections below:

• File – allows you to store the options in a file, or load them from a file.

• BDD order – opens the BDD order control panel.

• Reduction – opens the reduction control panel.

• Verification  – opens the verification control panel.

• Debugging – opens the debugging control panel.

• Hide – closes the options box.

Note:Many of the option buttons have a yellow “A” (apply) button next to
them.  When you change an option during a run, you must click the corre-
sponding apply button to see the change.
RuleBase: a Formal Verification Tool
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10.6.3.1  File Menu

The file menu consists of the following options:

• Load  – loads a previously saved options configuration.

• Load <rule>.cfg: – loads a previously saved per-rule options configuratio

• Save  –saves the current options configuration for use by all rules.

• Save <rule>.cfg –saves the current options configuration for this rule only

• Default –  loads the default options configuration.

10.6.3.2  BDD Order Control Panel

The BDD order control panel consists of a number of fields, including:

• Reorder: Enable/disable reordering.
When enabled, reordering will only begin when all the conditions below a
fulfilled.
Note: If you change this option during the run of a rule, you must click th
yellow “A” (apply) button to see the change.

• Algorithm : Dynamic reordering algorithm.
Options are one or a combination of the following:

• Cheetah – quickest algorithm, but in many cases achieves the poor
results. Use this algorithm in combination with another to achieve t
best combination of run time with results.

• Quick rudell  – slower than Cheetah, but may result in a better orde

• Rudell – slowest algorithm, but frequently gives the best results.
Note: If you change this option during the run of a rule, you must clic
the yellow “A” (apply) button to see the change.

• Iteration : Two integers that are lower and upper bounds on the iteration
between which the reordering algorithm should be active.
Note: If you change this option during the run of a rule, you must click th
yellow “A” (apply) button to see the change.
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• BDD size:  Two integers that are the lower and upper bounds of BDD si
between which the reordering algorithm should be active. Reordering w
be activated when the “nodes allocated” displayed in the log file has reac
the lower bound, and has not yet exceeded the upper bound.
Note: If you change this option during the run of a rule, you must click th
yellow “A” (apply) button to see the change.

• Low threshold: An integer. If a low threshold is defined, a BDD ordering
round is stopped when the BDD size falls below the low threshold.
Note: If you change this option during the run of a rule, you must click th
yellow “A” (apply) button to see the change.

• Laziness factor: A real number greater than 1 that controls the effort
expended in reordering. The default is 3.  If the movement of a variable
requires more effort than the Laziness Factor permits, this variable will 
be moved further, and RuleBase will prefix its name with a dot.
Note: If you change this option during the run of a rule, you must click th
yellow “A” (apply) button to see the change.

• Growth factor : A real number greater than 1 that controls the start of a s
ond reordering round. A new round will only start when the BDD size
reaches last-size * growth-factor, in which last-size is the BDD size (no
allocated) at the end of the previous round.  The default is 2.
Note: If you change this option during the run of a rule, you must click th
yellow “A” (apply) button to see the change.

• Use order file:  RuleBase may use an existing order file as its initial orde
The order file options include:

• Orders pool – the best match in the orders pool is used.

• <rule>.order – if such a file exists, it is used.

• Copy back after run:  After every round of dynamic ordering, the order i
written to a file called temp.ord located in the rule directory.  This file m
be used in later runs as the initial order.  The options include:

• No – do not save the new order.

• To <rule>.order – at the end of the run, copy the new order to
<rule>.order.
RuleBase: a Formal Verification Tool
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• To orders pool– at the end of the run, copy the new order to theorders
pool.

• To both – at the end of the run, copy the new order to both the
<rule>.order and to theorders pool.

• Copy now:  Before a run has completed, a new order file may exist. Thi
button allows the new order to be copied back immediately to either
<rule>.order or to theorders pool.

10.6.3.3 Reduction Control Panel

The reduction control panel consists of the following fields:

• Reduction effort:  Determines how much effort (CPU time and memory)
are dedicated to performing the reduction. The options include:

• Low – no BDD reductions are performed.

• High – BDD reductions are performed. Applying all BDD reductions
may require a lot of time and space. To control the time and space u
by the reductions, try disabling one or more of the heavy reductions
shown below, or give a BDD node limit:

• Heavy reduction 1  NO

• Heavy reduction 2  NO

• BDD node limit: By limiting the number of BDD nodes and using
high effort with heavy reductions, you will frequently get better
reduction results than with no heavy reductions and no BDD lim
A typical number for this limit is 300000. Leave the limit unspec
fied if there are no reduction problems.

For further insight into the reductions performed, see “Reduction Analyz
on page 173.

• SMV reductions: When this mode is active, RuleBase performs over-
approximations in order to find constants FF’s, and to apply reductions
(based on the constants-search results). This mode is inactive by defaul
IBM Haifa Research Laboratory, Israel
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should be activated when a size problem is encountered. Constants foun
this mode) are saved in the FF pool so it is usually necessary to activate
mode if no new constants are to be added.

10.6.3.4 Verification Control Panel

The verification control panel consists of the following fields:

• Reachability – determines if a search of the reachable state space of the
cuit is to be done as the first step of verification.  For most designs, this
should be set to “Yes”.

• Verify Safety OnTheFly – determines whether safety formulas (formulas
that do not contain strong operators or the AF operator) should be chec
during reachability analysis. Safety formulas can only be checked on the
if reachability is enabled. The options include:

• Yes: Check all safety formulas on the fly. You can give a parameter (
integer) that determines the trade-off between memory and time co
sumption during the run. If the user gives this parameter a small va
the run may consume more memory, but will produce counter-exam
ples faster than a parameter with a large value.

• No: Do not check Safety OnTheFly.

For more information about Safety OnTheFly, see “Verify-Safety-OnThe
Fly” on page 161.

• Verify Liveness OnTheFly –determines whether the liveness formulas
(formulas that contain AF, strong until, or sugar operators ending with!)
should be checked during reachability. Unlike Safety OnTheFly, the che
may take a long time. Therefore, if the liveness formulas are likely to pa
we recommend that you do not use use this option. The options include

• Yes: Check all liveness formulas every n iterations, where n should
specified by the user.

• No: Do not check liveness on the fly.

• Attempt light proof  – applies the classical model checking algorithm on
the rule (all possible states are considered and not necessarily only the
reachable ones). The square area along the button specifies the time (in 
RuleBase: a Formal Verification Tool
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onds) that RuleBase should invest in this mode. If the formula does not
pass in this period of time, RuleBase will apply regular model checking
the rule.

Notes:
• If the formula passed (in light proof), RuleBase provides a witness a

vacuity explanation (if asked for). Producing a witness or vacuity
explanation may take more time than the other evaluation modes.

• If the formula failed (in light proof), the time needed to produce a
counter-example will not be restricted.

• A light proof does not check vacuity. A vacuous formula be given th
status ‘pass’.

• The longest trace cannot be produced in this mode.

• Witness – controls whether vacuity (a trivial pass) is checked, and whet
or not a witness trace is produced. For further information on vacuity an
witnesses, see CHAPTER 9:  Debugging Aids. The options include:

• Full witness – checks formula for vacuity, and if the pass is non-vac
ous, produces a witness trace.

• Vacuity only – checks the formula for vacuity, but if the pass is non-
vacuous, does not produce a trace.

• None – does not check the formula for vacuity.
Note: If you change this option during the run of a rule, you must clic
the yellow “A” (apply) button to see the change.

• Explain vacuous– if active and a formula is found to pass vacuously, Ru
Base will point to the pre-condition that cannot hold.

• Gen longest trace – if active, and reachability is also active, a trace will b
produced to a state that is as far from the initial state as possible. If the
“Now” button is pushed, and reachability is also active, RuleBase will c
plete the analysis of the current iteration, and then generate a trace tha
furthest from the initial state. It will then continue with reachability analys
and check the remaining formulas.
Note: If you change this option during the run of a rule, you must click th
yellow “A” (apply) button to see the change.
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• Stop after iteration – an integer that indicates how far RuleBase should
into the reachability analysis. RuleBase will stop reachability after the sp
ified number of iterations (i.e., it will not look at states that are farther th
X steps from the initial state). If the “Now” button is pushed, and reachabil
ity is also active, RuleBase will complete the analysis of the current iter
tion, and only check remaining formulas if they pertain to the states it h
not yet seen.
Note: If you change this option during the run of a rule, you must click th
yellow “A” (apply) button to see the change.

• Run only if changed – provides the ability to run a rule only if the design
environment, or formula have been changed since the last run. Furtherm
if the change in the design or environment does not affect the formula, 
it also will not run. When this mode is active, it creates a signature for e
run to be compared with the next run.

The following options are available:

• No – mode is inactive.

• Yes –mode is active. A rule will run only in the case of changes.

• Force –mode is active. A rule will run in any case and a signature w
be created.

• Fictitious – RuleBase creates a signature for the rule as it was just 
ning. If the previous log file is older than the design, does not exist,
is not completed (rule did not finish), RuleBase will not create a fict
tious signature.

10.6.3.5 Debugging Control Panel

The debugging control panel consists of the following fields:

• Explain timing diagram – determines if explanations of the counter-exam
ple will be shown in the trace. Explanations are red dots that show you
where to look for interesting events.

• Show formula text – determines if the counter-example or witness trace
will also open a window that displays the formula to which it correspond
RuleBase: a Formal Verification Tool
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• Per-rule state file – determines if the signal display configuration of the
trace will be saved per-rule or not.

• Clock cycle – length of the clock cycle for test generation1 (see “Results”
on page 198).

• Clock name – name of the clock for test generation.

• Signal prefix – prefix for signal names for test generation.

• Create circuit file – a circuit file must be created during reduction if the
reduction analyzer (see “Reduction Analyzer” on page 173) is to be use

10.6.4 ToglOrdr

This button will toggle BDD ordering for the currently selected rule.

• If BDD ordering is currently taking place, it will stop the current round.

•  If BDD ordering is not currently taking place, it will start one round.

This button only affects one round of BDD ordering. To turn BDD ordering o
or off permanently, see section “BDD Order Control Panel” on page 191.

10.6.5 Log

This button will display the log file of the currently selected rule. If the rule
currently running, this option will only work if invoked from the machine on
which the rule is currently running. If the rule has completed, the log file of t
completed run will be displayed. The following two sub-buttons are provid
to ease the user’s analysis of the log:

• n – deletes all of the ‘nodes allocated’ lines from the log.

• > – deletes all BDD ordering lines.

1. Test generation is not usually needed, because RuleBase generates a simulation-like trace for
ging. This option is only needed in the case that the user wants to generate a simulation test out
counter-example generated by RuleBase.
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10.6.6 Warnings

This button displays any warnings of the currently selected rule.

10.6.7 Status

This button displays the status of the currently selected rule.  If the rule is
rently running, it will display the start time of the run and the name of the
machine on which the rule is running. If the rule has completed, it will also d
play the results (pass/fail) of each formula and the CPU time and memory
usage.

10.6.8 Explain

This button displays an explanation of the formulas of the currently select
rule. The explanation is a rudimentary translation of the formula into Englis

10.6.9 Results

This button displays the results of the currently selected rule. It displays e
formula, along with information on its status. The status of a formula can b
one of the following outcomes:

• failed – formula is false, and a counter-example has been produced.

• failed(c) – formula is false, and is a contradiction in the model.

• passed(w) – formula is true non-vacuously, and a witness trace has bee
produced.

• passed(nv) – formula is true non-vacuously.

• passed(ta) –formula is true, and is a tautology in the mode, which mean
that RuleBase could combinatorically determine that the rule passed, w
out the need to search  for all the reachable states of the model.

• passed – formula is true, but vacuity has not been checked.1

• vacuously – formula is true vacuously.
RuleBase: a Formal Verification Tool
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• unknown – formula has not yet been determined to be true or false

For an explanation of vacuity, see CHAPTER 9:  Debugging Aids.

At the beginning of the run, the status of all formulas is unknown.  If you
choose Safety OnTheFly (see “Verification Control Panel” on page 194), so
formulas may be determined to be true or false before the completion of t
run. It is, therefore, possible to click on theResults quick button before a run
has completed and see that some formulas have either passed or failed, w
the status of others is still status.

10.6.9.1 Displaying Counter-examples and Witnesses

If the status of a formulas as described above is either “failed” or “passed(w
a trace is available for viewing.  In the case of “failed”, this trace is called a
counter-example.  In the case of “passed(w)”, it is called a witness.

Click near the word “failed” or “passed(w)” and hold the mouse button dow
A menu will be displayed with the following options:

• Show timing diagram: If chosen, the waveform display tool Scope will dis
play the counter-example or witness. For an explanation of the Scope t
see “Scope Waveform Display Tool” on page 166.

• Save timing diagram: If chosen, the counter-example or witness will be
saved in a file named rule_name.N.trace, in which rule_name is the nam
the rule and N is the formula number in the rule. You can view this trace
using the following command:
$RBROOT/scope  -sf smv.state  rule_name.N

NOTE: Even after exiting RuleBase, you can access the trace by re-invok
RuleBase, clickingResults, and selectingshow timing diagramas above. You
only need to save using thesave timing diagram  option if you want to keep a
copy of the trace independently of RuleBase. For instance, you can save a

1. We strongly recommend that you check vacuity.
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of a failing trace to send it to a colleague by e-mail, or to keep in a databa
for documentation purposes.

• Generate test – generates a test for simulation that will produce the sam
trace shown in the counter-example or witness. The following formats a
available: Synopsys and Cadence Verilog XL. The default format is Syn
sys.
To generate a test for Cadence Verilog XL, add the following line to you
rulebase.setup file:
setenv RB_TEST_VERILOG 1

NOTE:  Normally, there is no reason to generate a test from a counter-
example or witness, because the counter-example or witness itself can
used for debugging.  In addition, the generated test will only check the 
cific failure that was found, whereas running the rule again will check al
possible failures that violate the rule. In other words, as a regression che
re-running the rule under RuleBase provides much better coverage tha
running the simulation test generated from a previous fail.

• Propagate values – sometimes, when analyzing counter-examples, it is
desired to see the value of design signals that were removed by the red
tion. If every input that drives these signals is available, RuleBase can a
them to the generated trace after the fact.
 To do this, create a file called “propagate.names” in the directory from
which you have invoked RuleBase. The file should contain a list of signa
one to a line, which you would like to add to your trace. You can use wi
cards; for example ‘*’ stands for ‘all signals’,  and ‘block2/*’ stands for a
signals whose names begin with ‘block2/’. Then, clickPropagate values
and wait until RuleBase computes the values. Finally, chooseShow timing
diagram. The signals you requested should now be available in the men
signal names on the right hand side of the Scope tool.

10.6.9.2 Displaying Vacuity Explanation

If the status of a formula is “vacuously” and the explain vacuity facility was
enabled (see “Verification Control Panel” on page 194), an explanation of 
vacuous pass is available. Click near the word “vacuously”.  Choose Expla
RuleBase: a Formal Verification Tool
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vacuity (the only available option). RuleBase will display an explanation.The
vacuity explanation is the shortest prefix of the formula that is always
true. For a detailed explanation of vacuity, see “Vacuity” on page 172.

10.7 Text Control Panel

The text control panel contains buttons that control the display of text in th
main text window. Each control button is described in detail below.

10.7.1 BackText

This button performs a backward search for the text typed in the text sear
window, located to the right of the Find Text control button.  It does not su
port a wild-card search.

10.7.2 Find Text

This button performs a forward search for the text typed in the text search
dow, located to the right of the Find Text control button. It does not suppor
wild-card search.

10.7.3 Edit Text

This button opens a window in which an editor is invoked on the current fi
displayed in the main text window.  The default editor is vi.  To call your pr
ferred editor, add the following line to file rulebase.setup:

  “setenv RB_EDITORyour-editor”

Examples:

“setenv RB_EDITOR emacs”                    # rulebase calls “emacsfile &”

“setenv RB_EDITOR aixterm -e vi -R”     # rulebase calls “aixterm -e vi -Rfile &”
IBM Haifa Research Laboratory, Israel
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10.7.4 FreezeText

This button freezes the main text window (by default it is updated continuou
as the run progresses), making  it easier to read the text.  When clicked, t
button will change its color to red and display the messageFrozen.  To
unfreeze, click it again.

The main text window will be automatically frozen, when using the scroll b
located on the right, to scroll backwards. To unfreeze it, click the redFrozen
button.

10.7.5 GUI Resource File

The file Guirb, located in the user home directory, is the resource file of th
RuleBase GUI. Fonts, for example, are controlled from this file.

Each time a new user starts using RuleBase, this file is copied from $RBRO
to the user’s home directory.
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11.1Introduction

RuleBase supports a wide variety of design styles and methodologies. Whi
many cases you are not required to make special adjustments to existing d
methodology, the following design guidelines will further ease the verificati
process.

11.2 Separating Control from Data

Although RuleBase can check both control logic and datapath, it is more e
tive for verifying control logic. Datapaths usually have many memory ele-
ments, which may increase the size of the internal model representation
beyond the capacity of RuleBase. When verifying a design that includes b
control and datapaths, the datapath is often replaced by an abstract mode
fewer memory elements. This abstraction is easier when there is a clear se
tion between control and data in the design.
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11.3 Design Partitioning

Design partitioning, in which each partition is verified separately, is one so
tion to the size limitation inherent to formal verification. Another reason fo
partitioning is the desire to push asynchronous signals and tri-state buffer
block boundaries (explained below).  In many cases, the natural partitionin
defined by the designers can serve as a basis for formal verification. In cas
which design partitioning is too fine, several blocks are often combined to fo
a bigger partition, which is more interesting in terms of verification.

Partitioning has several consequences:

• The effort exerted in defining, documenting, and studying the internal in
faces.

• The development of environment models for neighbor partitions.

• The tendency for changes in internal interfaces.

• The lack of expression for some global rules when the design is partitio

In light of this, our recommendations for partitioning are:

• Use the same partitioning for design and formal verification.

• Use documented or easy-to-understand interfaces.

• Use  interfaces with stable protocols.

• Verify groups of related blocks, if the basic design blocks are small.

Experience shows that blocks that have several hundred flip-flops of contr
logic are good candidates for formal verification.

11.4 Clocking Schemes

While RuleBase supports many clocking schemes, the preferred scheme 
which each partition to be verified uses one clock. Multiple clocks, particula
if they are not synchronized, increase the size of the internal model’s repr
IBM Haifa Research Laboratory, Israel
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tation, and are not recommended for large partitions. When using multiple
clocks, a small frequency ratio is preferred.

11.5 Design Mapping

RuleBase supports several languages and synthesis paths. The existing d
environment (synthesis) tools are usually used for translation into gate-lev
representation. The design should be written in such a way that it will not 
vent the translators from mapping it into a basic library of gates and flip-flop
For example, we do not recommend that you include switch-level macros 
the design; you should use their logic-level equivalents.

Edge-triggered latches, and master/slave flip-flops whose master’s output
only connected to the slave, are most suitable for RuleBase. If level-trigge
latches are used, or if the master’s output drives logic, special modeling is
required, depending on how they are used in the design.

The following memory elements are supported in the synthesized netlist: 
flops without asynchronous reset, flip-flops with asynchronous reset and t
parent latches.

• Flip-flops without asynchronous reset will have the following behavior:
var q: boolean;

assign next(q) :=

      case

        clock: data;

        else: q;

      esac;

except when rb_e_t_ff option is used, in which case they will have the following beha

var q: boolean;

assign next(q) :=

      case

        next(clock) & !clock: data;
RuleBase: a Formal Verification Tool
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        else: q;

      esac;

See Table 8 on page 241 for a complete explanation of the rb_e_t_ff option.

• Flip-flops with asynchronous reset will be modeled as:
define q := !reset & q1;

var q1: boolean;

assign next(q1) :=

      case

        reset: 0;

        clock: data;

        else: q1;

      esac;

• Flip-flops with asynchronous set are also supported and are handled  s
larly.

• Transparent latches are modeled as:
define q :=

case

        clock: data;

        else: prev(q);

      esac;

11.6 Asynchronous Logic

Ideally, there should be no asynchronous logic in the parts to be formally 
fied. RuleBase supports the verification of models in which the changes a
the cycle level. Asynchronous signals, if present, are best handled when s
ated at the verified partition boundaries. Synchronizing elements should b
replaced by a short-circuit. State machines should be synchronized by pro
IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM
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hand-shaking. RuleBase does not support relying on absolute durations (
40 nano-seconds before response).

11.7 Tri-State Buffers

Ideally, tri-state buffers should be located in a separate module so they ca
easily separated from the design before formal verification. This is a comm
design style; however, in some designs, for various reasons, tri-state buffer
mixed with other logic. In these cases, they should be situated at the parti
boundaries. Future versions will be able to handle tri-state buffers everyw

11.8 Parametric Designs

When the design includes memory arrays that highly influence the logic (e
FIFOs), we may want to verify these arrays rather than their abstract mod
However, checking them as a whole may cause the model to become too
To solve the size problem, you can define the array size as a parameter tha
easily be changed. In this manner, you can choose the largest size possib
within the RuleBase capacity.

11.9 Implementation Rules

Properties to be verified can be divided into two categories: specification r
and implementation rules. While specification rules are usually extracted fr
written documents, implementation rules are often not documented. We
strongly recommended that you write these rules while developing the de
RuleBase: a Formal Verification Tool
Provided by special agreement with IBM



209 CHAPTER 11
IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM



CHAPTER 12 Coverage Methodology
ion,
ces-

d,

sec-

he
f sim-
is
rifi-

tion
 as
er of
12.1Overview

While RuleBase addresses the coverage problem of verification by simulat
it does not solve it completely.  There is the question, “Have I coded all ne
sary rules? In addition, due to the size problem, behavioral partitioning, as
described in CHAPTER 8:  Size Problems and Solutions, is frequently use
which adds the following question to the coverage problem, “Have I coded
enough environments?”  We discuss these two questions in the following 
tions.

Before proceeding, we would like to emphasize that despite the fact that t
second coverage question sounds very similar to the coverage problem o
ulation, it does not mean that using RuleBase with behavioral partitioning 
comparable to verification by simulation. Despite the coverage problem, ve
cation with RuleBase can still provide much greater coverage than verifica
by simulation. For example, think of the set of all possible execution paths
inhabiting a two-dimensional space. Then, a test suite covers a finite numb
points of the test space, as shown in Figure 17 below.
RuleBase: a Formal Verification Tool
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ber
FIGURE 17. Coverage problem in simulation

With RuleBase, on the other hand, each environment covers an infinite num
of points in the test space, as depicted below in Figure 18 .

FIGURE 18. Coverage problem with RuleBase
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While a complete solution to the coverage problem does not yet exist, we
describe a methodology of rule and environment writing in this chapter tha
can help.

Note:This chapter is brought here in a preliminary form.

12.2  Coverage Model

The methodology is based on an attempt to obtain block Input-Output relat
ship coverage, which means:

• The block will be fed with every possible legal input sequence. Inputs a
defined in the environments.

• All output signals will be systematically checked for correctness at all
times. The rules check the outputs.

• Selected internal states of the system will be checked for correctness a
times.The rules check the internal states.

• The rules will check the functionality of the block.  For instance, if the p
pose of the block is to acknowledge requests with a “grant” signal, then
functionality should be covered, for example, with a formula of the form
“AG(request -> AF grant)”.

12.3 Writing Rules

You should write rules in the following manner:

For every output signal and selected internal signals, and forevery clock
cycle:

1. Determine the relationships of the signal to all other signals (inputs and
puts).

2. Write the rules that check the preservation of these relationships.

3. Divide the rules for each signal into three types:

• The signalwill always change value when necessary.
RuleBase: a Formal Verification Tool
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• The signalwill not changewhen it should not.

• The signalwill have a specific value at times that it must have that
value.

Experience with RuleBase does not necessarily indicate that rules that co
complex signals find design errors more often, and it doesn’t mean that th
cover all errors either. RuleBase is effective due to the careful and method
coverage of all signals.

12.4 Writing Environments

When writing environments, we suggest you adhere to the following guide
lines:

• Keep the input signal nondeterministic, whenever possible, even if this
causes an illegal input sequence (as long as it doesn’t confuse the bloc

• Restrict inputs only when necessary. For example, when the logic is co
fused by illegal inputs, or when you want to restrict the environment to 
than the legal input behavior because of size problems.

• Hold rule and environment reviews as described in “Planning and Revie
ing Rule and Envioronment Writing” on page 214, since it is difficult to
determine how risky a certain environment restriction is (in terms of miss
design errors).

• Write rules that check the behavior of the environment, because the qu
of the verification is dependent on the quality of the environment. Spec
cally, write rules that check that events in which the environment is expec
to be able to generate are indeed generated. For instance, the following
check that both read_enable and write_enable can be asserted by the 
ronment (assuming these are environment signals):
EF read_enable

EF write_enable
IBM Haifa Research Laboratory, Israel
Provided by special agreement with IBM
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12.5 Planning and Reviewing Rule and
Envioronment Writing

Rule and environment writing are strict engineering activities and should b
planned and reviewed. You should conduct reviews with teammates who
understand block functionality on both the rules and the environments writt
In addition, it is very important to go over environment restrictions with the
block designers, in particular restrictions that were added in order to avoid
state explosion. The designers may challenge the assumptions taken and
request more effort in verifying the restricted areas.

These reviews are also useful to describe the areas not covered by forma
fication to the other teammates. A review can guide the simulation team to
stress those areas with simulation tests.
RuleBase: a Formal Verification Tool
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13.1Introduction

The RuleBase Classical version (the common RuleBase version) includes
one verification engine, which is called Discovery. The RuleBase Premium
version contains additional verification engines in addition to Discovery. T
chapter describes these additional engines.

Note: This chapter is brought here in a preliminary form.

13.2 SAT Engine

SAT is a Bounded Model Checking engine. Similar to the standard model
checking procedure conducted by Discovery, SAT searches for bugs in a
design.

The main difference is that with SAT the user is required to specify a finite
range of cycles for which the bug is searched. Bounded model checking w
RuleBase: a Formal Verification Tool
Provided by special agreement with IBM
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SAT is normally conducted in a gradual manner since typically, the larger 
range, the longer the search process.

First, SAT searches for bugs starting from the initial state, up to some use
defined boundk. If no bug is found, the next problem instance will be fromk+1
to k+(interval size), and so forth. There are three possible terminations of thi
process:

• A bug is found. In this case a counter-example is presented to the user in
usual way.

• The problem becomes too difficult to solve in a reasonable amount of ti
This means that the property was not proven to hold globally. The only
guarantee that the user has in such cases is that the property holds up
last cycle that SAT was able to prove.
For example, if SAT proved that there is no bug in the range 0..20, and t
timed-out while attempting to prove that there is no bug from cycle 21 to 3
the only guarantee that the user has is that there is no bug up to cycle 2
this case, the user may try to look in cycles 21 .. 25, which is an easier p
lem (see below).

• No bug is found up to thediameter Dof the design. If we compute the short
est path from an initial state to each of the reachable states of the syste
the diameter is defined to be the longest of these paths. Since hardwar
designs have a finite number of reachable states, we are guaranteed tha
a finite diameter exists (finding the diameter is difficult by itself, as we w
later explain). Thus, if there is no bug up to cycleD, it means that there is no
bug at all, and the property is verified. BeforeD is reached, there is no guar
antee that the property holds globally.

13.2.1SAT Technology

SAT has a completely different underlying technology than Discovery, whi
works with a data-structure called BDD to represent the entire set of reach
states—which is why Discovery’s bottleneck is typically the memory requi
ments that may grow exponentially
IBM Haifa Research Laboratory, Israel
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SAT first builds a Boolean formula, which is logically satisfiable if and only
there is a bug in the given range. Each signal in the design, in each cycle,
represented by a different variable in this formula. Then, SAT tries to satis
the formula (i.e., find a single assignment to the formula that evaluates it t
TRUE). If it finds one, it becomes the counter-example.

The satisfiability problem also requires exponential time to solve, but there
no exponential memory requirements. Thus, a fast CPU is the key for obtain
fast results with SAT rather than large memory. The size of the formula th
generated in the first step has a large effect on the speed of SAT. The form
grows linearly with the distance from the initial state. Thus, the distance fr
the initial state, rather than the range itself has the largest effect on the di
culty of the problem. For example, searching in cycles 20..30 takes more 
than searching in cycles 10..20.

A thorough empirical study showed that many designs that cannot be veri
with the standard Discovery engine can be efficiently solved with SAT, and
vice versa. This is why the combination of these tools is very productive. S
is usually better in finding bugs ('falsification'), especially if they can be
reached in early cycles (typically up to cycles 40 – 50, depending on the
design). Proving that no bug exists ('verification') is much harder for SAT,
because this requires, as explained earlier, to reach the diameterD. Since this
number is usually high (more than 100 even in small designs), it is norma
beyond the capacity of SAT. The standard model checking engine of Discov
is much better in verification and in finding 'deep' bugs.

SAT has the following two restrictions:
• It can only check safety properties.

• It can only check one formula at a time.
RuleBase: a Formal Verification Tool
Provided by special agreement with IBM



219 CHAPTER 13

 oper-

cify

de

er
op
e

13.2.2  SAT GUI

As described above, there are several parameters that affect the way SAT
ates. You can control the size of the boundk, the size of each 'jump', the time-
out, and several other options described below.

To launch SAT from a RuleBase directory:

1. Set environment variable RB_SAT to 1 and launch the GUI.
A new box, labeled SAT, will appear at the options and a new engine.

2. To run SAT, select SAT.
You can run SAT in the following modes:

• Auto Mode
In Auto mode the range is incremented automatically. You can spe
the initial cycle (thelower bound) from which to start, and the range of
the search instance (sometimes referred to as the ‘jump’). Auto mo
will stop if a bug is found or if the maximum cycle, you specified, is
reached. It will also stop if the time limit is reached.
For complete verification, the maximum cycle should be the diamet
D. We recommend you specify a high number, thus forcing SAT to st
only when the time limit is reached. Auto mode has the following th
options:

Name Range Default Explanations

First Instance
Bound

Natural 10 The Bound for the first instance.

Jump Natural != 0 5 The size of the interval (number of
cycles) between two consecutive runs.

Max Bound Natural 100 The last cycle in which to look for a
counter example. For full verification
use the diameter (if it is known).

Total Time Limit Natural 40000 The time limit for all the intervals.
IBM Haifa Research Laboratory, Israel
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• Manual Mode
In this mode, you manually specify the range of the search.
This option is useful in two cases. The first case is when searching
the exact cycle in which the bug first occurs (this is useful for findin
the shortest possible counter example). For example, suppose that
mode finds a bug in the range 10 – 20. To find the exact cycle, use
Manual mode to search in cycles 10 – 15, and then, if the answer is
itive, search again in cycles 13 – 15, and so forth, until the exact cy
RuleBase: a Formal Verification Tool
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is found. Another typical case that makes Manual mode useful occ
during debugging. Once you find a bug and consequently change t
design, the best way to know whether the bug was fixed is to perfo
another search  for the bug in the same exact cycle. This is when t
option of searching in a specific cycle only, which is only available i
Manual mode, becomes very useful.
Manual mode has the following the options:

Name Range Restrictions Default Explanations

Upper Bound Natural 10 Maximum cycle to search for
a counter-example (or exact
cycle for which to search, in
case the previous option is
on).

Exact Counter-
example Length

(Sets Bound =
Lower Bound)

Looks for a counter-example
only in the cycle specified in
Bound.
IBM Haifa Research Laboratory, Israel
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FIGURE 19.
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Conjunctive Options:

To remove SAT from the options, unset RB_SAT and restart the GUI.

13.3 Belzeebub Engine

The Belzeebub Engine incorporates classified IBM technology, and is only
available from IBM under a confidentiality agreement. Contact technical s
port for details.

Name Range Restrictions Default Explanations

Time Limit Natural 20000

(Sec)

Time limit for a single interval.

Lower
Bound

Natural 0 <= Bound 0 Minimal cycle to search for a
counter example.

Size limit Natural 0 < Size Unlimited Restrict the CNF formula file
size. (MB).

Native Off Grasp’s Native decision heuris-
tic (DLIS)

Clean On Delete temporary files.
IBM Haifa Research Laboratory, Israel
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13.4 Unfolding Engine

Unfolding is a bounded model checking engine. It proves safety propertie
bounded to the first k cycles, using BDD-based procedures. If the propert
failed, Unfolding produces a Discovery-like counter-example.

The following are the advantages to this approach:

• State variables become wires, therefore Unfolding has an advantage in
plex and shallow designs (many FFs, few inputs).

• Enables static BDD ordering – determines the initial order of variables i
the BDD based on the circuit’s structure. In many cases, this order is su
cient to complete calculation without the need to reorder.

• Unfolding calculates signal values as a function of inputs, rather than a
domly shaped set of states. Therefore, the function is more natural and
reflects the circuit’s structure.

• Eliminates false resource sharing along time. For example, if  FF perfor
one task in even cycles and another task in odd cycles, Unfolding will hav
different function for each task, and Discovery will have one big function
that represents all of its tasks.

• Fine underapproximation – makes an input constant only at a specific cy
Running with underapproximations is called Partial mode. In Unfolding,
Partial mode can be thought of as an intermediate stage between simul
and formal proof (advanced simulation), when according to the parame
(the underapproximation threshold) it goes smoothly from one to anoth

Unfolding is potentially suitable to wide and shallow designs (for example
Boolean/sequential equivalence, datapath).

Unfolding has the following limitations:

• Unable, in most cases, to prove the correctness of formulas for all cycle
therefore, a witness is unavailable.

• Works only on Safety OnTheFly formulas.
RuleBase: a Formal Verification Tool
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13.4.1 Main Settings

The following are the main settings

• cycles
• Number of cycles to be checked. If you have an idea that the location

suspected bug is in cycle n, check n+10 cycles, since the bug may be e
to find in the further cycles.

• Defaults to 50 cycles.

•  mode
• EasyPartial (default) – performs a quick check of the formula with low

approximation bound (good for common bugs).

• Exact – tries to prove the cycles (does not make approximations).

• HardPartial – works harder than EasyPartial (higher approximation
bound) and has a better chance of finding rare bugs.

• ContinuesRun (tmp name) – tries to find the bug using EasyPartial, an
if it can’t find it, continues with HardPartial until the cycles are proven (o
the bug is found).

• Reorder (on/off) –selects whether or not to perform reordering.

• Defaults to "off".

• Threshold –defines when some special action should be taken (reorde
assumption). The number is the total number of BDD nodes currently in
calculated BDDs.

• Defaults:
Exact =1,000,000
EasyPartial = 100,000
HardPartial = 1,000,000
(ContinuesRun - disabled)
IBM Haifa Research Laboratory, Israel
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• ForeverMode (available only for EasyPartial & HardPartial)

• singleRun (default) – runs once on each cycle.

• runForever – runs continuously until a counter-example is found or all
cycles proven. Use it for nights/weekends.

• AssumptionAgorithm (available only for EasyPartial & HardPartial) –
describes how to choose variables for underapproximation.

• MaxLevel (N=0, default for EasyPartial) – quick algorithm, but potential
much more approximations will be made than with the second algorith

• Estimator (N=2, default for HardPartial) – slow algorithm with good
results.

3. ReorderAlg
• Sift (N=4, default) – recommended. It takes a long time, but provides go

results.

• Random (N=2) – TBD

• RandomPivot (N=3) – TBD

• Linear(N=18) –  TBD

• ReadOrder (on/off) –reads initial order from a file.

• WriteOrder (on/off) – writes order in the end of the run.

• WriteOrderEvery N – writes current order every N seconds.

• timeOut: _________  (default=-1)– provides timeout in seconds.

• <show log> – shows Unfolding log.
RuleBase: a Formal Verification Tool
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SMV Optio

USER VIS LEVEL DEFAULT
parameter

-f
I sets

y work
s.

In GUI: Yes

-inc

-cp #n

-fly #a
ty
.

Basic In GUI: 10

-lfly #n
ess
.

Basic In GUI: 10

-AF_on-the

 -longest_tr Basic In GUI: No

-no_longes

-longest_tra Basic

-early_term Advanced Disabled
 a Formal Verification Tool
special agreement with IBM

ns

TABLE 1. Reachability

IBILITY DESCRIPTION
VALUES/
CONSTRAINTS

GUI - options

Reachability Perform reachability. (In normal
mode this means simplify assume
with the reachable states.)

Works as Boolean.
When Reachability is On, GU
-f -cp 1 -inc.
Other options in this table onl
when Reachability is set to Ye

Incremental: simplifies the transition
relation, according to the last donut.

Partitions transition relation part or
reachability settings.

Verify Safety OnTheFly
(the number)

Saves each n donut while performing
reachability.

Int >0
Only works when "Verify Safe
OnTheFly" (in GUI) set to Yes

Verify Liveness OnTheFly
(the number)

Performs liveness on_the_fly for each
n iterations.

Int >0
Only works when "Verify Liven
OnTheFly" (in GUI) set to Yes

-fly_no w Dynamic liveness on the fly.

ace Gen longest trace Finds the longest trace that doesn't
repeat the same state.

Boolean

t_trace see -longest_trace above.
Only used  when ’No’ is applied
dynamically.

ce_no w Gen longest trace (Now) Longest trace to current donut. dynamic option

ination #n Stop after iteration Stops after n iterations. int >0
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-n Advanced Disabled

-s Advanced Disabled

-f Advanced No

-s Very Advanced No

-c Basic Not set

U LEVEL DEFAULT
 Haifa Research Laboratory, Israel
ided by special agreement with IBM

                                                                                                                                                      

o_switch Does not switch to full TR after
reachability.

Boolean

implify_donut Simplifies each donut according to
!(reachable_states)
OR
 Allows overlapping donuts.

Boolean

airness_in_safety Provides fairness in Safety OnTheFly
mode.

Boolean

implify_in_reverse Simplifies the BDDs according to the
reachable states in a backward search.

Boolean

ounters_file <file> Counters mode on the signals in file. File name

TABLE 1. Reachability

SER VISIBILITY DESCRIPTION
VALUES/
CONSTRAINTS
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USER VIS S LEVEL DEFAULT

parameter
-reorder_m  Basic In GUI:

100000

-reorder_m Advanced

-start_reord
#n

Advanced

-stop_reord
#n

Advanced

-reorder_lo Advanced In SMV: 0

-dont_swap 1 Basic / Advanced In GUI:
3.0

-growth_fac 1 Basic / Advanced In GUI:
2.0
 a Formal Verification Tool
special agreement with IBM

TABLE 2. Reorder

IBILITY DESCRIPTION
VALUES/
CONSTRAINT

GUI - options
inimum_size #n <= BDD size SMV will not reorder if it has less than n nodes

allocated.
Int

aximum_size #n BDD size  <= If SMV gets this flag, it will not reorder if it has
more than n nodes allocated.

Int >0

er_at_iteration <= iteration If SMV gets this flag, it will not reorder until
iteration n.

Int

er_at_iteration iteration <= If SMV gets this flag,  it will stop reordering
when it reaches iteration n.

Int

w_threshold #n Low treshold SMV stops reordering when the BDD size falls
below the low threshold.
Does not effect Cheetah algorithm.

Int

_above #r Laziness factor r controls the allowed reordering effort for each
variable reordering. A single variable is sifted in
a specific direction, only as long as the BDD
size does not exceed r*prev_size.
(prev_size being the BDD size just before we
started sifting the variable).
Does not effect Cheetah algorithm.

Real Number > 

tor #r Growth factor r controls when the next reordering round will
take place. A new round will only start when the
BDD size reaches last_size*r. (last_size reflects
the BDD size, at the end of the previous reor-
dering)

Real Number > 
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No

-r her
ble
 reor-

Advanced In GUI: Yes,
In SMV: No

-r of these
e

Advanced In GUI:Rudell+
Cheetah-q

-c

-c

-c

-n Advanced Disabled
(Do reorder in ce)

-n Advanced Disabled
(Do reorder)

-n Advanced Disabled (reorder
only vars in cone)

-d Advanced Disabled (no
decrease)

U LEVEL DEFAULT

pa
 Haifa Research Laboratory, Israel
ided by special agreement with IBM

                                                                                                                                                      

te: All reorder options here can be changed dynamically.

eorder Reorder Performs dynamic BDD reorder. Boolean. Ot
options in this ta
only work  when
der is set to yes.

udell Algorithm The reorder algorithm. Only one flag 
is supposed to b
applied

uick_rudell

heeta

heeta+rudell

heeta+quick_rudell

o_reorder_in_AG_ce Does not reorder while calculating AG counter
example.

Boolean

o_reorder_in_light_proof Does not reorder in light proof. Boolean

o_reorder_in_cone If SMV gets this flag, all variables are reor-
dered.  Otherwise, only variables in cone are
reordered.

Boolean

ecrease_reorder _percent Causes growth_factor to decrease gradually
after 2 million nodes.  At 2 million nodes, the
percent is the original number.
At 10 million nodes, it is about 1+ (original/10)

Boolean

TABLE 2. Reorder

SER VISIBILITY DESCRIPTION
VALUES/
CONSTRAINTS

rameter GUI - options
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USER VIS LEVEL DEFAULT

parameter

-gcinfo Advanced No

-gcmin #n Very Advanced 0

-gcmax #n Very Advanced 100000

-gctime Advanced No

USER VIS LEVEL DEFAULT

parameter
-reduction n Basic In Gui: 8

(3 is probably
Better)
In Smv: Disabled

Advanced Disabled

-no_after_r Advanced Disabled

Very Advanced Disabled

-equiv_in_c Very Advanced Disabled
 a Formal Verification Tool
special agreement with IBM

TABLE 3. Garbage Collection

IBILITY DESCRIPTION VALUES / CONSTRAINTS

GUI - options

Provides more information aboutgarbage col-
lection.

Boolean

The minimum size on which garbage collection
is called.

Int

The maximum size on which garbage collection
is called.

Int

The 'nodes allocated' printed with time stamp Boolean

TABLE 4. SMV Reductions

IBILITY DESCRIPTION
VALUES/
CONSTRAINTS

GUI - options
SMV reductions Controls over-approximations and reduc-

tions in SMV. The number indicates the
heaviness of the over-approximations.
Controlled by SMV reductions.

 (1..10)

No FF pool and equivalence pool. Boolean

each_reductions Removes the reductions after reachability. Boolean

Only removes reset reductions. Boolean

uts Adds equivalence to ff_pool. Boolean
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-n Very Advanced Disabled

-n Very Advanced Disabled

U EVEL DEFAULT

pa
 Haifa Research Laboratory, Israel
ided by special agreement with IBM

                                                                                                                                                      

o_sat_reduction Does not reduce after each formula evalua-
tion.

Boolean

o_reduction_in_counter_example Does not perform the reduction before
generating counter-example.
Disabled in case of bug.

Boolean

TABLE 4. SMV Reductions

SER VISIBILITY DESCRIPTION
VALUES/
CONSTRAINTS L

rameter GUI - options
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USER VIS INTS LEVEL DEFAULT

parameter
-light_proof Basic In GUI: 30

in SMV: disabled

-light_proof Basic

-vacuous_c Basic

-v # Advanced

-or_inside_ Very
Advanced

-ca Advanced

-or_before_ Very
Advanced
 a Formal Verification Tool
special agreement with IBM

TABLE 5. Other

IBILITY DESCRIPTION
VALUES/
CONSTRA

setenv
GUI -
options

 #n RB_SPECN
should be defined for Rule-
Base.

Tries to evaluate each formula
without reachability (in normal
mode) and with partition transi-
tion relation for n seconds.

Integer >0

_without_timer Evaluates each formula without
reachability and with partition
transition relation.

Boolean

heck_only Witness =
Vacuity
only.

Does not produce witness.

Verbose level 1/2

simplify Little change inside simplify
assuming. Better for some mod-
els.

Checks all options.
Does not run the formulas, only
checks the model semantically.

Boolean

recurse Changes in r_collapse is good
for some models.
Provides a little optimization.
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-e Very
Advanced

-
s
e

Very
Advanced

-o Very
Advanced

-s Basic

-fi Advanced

-i

-l GUI sets it to 'log'
being asked.

-d Advanced GUI sets it with-
out being asked.

-n , at most,
 to be set.

Advanced By default, none
of these are set.
SMV filters sig-
nals with NET_
in their names.

-e

U INTS LEVEL DEFAULT

pa
 Haifa Research Laboratory, Israel
ided by special agreement with IBM

                                                                                                                                                      

fficient_backward_sort This backwards sort does not yet
support invars. If this parameter
is present, no invars may be
enabled.

eparate_reductions_in_counter_
xample

Performs separate reduction for
each formula. The default is
common reduction  only when
set to counter-example reduc-
tions.

sa Optimized simplify assuming.

uicide_if_swap SMV kills itself if it has low
CPU for a long time.

Boolean

rst_fail Quits after first failure. Boolean

 <file name> Starts bdd_order file name

og <file name> Name of the log file. file name

Can be overriden by the
RB_NODEL_SMV RB
env. variable

Removes rb.smv (delete input in
smv). Sets to No, and enables
future run of stand alone SMV.

Boolean

o_filter_synopsys Does not provide a filter on the
signals printed to log.

One of these
is supposed

xtra_filter_synopsys Provides extra filtering  of the
signals written to log.

RB_NAMES_FILTER
<filename>

Filters the signals written to log.
Used when it takes too long to
print the trace.

TABLE 5. Other

SER VISIBILITY DESCRIPTION
VALUES/
CONSTRA

rameter setenv
GUI -
options
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-no_real_lo Disabled

-multiple_tr Advanced Not set (1 trace
per formula).

-prolong_tr Basic 0

-dump_rea Advanced Not Set

-restore_re Advanced Not Set

-k # key tab Advanced

-c #apply c Advanced/
Basic

Very
Advanced

0 (Cp Reduction
Enabled)

USER VIS INTS LEVEL DEFAULT

parameter
 a Formal Verification Tool
special agreement with IBM

op Does not extract real loop. Used
when trace generation blows up.
May return a trace without a
loop

aces #n Find n traces for each formula. int >1

ace #n Prolongs the trace with n cycles.

chable <file> Prints the reachable states to file.

achable <file> Takes the reachable states from
the file.

le size Very Advanced

ache size Very Advanced

CHECK_CONST_INIT Disables Constant Propagation
(CP) reduction.

Boolean

TABLE 5. Other

IBILITY DESCRIPTION
VALUES/
CONSTRA

setenv
GUI -
options
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S ../vimdbase

V HISVHDL

R SENSITIVE

R SENSITIVE

R Disabled
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leBase Options

TABLE 6. rulebase.setup

SER VISIBILITY DESCRIPTION VALUES / CONSTRAINTS LEVEL

rameter
GUI -
options

atabase Configuration is controlled by rule-
base.setup.

ntity Configuration is controlled by rule-
base.setup.

YNTHESIS Configuration is controlled by rule-
base.setup.

TEXVHDL,
KOALA_VERILOG,
DADB_VIM,...,NONE, VIM

OURCE Located with VIM.controlled by rule-
base.setup

IEW Directory inside Vimdbase in which
design is located. It is controlled by
rulebase.setup.

Advanced

B_EDL_CASE Defines case sensitivity of EDL,
including rule names.
The names of rule directories are pro-
duced from rule names. Therefore,
changing this parameter in the middle
of the project will "hide" directories
of rules with capital letters in their
names

SENSITIVE/ INSENSITIVE

B_DESIGN_CASE Depends on the design compilation
(SYNTHESIS).

SENSITIVE/INSENSITIVE,
RB_EDL_CASE is INSENSI-
TIVE must be INSENSITIVE
 For VHDL must be INSENSI-
TIVE.

B_NO_IMPL When set to 1,  only EDL, no imple-
mentation.
PERFORMED IN BACKEND OF
RULEBASE.
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Paramete LEVEL DEFAULT

advanced

Shoud be
removed from
options.

User always
wants to explain
vacuity.

In GUI: Yes

Advanced On

Advanced RB:No

GUI: Yes

Advanced No

Advanced
(When $s In
Names)

Advanced
 a Formal Verification Tool
special agreement with IBM

TABLE 7.

r setenv GUI DESCRIPTION
VALUES /
CONSTRAINTS

rb_report_zero_clk Checks if clock logics is 0.

RB_DETAILED Explains vacu-
ous.

Explains vacuous.

RB_ASYNC_OUTPU T Used for FFs with async reset.
If ON, model FFs with async
reset by ff with sync inputs

RB_BIG_ENDIAN Useful when vector direction
does not comply. If vectors
used in format v(i..j), the value
of RB_BIG_ENDIAN does not
matter.

RB_COMPLEX_CLOC
K_WARN

Warns about suspicious clock
calculating

Boolean

RB_DOLLAR_FLAG Switches $ to _ in name for
SMV.

RB_UNIQUE_NAME Switches characters that con-
flict with SMV to unique inter-
nal representation.
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Advanced Disabled

Advanced No

disabled

 
r
t

Basic

Basic In GUI and RB:
No

Advanced On

Advanced No

Very Advanced 0

Very Advanced  1

Very Advanced
 Haifa Research Laboratory, Israel
ided by special agreement with IBM

                                                                                                                                                      

RB_REDUCTION_ON
LY

RuleBase performs reductions,
prints rb.smv, and quits.

PERFORMED IN BACKEND
OF RULEBASE

Boolean

RB_TRANS_DSL_AR Y Translates DSL ARY to single
FFs. If off, DSL ARY should
be modeled in environment.

Boolean

RB_SPECN Attempt light
proof.

Causes Sugar to create normal
mode formulas.

-witness      -
ulebase invoca-
ion option.

Witness Sugar creates SPECs for check-
ing vacuity/giving witness for
pass formulas.

RB_AG_BOOLEAN Verify Safety
OnTheFly

rb_cct Creates circuit
file.

Creates circuit file for cctdag
(Debugging).

PERFORMED IN BACKEND
OF RULEBASE?

Boolean

init_impl_ffs When ON,  init every FREE
IMPL DFF INIT to 0.

PERFORMED IN BACKEND
OF RULEBASE.

Boolean

rb_init_latches If enabled, gives init value to
latches.

Boolean

rb_constant_simulation Constant signals pre-reduction
simulation.

rb_report_unresolved Provides more information on
unresolved.

rb_ff_iterations Number of FF EQUIV reduc-
tion iterations. RuleBase back-
end

TABLE 7.
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E.RuleBas

1

setenv Level Default

rb_bdd_re Basic In GUI and
SMV:
1(high)

rb_consta Advanced 1

rb_cone_v Advanced 1

rb_domain Advanced 1

rb_reducti Advanced No

rb_e_t_ff Advanced Off
 a Formal Verification Tool
special agreement with IBM

e

RB_ASSUMPTIONS Translates assumptions.

rb_a2d_boolean_only

TABLE 8. Reductions Control

GUI Meaning Constraints

ductions Reduction effort Reduction effort 1 - High
0 - Low

nt_propagation Performs constant_propagation reduc-
tion.

Boolean

erification Simple Cone. Boolean

_check Domain reduction. Boolean

on_report Reports reduction related information. Boolean

Edge triggers FFs with long alternating
clocks.  Better to use clocks high 1
cycle.
See also Section 11.5: Design Mapping.

Boolean

TABLE 7.
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F.D

Advanced 1

s is
Advanced No

s is
Advanced Off

s is
Advan Ced

Advanced 1

Advanced  1

Advanced No

Advanced Disabled
 Haifa Research Laboratory, Israel
ided by special agreement with IBM

                                                                                                                                                      

P12 reduction

rb_check_nondet_define Reports a warning for every nondeter-
ministicDEFINE signal used more then
once.
PERFORMED IN BACKEND OF
RULEBASE

Boolean

rb_smart_constants Heavy reduction 1 Is set in case too big to start  SMV. Per-
formed in backend of RuleBase. Useful
when more than 1000 variables are gen-
erated, due to SMV limitation.

Boolean.
If rb_bdd_reductio n
On

rb_smart_cone Heavy reduction 2 Is set in case too big to  start SMV. Boolean.
If rb_bdd_reductio n
On

reduction_bdd_limit BDD node limit Maximal size of BDD in RuleBase.
PERFORMED IN BACKEND OF
RULEBASE

integer.
If rb_bdd_reductio n
On

simple_vars Reduction of Assign to define.
PERFORMED IN BACKEND OF
RULEBASE

Boolean

safe_fairness No reduction when the fairness cone
does not touch  formula cone

Boolean

RB_NO_REDUCTION No reductions on envs.

RB_EARLY_CONE_CH
E CK

Early cone check. Boolean

RB_NO_ALL_AFTER_
RE DUCTION

Does not create all_after_reduction file. Boolean

TABLE 8. Reductions Control
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setenv Default

RB_CHEC Off

RB_DPL1 Bigger(0)

RB_DP12 Off

RB_DP12 No

RB_DPL1
TRICT

No

 RB_DPL1 ced

RB_DP12 1

 DP12_IG d C2_inputs

DP12_L1_
AME

C1_outputs

DP12_L2_ ed Ignore_inputs
 a Formal Verification Tool
special agreement with IBM

TABLE 9.

Meaning Values/ Constraints Level

K_DPL1_L2 runDP12. Other flags in this table
are only relevant if this variable is
set.

Boolean Basic

2_REMOVE_ONLY The layer to be removed. L1:'1',
L2:'2',
Bigger:'0'

Advanced

_LEAVE_ORIG_CL K Does not set all clocks to 1. Boolean.
if
RB_DPL12_REMOVE_
ONLY is set to L1,
model L2 clocks,...

Advanced

_SAVE_DPVIM Saves the VIM after DP12 and uses
it as long as the design does not
change.

Boolean Advanced

_L1_OUTPUT_RES Aborts if c1_outputs is not full.
Performs backward search.

Boolean Advanced

_STOP_AFTER_DP12 only DP12 check Boolean Very Advan

_NUM_OF_FAILS The number of violations for which
DP12 is looking.

Integer Advanced

NORE_FILE_NAME File Name Very Advance

OUTPUTS_FILE_N File Name Very Advanced

INPUTS_FILE_NA ME File Name Very Advanc
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No

No
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DP12_CUT_INT_FILE_NAME When points to a file, DP12  cuts
all nets from that file.

File Name Very Advanced

RB_DP12_CUT_BITVECTOR E Shorter problem message. When
set after finding problem in name
v(#) will cut all vector.

Boolean Advanced

RB_DP12_ONE_WARNING_
FOR_PORT

Same as previous, for
DSL_ARRAY.

Boolean Advanced

TABLE 9.
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 G.GUI

 paramete Lev el Default

0

0

Basic In GUI:
To both

Basic In GUI:
To orders pool
 a Formal Verification Tool
special agreement with IBM

TABLE 10.

r setenv GUI name Meaning
Values/
Constraints

PF_SCOPE Calls pf scope viaGUI.

RB_AUTO_LOAD
_RUL E_CFG

Uses private config file from ./
cfg/<rule_name>.cfg

RB_COND_RUN Asks confirmation on run.

RB_EDITOR On edit press.

COPY_RUDELL Copy back
after run

Copies the result of the
dynamic reordering at the end
of the run.

To both: "yy"
To <rule>.order: "yn"
To orders pool: "ny"
No:"nn"

rb_find_order Use order file Prepares file bdd_oder before
SMV starts.

orders pool: "pool"
 <rule>.order:"rule "

RB_ORDER_DIR Orders dir for copy back
order.
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H.D

p straint Level Default

In GUI:Yes

In GUI:Yes

In GUI:Yes
 Haifa Research Laboratory, Israel
ided by special agreement with IBM

                                                                                                                                                      

ebbugging/Scope

TABLE 11.

arameter setenv GUI Meaning Con

RB_EXPLAIN_CE Explains timing diagram. Explains timing diagram for old
scope.

RB_SCOPE_MSG Shows formula text. Defaults  show formula text - for
old scope

RB_SCOPE_PER_RULE_ST
A TE

Per-rule state file. Per rule state file - for old scope

RB_TRACE_NUMBER  <n> See the n'th trace.
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Symbols
$RBROOT 12
%for 66
%if 68
.cshrc 12

A
ABF 121
ABG 122, 124
abstraction 98, 158, 159
AF 112, 121

restricted 128
AG 93, 110, 122, 125, 126
AG boolean 164
and between sequences 133
arrays 70

array operations 71
boolean vectors 70
concatenation 74
defining 70
nondets() 74
ones() 74
rep() 74
zeroes() 74

assign 60, 93
assign and define, differences between 61
assume 83, 86
asynchronous logic 207
AU 118, 122
automatic elimination of logic 158
AW 123
AX 116, 121, 124, 125, 126

B
BDD ordering 160
bdd re-ordering, dynamic 160
before 123, 124
before! 124
before!_ 124
before_ 124
Belzeebub 223
binary decision diagram 160
boolean 93
boolean vectors 70
built-in functions and macros 58
bvtoi() 73

C
case expression 57
case statement 79
clocking schemes 205
clocks 102
clocks, multiple 205
CLSI 21
comments 65
concatenation 74
concatenation on the left-hand-side 74
Constants 54
constants

enumerated 54



control logic 204
counter-example 9, 52
coverage 8, 210
CTL 106, 108

D
danger of fairness 100
datapath logic 204
define 61, 94
design for formal verification 204
design partitionin 156
Discovery 216
don’t care 95
DSL 13, 27
dynamic bdd re-ordering 160

E
EDL (Environment Description Language) 35, 53, 151
EF 112, 115
EG 110, 111
else 57
endif 57
enumerated constants 54
environment 9, 52
Environment constraints 81
environments, multiple 151
envs 13, 14, 93, 149
esac 57
EU 118, 120
EX 116, 117
exhaustive simulation 8, 94
expressions 54

F
fairness 64, 94, 99

advanced fairness types 99
fairness, dangers of 100
false formula 136
false negative 52
false negatives 35
false positive 41
fell() 58
FG 99
filtering out paths 98, 100
forall 137
formal verification 8
formula 93, 149
formula examples 142
formulas 149
free variable 15, 95

G
GF 99
goto 131

H
Hint 89
HIS 21
holds_until 131
holds_until_ 132



I
if expression 57
if statement 79
in 58
include 15
inherit 150
init 60
Initially 81
initially 81
instance 63, 64
invar 81, 83
itobv() 73

K
koala 30

L
light proof 194
limiting non-determinism 94
linking environment to design 53, 91
logic verification 8
longest trace 178

M
Macros 65
memory 164
mod 56
mode 93, 150
module 63
multiple clocks 103
Multiple traces 179

N
AX 121
next 60, 124, 125, 126
next_event 124, 125, 126
next_event! 125, 126
next_event_f 126
next_event_f! 126
non-determinism 36, 58, 94
non-determinism, limiting 94
non-deterministic choice 96
non-deterministic enumerated constants 96
nondets() 74

O
of 9
ones() 74
operator precedence and associativity 56
operator, strong 122
operators 55

arithmetic 56
boolean 55
case expression 57
if expression 57
non-deterministic choice 58
relational 55

or between sequences 132
ordering, bdd 160
original 93



overreduction 158
override 92, 93
overriding design behavior 91
overriding initial values 93

P
partitioning, behavioral 157
partitioning, design 156, 205
partitioning, rule 157
Preprocessing 65
prev 55, 71
process 76

assign statement 78
case statement 79
example 80
if statement 79
var statement 78

Prolong trace 179

R
reduction 19, 156, 158
reduction analyzer 173
redundant logic 158
regular expression 129
relubase.setup 94
re-ordering, bdd 160
rep() 74
reserved words 69
reset 105
Restrict 87
rose() 58
rule 93, 149
rule partitioning 157
rulebase.setup 13, 14
rules 13, 14, 16
run 13, 17

S
SAT 216
satellite 140
Scope 166
scope 94, 166
scope rules 65
see also

endcase 57
Sequence 129
sequence 129
sequence imlpies sequence 134
sequential processes 76
simulation 8, 210
size limit 156
size problem 9
size problems 156
SMV 53, 62, 94
state variable 59
statements 54
static analysis 157
strong operator 119, 121, 123, 124, 125, 126, 127, 128, 129
Sugar 120, 125
symbolic model checking 8



Synopsys 24, 25, 26
synthesis paths 13

T
temporal operators 109
test vector 8
test_pins 149
The 127
then 57
Trans 81
trans 82
translation paths 13, 20
tri-state buffers 208
true 131

U
Unfolding 224
uninteresting paths, filtering 94
until 122, 123
until! 123
until!_ 123
until_ 123

V
vacuity 172
vacuous pass 41
var 59, 93
variables 54
verification 8
Verilog 13, 23, 26, 30
VHDL 13, 21, 24, 25

W
waveform display 166
weak operator 121, 122, 124, 125, 126, 127, 129
whilenot 127, 129
whilenot! 129
within 127, 128
within! 128
witness 41, 173

X
X value 95
xor 55

Z
zeroes() 74
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