
1

Specman GUTS Course
(Get Up To Speed)

2

Table of Contents

Topic Page
• Basic e code definition 4
• Struct example 12
• Generation / constraints 14
• Constraints example 20
• Simulation interface 22
• Methods 24

• signal assignments 27
• Operations 29
• Control Statements 32
• Method example 47
• Gen on-the-fly 49
• Packing 52

3

Intro to Specman Code

• This presentation is intended to be delivered by a Verisity
CE to a customer who is going to start an evaluation.
– It focuses on “what can be done” and not so much on syntax.

Syntax can be found in the reference manuals.
– It does not cover all that is available in Specman, just the most

common constructs that will be needed to complete 90%+ of most
environments. See reference manuals or CE for additional needs.

• This presentation may be used just to get an idea of the
Specman constructs. For this purpose, it is recommended
to see an example environment (such as the ATM
environment) as well to get more examples and context.

4

Basic ‘e’ code structure
• At the ‘top-level’ of code, one can define a struct or use the type, define, import or

verilog statements. Within a struct, there are a number of struct members that can be
specified. Within a method, variables can be defined and action and control statements
can appear, as well as other methods called.

struct type verilog import define

field
when
keep
method
event
cover
on
expect

(when block can contain all valid struct statements)

time consuming or not
actions, control statements
var
other methods

(all related to events)

5

Minimal ‘e’ template for simulation

• This is the minimal template necessary to test a circuit with a VHDL or
Verilog simulator. The next slides present topics in the order of this template

struct my_struct_s {
field; -- describe field to be passed in to simulation
keep …; -- if any constraints on legal value of field
event clk is rise('path/clk')@sim;
method() @clk is {

for or while loop {
gen field; -- only if generation-on-the-fly
'path/input' = field; -- or = variable
wait [1]; -- wait of at least one period needed

};
stop_run();

};
run() is also {start method() };

};
extend sys { inst_name : my_struct_s };

6

Fields Syntax

• Syntax
– field_name : type;

• type will determine width of field and how certain functions (print,
for example) work with the value

7

Types

• Types
– integer

• int - 32-bit signed integer
• uint - 32-bit unsigned integer
• int (bits: n) - n-bit signed integer
• uint (bits: n) - n-bit unsigned integer

– integer subtypes
• byte - 8-bit unsigned integer, same as uint (bits:8)
• bit - 1-bit unsigned value, same as uint(bits:1)

– Boolean
• bool - 1 bit Boolean value (TRUE or FALSE)

8

Types

• Enumerated types
– defined with type statement

type color_t : [RED, GREEN, BLUE];

– the enumerated type corresponds to a 32-bit value starting with 0
on the left and incrementing by 1 moving right

– can modify the width when defining
type color_t : [RED, GREEN, BLUE] (bits:8);

or when using
field_name : color_t (bits:8)

– can specify other values
type color_t : [RED=5, BLUE=23,GREEN=7];

9

Types

• structs
– any user defined struct is also a valid type for a field

struct a_s {
x : int;

};
struct b_s {

y : a_s; -- the type is struct "a_s"
};

10

Lists

• List of any scalar type (integer, Boolean, enum) or of struct
–

sizes : list of uint; -- list of unsigned integers

• List size can be specified in field definition
–

colors [10] : list of color_t; -- list of 10 items of
type color_t

11

Field Examples

• type size_t : [small,medium,large];
struct my_struct_s {
a : int; -- 32-bit signed integer
b : uint (bits:4); -- 4-bit unsigned integer
c : byte; -- 8-bit unsigned integer
d : bool; -- Boolean, TRUE or FALSE
e : size_t; -- enumerated type defined above
f : list of byte; -- list, unspecified depth, of byte
g [8] : list of bit; -- list with 8 items, each 1-bit

};
struct other_struct_s {
m : my_struct_s; -- entire body of my_struct

};

12

Example Struct - Packet

• Create a struct called packet from the following
specification:
– Packet has three physical fields: a packet length (len), an address

(where the data is routed to), and an array of bytes (data). Also
specify a virtual field (kind) with an enumerated type to specify if
it is a good or bad packet.

– “len” should be 6 bits, “addr” should be 2 bits, “data” is of length
“len”

• (How would one define a field in another struct to be a list
called packets that contains 10 instances of packet?)

13

Packet Struct Solution

<‘
type packet_kind_t : [GOOD, BAD];

struct packet_s {
kind : packet_kind_t;
addr : uint (bits : 2);
len : uint (bits : 6);
data [len] : list of byte;

};

struct my_stimulus_s {
packets [10] : list of packet_s;

};
‘>

14

Generation with basic structs

• We have just created a basic struct.

• If we generate “packets” now, each of the fields in packet
will be generated with random data.

• We probably want to constrain the generation to only
include legal values.

• We do that simply by extending our definition of packet
through a construct called keep.…..

15

Constraints (keep) Overview

• Four styles of keep
– keep Boolean-expression

• constraint forces Boolean expression to be TRUE
– keep Boolean-expression => Boolean-expression

• if first Boolean expression is TRUE, constraint forces second Boolean expression to
also be TRUE

– keep for each in list_name do

• apply constraints for each element in the list
– keep soft field == select { weight1 : val1; weight2 : val2 };

• change selection from flat distribution to weighted distribution

• All keeps must be satisfied, contradiction causes an error
– keep soft is satisfied if possible, but discarded if contradicting

16

Keep Boolean expression

• ==, !=, >, <, >=,<=
– keep x == 25;

keep 5 < x; -- order in expression not important
keep y >= x + 9; -- arithmetic operations allowed
keep y < my_method();
keep z != large;

• in range
– keep x in [5..10]; -- x is an int

keep y in [1,3,5..8]; -- y is a uint
keep z in [SMALL..MEDIUM]; -- z is enum

– keep k not in [100..199]; -- k will not be 1xx

• method that returns bool (see method section)
– keep my_list.is_all_iterations(.x);

17

Keep implication

• Keep expression1 => expression2
– expressions can have any of the forms on the previous page

keep x == 4 => y == 7;
keep x > 10 => y != x - 4;

18

Keep for each in list

• Keep for each (item_name) in list_name do { body; };
– Can use Boolean expressions or implications from previous pages

in body
keep for each (a) in alist do {a < 10};
keep for each (mystruct) in mylist do {

index == 0 => mystruct.x < 40;
index in [1..4] => mystruct.x == 10;
index > 4 => mystruct.x != mystruct.y

};

– Add “using index (index_name)” to use index value in body.
keep for each (a) using index(i) in alist do {a == i};

19

Keep - Weighted Distribution

• By default, each legal value has an equal chance of being
selected. Sometimes, you want a different distribution.

• keep soft port == select {
30: inport0;
50: inport1;
10: inport2;
10: others;

}; -- port is enum with values inport0, inport1,...

– Ranges can be specified
• keep soft addr == select {

8: [0..255];
2: [256..4096];

};

20

Constraints Example

• Constrain the packet struct created previously to:
– Make the length less than 20
– Generate about 90% good packets and also 20% address 0, 60%

address1 and 20% address 2.

21

Constraints solution

<‘

extend packet_s {
keep len < 20;
keep soft kind == select {

90: GOOD;
10: BAD;

};
keep soft addr == select {

20: 0;
60: 1;
20: 2;

};
};

‘>

22

Simulator interface

• We have seen how we can easily control the generation of
our stimulus.

• Now, how do we apply this generated stimulus to the
simulator and the device under test?….…..

23

Event “clock” definition

• You must define a Specman event tied to an HDL signal in
order to drive or read HDL signals as simulator time
advances.
event name is rise('path/clk')@sim;

– choose the event name as you want
– choose rise, fall, or change of the HDL signal (methodology

recommendation: choose the opposite of the active edge inside the DUT)
– the path should begin with ~ and use / as a hierarchy separator

(e.g. ~/top/level1/level2)
– the @sim is required (it causes the simulation callback when the signal

change occurs)

24

Methods Overview

• We need a way to assign new values to Specman variables
or simulator signals based on the values of other Specman
variables or simulator signals -- methods.

• Methods can complete without simulator time advancing;
we call these regular methods. Methods can also operate
as simulator time advances, for example assigning a new
value to a DUT input every clock cycle; we call these time-
consuming methods or TCMs.

25

Specman Variables

• Methods can use/change the values of:
– variables passed in as parameters
– all fields in the struct in which the method is defined
– fields in other structs specified with a full path name from sys

• For example, if sys has a field a of type astruct, astruct has a field b of
type bstruct, and bstruct has an integer field z, then a method in struct
kstruct can access sys.a.b.z.

• You can also create variables of any type. Variables can
be used/changed only in that method (local scope)
var name : type;

• For variables of type struct, use “= new”
var name : struct_name = new;

26

Simulator Signals

• Signals in the device-under-test can be accessed by
describing the full Verilog/VHDL path and signal name,
enclosed in single quotes. A style that works for Verilog
and VHDL is to use “/” as the hierarchy separator and start
the path with “~”.

• '~/top/middle/bottom/my_signal'

• You can also use the style for your simulator
• e.g. for Verilog, 'top.middle.bottom.my_signal'

27

Assignment

• Assignment (an action statement)
• item = RHS

• item
• field in this struct or with full path name from this struct or from sys
• variable declared in this method
• signal in the RTL ('~/full_path/signal_name')

NOTE: if item is a list or a struct, assignment will not create a copy of the list or
struct; instead another pointer to the list or struct is created, meaning that a
change to the underlying list or struct based on either pointer will be seen
when the list or struct is viewed by either pointer. If you want a copy, see
copy method described later.

28

Assignment (cont.)

• RHS
• another item
• any number of operators applied to fields or variables
• a value returned by a user-defined or pre-defined method

29

Operations

• Operations for integers (includes uint, byte, bit)
• +, -, *, / : addition, subtraction, multiplication, division
• <<, >> : left shift, right shift
• |, &, ^ : bitwise OR, AND, XOR
• ~ : bitwise complement

• Operations for Booleans
• and, or, not

30

Operations - example

• x = 2, y = 1, k = TRUE
• ((x + y) * 2) - 5

x << 3
x | y
(x == 3) or ((y ==1) and k)

31

List Elements and Bit Slicing

• List elements
– Individual elements from a list can be specified by [index]

• my_list[5] -- 6th element in my_list (0 is 1st)

– Sublist can be specified by [low..high]
• my_list[2..5] -- 3rd through 6th element

• Bit Slicing
– A bit from an integer can be specified by [bit_pos:bit_pos]

• my_int[7:7] -- MSB of an 8-bit integer my_int

– A range of bits from an integer can be specified as [high:low]
• my_int[7:4] -- upper 4 bits of my_int

32

Control Statements - Loops, Conditional

• Methods execute each line in their body and then quit
• Often, we want to execute lines more than once. This is

where loops are useful.
• for loop
• while loop

• Sometimes we want to execute a group of lines only when
a certain condition is true

• if statement

33

For loops

• for local_int from low to high do { action_block };
for j from 0 to 10 do {

print j;
};

• for each (item_name) in list_name do { action_block };
for each (databyte) in databytes do {

sum = sum + databyte;
};

– Add “using index (index_name)” to use index value in body.
for each (a) using index(i) in alist do {
clist[i] = a | blist[i];

};

34

While loops

• while Boolean-expression do { block };
while x < 10 do { -- assuming x is 0, executes 10 times

print x;
x = x + 1;

};

while TRUE do { -- executes forever
print sys.time;
wait [1]; -- must be in time-consuming method

};

35

if..else conditional

• Sometimes, we want to perform the actions only under
certain circumstances; use the “if...else” conditional
– if Boolean-expression { block };

if a < 10 then {
print a;

};

– if Boolean-expression { block } else { block };
if a < 10 then {

print a;
} else if a <= 15 then {

out(“between 10 and 15”);
} else {

out(“greater than 15”);
};

• (a case statement is also available)

36

Apply “packets” to simulator

• We have all of the constructs necessary to apply the
packets created (from the generation and constraint
examples) to the simulator… try it!
– Send the 10 packets to a device that takes input once every rising

edge of top/accept. The first period it wants to see the address on
top/address and the length on top/length. Each subsequent period,
it wants to see one byte of the data on top/databyte.

• Hints:
– Use the basic template.
– Outer loop to iterate through packets, inner loop to iterate through each

byte in data.

37

Simulator Interface Solution
• struct stimulus_s {

packets [10] : list of packet_s;
event clk is fall('~/top/accept')@sim;
drive() @clk is {

for each (p) in packets do {
'~/top/address' = p.addr;
'~/top/length' = p.len;
wait [1];
for each (d) in p.data do {

'~/top/databyte' = d;
wait [1];

};
};
stop_run();

};
run() is also {start drive()};

};
extend sys { my_stimulus : stimulus_s };

38

Alternative: Using Verilog Tasks

• If you already have a Verilog task that implements the
interface protocol, do you have to duplicate that in a
method? -- No, just call the task!
– Define the task

verilog task 'taskname'(in_name:size,out_name:size:out);

• all of the names and the sizes must match the task definition in the .v
• in_name and out_name represent the parameters; you can have any

number of parameters separated by comma; an output parameter must
be flagged with “:out” as out_name is above

– Call the task (as if it was a method) from a TCM
'taskname'(addr,data);

39

Solution Using Verilog Task

• verilog task 'top.send_pkt'(addr:2, len:6, data: 504);
struct stimulus2_s {

packets [10] : list of packet_s;
event clk is fall('~/top/accept')@sim;
drive() @clk is {

for each (p) in packets do {
'top.send_pkt'(p.addr,p.len,p.data);

};
stop_run();

};
run() is also {start apply()};

};
extend sys { my_stimulus : stimulus2_s };

• NOTE: In Verilog, a task cannot have a parameter with variable
width, so data is defined as its maximum width, 8 x (2**6 - 1)

40

Varying the Template

• You may want to modify the use of some of the other
constructs in the template.
– the wait command
– the definition of the method
– starting the method
– extending structs and methods

• Here’s a little more detail on these topics...

41

The Wait Action

• wait
• valid only in time-consuming method (method definition defines

default event)
• wait for some number of cycles of the default event
wait [5]; -- waits 5 cycles of default event

• wait for another event
wait until rise('~/top/rst'); -- wait for inactive
wait until @interrupt;

• wait for a condition to become true
wait until true('~/top/flag' == 1);

42

Starting Methods

• Regular methods can be called by other regular methods or
by time-consuming methods
x = f(a,b); -- this line could be in TCM or regular method
-- assume f is a regular method with a value returned

• Time-consuming methods can only be started (not called)
by regular methods, although they can be either started or
called by other time-consuming methods
start tcm1(a,b,c); -- valid in TCM or regular method
tcm1(a,b,c); -- valid only in TCM
-- assume tcm1 is a TCM with no value returned

• NOTE: there is always an implied wait for the default event before
the body of a TCM executes

43

Starting Methods in the First Place

• So, if each method is started/called by another method,
how is the very first method started? The Specman test
command starts the following built-in methods for the
global struct and each struct in sys

• init() - runs before pre-run generation
– set up configuration parameters, assign initial values to fields (use ! so

that generation does not overwrite these values)
• post_generate() - runs after pre-run generation

– modify values based on what generation has created
• run() - runs just before simulation

– start TCM’s that should begin at simulation time 0

44

Extending Methods

• We need a way to add to the built-in struct methods. The
way to extend any method (an exception: the list methods
cannot be extended) is by using “is first” or “is also”
– Use the same method definition as was used for the original

definition except change “is” to “is first” to add to the beginning of
the method or to “is also” to add the end of the method

– run() is also { start my_tcm() };

parity(data: list of byte) : byte is first {
“some initialization code”

};

45

Extending Structs

• As with methods, we want to be able to extend structs.
– sys is a built-in struct (already defined) so we can only extend it
– user-defined structs might be extended in a different file than

where they were defined to group code according to its purpose
rather than its struct
• struct my_struct_s { body }; -- defined somewhere
extend my_struct_s { any_struct_member };

• extend sys {
my_inst : my_struct_s;

}; -- puts an instance of my_struct in sys

– now my_inst fields will be generated and its built-in methods run

46

Make Your Own Methods

• So far, we have focussed on what can go in the body of a
method. What about the definition of the method?
– Required

• name of the method
• parameters and their types (if any)
• return value type (if any)
• if and only if this a TCM, the default event

– method(param1 : type, param2 : type) : type @event is { body };
parity(data: list of byte) : byte is {…
apply() @sys.clock is {…

– If a return value type is defined, a variable “result” is implicitly declared
result = param1 + param2;

47

Method example - packet

• A common need for a user-defined method is to calculate a
constraint value using an algorithm that is too complex to
state in a single line.

• Create a method in the sys struct to calculate parity for the
data field of packet.
– The parity algorithm is a simple bitwise XOR of the bytes in data,

yielding a byte. Make a field called parity in the packet struct and
constrain its value to equal the return from the method when the
kind field has the value “good”.

– Hint: think of the
• input parameter and its type; the return type
• way to iterate through each value in a list

48

Parity solution

extend sys {
parity_calc (data : list of byte) : byte is {

for each (item) in data do {
result = result ^ item;

};
};

};

extend packet_s {
parity : byte;
keep kind == good => parity == parity_calc(data);

};

49

Generation On-The-Fly

• Generation on-the-fly means creating stimulus just before
it will be applied.
– Advantages:

• can base generation results on current state of simulation
• saves memory versus generation all stimulus before the run

– Use the “gen” action
• get the generator to produce a new value for a field (using all of the

existing constraints) or for a variable
• can specify new constraints with gen keeping
gen x keeping {it in [1..5]};
gen mystruct keeping {.a < 50; .b > 4};

50

Generation On-The-Fly Example

• Try rewriting the simulator interface as generation on-the-
fly.

• Send 15 packets. For each packet, set the addr value to the value of
the HDL signal “top/two_bits”.

51

Interface Solution Using Gen On-The-Fly
• struct stimulus3_s {

event clk is fall('~/top/accept')@sim;
drive() @clk is {

var next_pkt : packet_s;
for i from 1 to 15 do {

gen next_pkt keeping {.addr == '~/top/two_bits'};
'~/top/address' = next_pkt.addr;
'~/top/length' = next_pkt.len;
wait [1];
for each (d) in next_pkt.data do {

'~/top/databyte' = d;
wait [1] * cycle;

};
};
stop_run();

};
run() is also {start apply()};

};
extend sys { my_stimulus : stimulus3_s };

52

Concatenating with pack

• To you, there are separate fields, to the device it is a single
stream of bits; how can you make the translation? The
built-in method called pack.
– Pack will take fields or variables and concatenate them into an

integer, a list of bits, or a list of bytes as needed. There are various
styles of packing (big/little endian, etc.).

– To save typing, you can specify an entire struct to be packed, and
all the fields marked with “%” will be packed

• pack(packing_style, item1, item2,…);

53

Packing Styles

• packing.high
• the first field goes in the most significant location of the result, the

second field goes in the next most significant location, and so on until
the last field goes in the least significant location

• use for concatenating items to an integer

• packing.low
• the first field goes in the least significant location of the result, the

second field goes in the next least significant location, and so on until
the last field goes in the most significant location

• make your own
• your CE can help you create a new style in a setup file

54

Pack Examples

• a = 10101010; f = 1111; c is list of bit, c[0]=1, c[1]=1,
c[2]=0,c[3]=0; x is list of byte
– x = pack(packing.high, a, f, c)

• x[1] = 10101010, x[0] = 11111100
– x = pack(packing.low, a, f, c)

• x[1] = 00111111, x[0] = 10101010

• Modify the simulation interface solution assuming the
device now wants to see address and length concatenated
as the first data byte

• Hint: use pack to concatenate address, length and data into a single
list of byte, then apply each byte in a loop

55

Interface Solution Using Pack
• struct stimulus4_s {

packets [10] : list of packet_s;
event clk is fall('~/top/accept')@sim;
drive() @clk is {

var bytes : list of byte;
for each (p) in packets do {

bytes = pack(packing.low, p.len, p.addr, p.data);
for each (b) in bytes do {

'~/top/databyte' = b;
wait [1];

};
};
stop_run();

};
run() is also {start apply()};

};
extend sys { my_stimulus : stimulus4_s };

56

Pre-defined List Methods

• With “for each..in list”, you can do all kinds of processing
on a list; however, common list operations have already
been implemented in built-in methods for you
– every list you create has the following methods available to it (see

next page, ref. manual for more)
• copy()

– return a new list with the same element values as the original
• size()

– return the number of elements in the list
• add(element)

– add the element to the end of the list

57

More List Methods

• more list methods
• all/ has/ first(expression)

– evaluate the expression for each of the elements in the list and return a
sublist of all elements for which the expression is true (all), a Boolean
saying whether any element has that expression true (has), or the element
itself which is the first one that has the expression true (first)

• delete(index)
– delete the element with that index

• pop/clear()
– return the last element in the list and remove it from the list (pop);

remove all elements from the list (clear)
• crc_8, crc_32

– compute common CRC equations over a list of bits (see ref. for syntax)

58

Printing actions

• For debugging and for generally following the progress of
the simulation, we want to get text output from Specman.
There are various print actions available.
– print

• use the Specman print function on a field or variable
• output style for structs can be modified

– out
• simple printing of a simple values (a struct or list will be printed as a

pointer; carriage return is automatically added at the end
– outf

• like out, but c-type formatting is allowed and there is no automatic
carriage return at the end

59

Printing examples

• print
– print index using dec;

print data using hex;

• out
– out("Index is" , index, "and data is ", data[index]);

• outf
– outf("Index is %d and data is %x\n", index,data[index]);

60

Checking action

• To verify that all values are as expected, use the check
action

• check Boolean-expression else dut_error("message");

• Boolean expression is no different from elsewhere in code
• Boolean variable, Boolean variables combined with Boolean

operators, or method returning Boolean
• Two or more non-Boolean values with compare operator
• Common use is e-value == 'simulator value'
check that reg == '~/top/reg'

else dut_error("reg mismatch");

• Message is same syntax as for out() action

	Specman GUTS Course(Get Up To Speed)
	Table of Contents
	Intro to Specman Code
	Basic ‘e’ code structure
	Minimal ‘e’ template for simulation
	Fields Syntax
	Types
	Types
	Types
	Lists
	Field Examples
	Example Struct - Packet
	Packet Struct Solution
	Generation with basic structs
	Constraints (keep) Overview
	Keep Boolean expression
	Keep implication
	Keep for each in list
	Keep - Weighted Distribution
	Constraints Example
	Constraints solution
	Simulator interface
	Event “clock” definition
	Methods Overview
	Specman Variables
	Simulator Signals
	Assignment
	Assignment (cont.)
	Operations
	Operations - example
	List Elements and Bit Slicing
	Control Statements - Loops, Conditional
	For loops
	While loops
	if..else conditional
	Apply “packets” to simulator
	Simulator Interface Solution
	Alternative: Using Verilog Tasks
	Solution Using Verilog Task
	Varying the Template
	The Wait Action
	Starting Methods
	Starting Methods in the First Place
	Extending Methods
	Extending Structs
	Make Your Own Methods
	Method example - packet
	Parity solution
	Generation On-The-Fly
	Generation On-The-Fly Example
	Interface Solution Using Gen On-The-Fly
	Concatenating with pack
	Packing Styles
	Pack Examples
	Interface Solution Using Pack
	Pre-defined List Methods
	More List Methods
	Printing actions
	Printing examples
	Checking action

