
Calculator - Design II

I. Design
This design is an extension to calculator design 1.

The initial design allowed only one command from each of the four ports at a time. All ports
needed to wait until the calculator completed execution of the current command before another
command could be sent.
In the new design, up to four commands can be sent into the calculator from each of the 4 ports.
Hence, (theoretically) the calculator could be working on up to 16 commands at a single time.

This single design change has major implications to the system. Since there are two internal
arithmetic pipelines in the calculator (one for add/sub and one for shifts), it is possible for
commands to be executed out of order. For example, if the four ports all send in 3 add
commands followed by a shift command, the shift commands are likely to be completed prior to
the latter add commands. However, commands from the same port that use the same pipeline
(add/sub or shift) will return in order.

In order to correspond the responses to the correct commands, a two bit tag has been added to the
input and output protocols. This tag should be a unique identifier for each of the commands from
each port. (Inside the calculator design, another pair of “internal” tag bits are maintained to
correspond the command back to the correct port).

 II. Problem Statement

This is a new design that contains added complexities. You must verify the correctness of the
design through simulation. Use the following information to drive and check the design:

A. Block Diagrams

1. Inputs/Outputs of the Calculator

c_clk
reset

req1_cmd_in(0:3)
req1_data_in(0:31)
req1_tag_in(0:1)

req1_cmd_in(0:3)

req2_cmd_in(0:3)

req1_data_in(0:31)

req2_data_in(0:31)

req1_tag_in(0:1)

req2_tag_in(0:1)

req3_cmd_in(0:3)
req3_data_in(0:31)
req3_tag_in(0:1)

req4_cmd_in(0:3)
req4_data_in(0:31)
req4_tag_in(0:1)

out_resp1(0:1)
out_data1(0:31)
out_tag1(0:1)

out_resp1(0:1)

out_tag1(0:1)

out_resp2(0:1)
out_data2(0:31)
out_tag2(0:1)

out_resp1(0:1)

out_resp3(0:1)

out_data1(0:31)

out_data3(0:31)

out_tag1(0:1)

out_tag3(0:1)

out_resp1(0:1)

out_resp4(0:1)

out_data1(0:31)

out_data4(0:31)

out_tag1(0:1)

out_tag4(0:1)

Calculator 2
 Design

c_clk: c_clk is the main clock.
reset: Needs to be held high for three cycles at the start of the testcase. Must remain low during
functional testing. Similarly, all input ports need to be driven low (‘0’b, not “X” or “U”) from
the start of simulation.
reqX_cmd_in(0:3): Same definitions as first design. Add (‘0001’b), Subtract (‘0010’b), Shift
left (‘0101’b), and Shift right (‘0110’b).
reqX_data_in(0:31): Same definition as first design. The operand data is sent one cycle after
another. Operand1 data accompanies command, and operand2 data follows.
reqX_tag_in(0:1): Two bit identifier for each command from the port. Can be reused as soon
as the calculator responds to the command.
out_respX(0:1): Same definition as first design. Good response (‘01’b), invalid command or
overflow/underflow (‘10’b), and internal error (‘11’b; never happens). ‘00’b on the response line
indicates there’s no response from that port on that cycle.
out_dataX(0:31): Same definition as first design. This is the data that accompanies a good
response.
out_tagX(0:1): Corresponds to the command tag sent by the requester. Used to identify which
command the response if for.

B. Interface Timings

The following diagram represents the valid command input and output. This is the same as the
first exercise except that the tag bits are added.

The following diagram represents back-to-back timings on commands.

Responses in above diagram could occur in back-to-back cycles. Responses are not necessarily
in order. However, if both requests used the add/sub commands, then they will return in order.
Similarly, commands from the same port that share the shift pipeline will return in order.

req1_cmd_in
req1_data_in
req1_tag_in

req_resp1
req_data1
req_tag1

req1_cmd_in
req1_data_in
req1_tag_in

req_resp1
req_data1
req_tag1

	I. Design
	II. Problem Statement

