
Proceedings of the IEEE International Conference on Information Reuse and Integration, pp. 351 – 356, Nov. 2004. 
 

 
Coordinating Human Operators and Computer Agents  

for Recovery-Oriented Computing  
Sreekanth K. Bhaskaran and Baback Izadi 

Dept. of Electrical and Computer Engineering 
State University of New York 

New Paltz, New York 12561, USA 

Lisa Spainhower 
Systems and Technology Group 

IBM 
Poughkeepsie, New York 12601, USA 

 
 

Abstract 
This paper examines the errors committed by human 

operators of large networks and systems. It proposes a 
formal procedure in which system defense mechanisms 
are used to improve the coordination between human 
operators and computer agents. Further, it discusses and 
compares the effectiveness of different types of system 
defense mechanisms by performing experiments with 
web-based GUI screens. In the process, the paper offers 
definitions of human errors and proposes methods to 
quantify such errors. Our experimental results have 
shown that more layers of system defense can play a 
pivotal role in minimizing commonly encountered human 
errors. 

1. Introduction 
The study of service outages in large systems and 

networks points to human errors as the primary reason for 
the outage in a majority of the cases [1, 2, 3, 4].  Analysis 
of network outages consistently shows that operator errors 
account for more than 50% of unplanned downtime [1]. 

Operator error refers to an action performed by a 
human operator that is determined to be the root cause of 
a service disruption. Several classifications for human 
errors are found in [5, 6]. Very broadly, operator error can 
result from either a formulated procedure performed 
incorrectly by the operator or the procedure itself being 
incorrect in the first place [1]. In this paper, we examine 
the former. Other researchers have examined the building 
of user interfaces based on cognitive engineering methods 
to reduce human errors [7]. Human operators and 
computer agents could perform many of the tasks jointly. 
Partial Global Planning (PGP) is a coordination 
mechanism between humans and agents [8] that attempts 
to optimize the human and computer resources to achieve 
a common goal. PGP offers a dynamic task-sharing 
procedure for multi-agent systems that maximizes the 
capacity of every agent. Task allocation among several 
computer agents in real-time multiprocessor systems has 
been studied in detail. An optimal task allocation 
mechanism for real-time computing systems has been 
presented in [9]. However, the task allocation between 

computers and humans poses a different kind of challenge 
and is often dynamic.  A direct effort to reduce the 
identified risks can bring about a net increase in the very 
same category of risks [10, 11].  There is a need to 
develop an analytical methodology that can perform task 
allocation adaptively [7].  Machine learning could be used 
effectively for this purpose and several machine-learning 
techniques have been developed, such as reinforcement 
learning [13], Q-based learning [14], and case-based 
reasoning [15]. 

This paper examines non-deliberate operational faults 
made during human-computer interaction and presents a 
formal procedure to reduce human errors. It proposes to 
use machine-learning methods employing case-based 
reasoning to reduce human errors. The rest of the paper is 
organized as follows. The next section introduces the 
concept of system defense. Section 3 discusses how 
machine learning can be used effectively for improved 
system defensiveness thus achieving better coordination 
between humans and computer agents. Section 4 presents 
a formal procedure in which system defense mechanisms 
are used to improve the coordination between human 
operators and computer agents. Section 5 discusses our 
experimental study that analyzes the effect of machine 
learning on human and computer coordination. Finally, 
the concluding remarks are given in Section 6. 
 
2. System Defense 
 

It is virtually impossible to eliminate human operator 
intervention to achieve the goals of large systems. Figure 
1 shows a sequence that could be visualized as the 
interleaving of operator actions and agent actions. After 
every operator action, the agent could examine current 
operator behavior against past actions. Moreover, it could 
generate warnings for the user if the operator action is a 
deviation from successful actions taken by operators in 
the past.  

We define system defensiveness as the intelligence 
built into the system to warn the users of potentially 
detrimental actions. It could be considered as a method of 
implementing the automated agent checks. The system 
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reacts to operator actions with a defensiveness warning 
and does not let the operator proceed unless an 
acknowledgement is provided to the defensiveness 
warning. 
 
 
 
 
 
 
 
 
 

Figure 1. Agent checks that c
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The overhead could be justified in critical systems and 
networks, which could reduce operator errors by a more 
careful coordination between the humans and computer 
agents. The defense question and information can be 
purely informative, which gives the user a chance to 
correct any inadvertent mistakes. When the defense is 
preemptive, the information is not only informatory but 
the agent will not proceed with the execution of the user 
action unless the user overrides system defensiveness. 
 
3. Machine Learning in System Defensiveness 
  

Machine learning can be used effectively to pose 
defense questions that are customized for each instance of 
user action. To do so requires maintaining a record of past 
actions, classifying them and prompting the user in real-
time with a defense question that is based on the 
knowledge thus gathered. Knowledge-based systems 
could also be used very effectively to perform sensible 
system defense actions. Given that the intervention of a 
human operator is inevitable in the operation of large 
networks and systems, and that human error is inevitable, 
the agent’s job is to pose sensible defense questions to the 
user and avert as many undesirable actions as possible. A 
dynamic defense mechanism that gets its inputs from a 
variety of sources that could include other agents, the 
human operator and the knowledge of past events could 
prove effective in reducing many of the commonly 
encountered operator errors.  
 
3.1 Case-based Reasoning 
 

We found case-based reasoning [15] particularly 
attractive for machine learning of tasks because of its 
simplicity. It was chosen for building the agent discussed 
later. The agent stores past successful tasks in a database 
and a matching is performed between the task in question 
and other instances of the same task stored in the 
database.  
  A task consists of generic sub-tasks that could be 
considered as an ordered pair of attributes and values. An 
attribute refers to an action. The value of an attribute is a 
parameter that qualifies the attribute in specific instance 
of occurrence of the attribute. 
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Ti = {Si1 , Si2 , ……, Si m )} = {(Ai1 , Vi1 ), ……(Ai m , Vi m )} 

 
 To illustrate this, let us consider two tasks with their 

attributes and values, as shown in Figure 2. Task 1 is to 
make an omelet and Task 2 is to make pancakes. In Figure 
2, ‘Utensil placed on fire’ is an attribute. The value ‘pan’ 
qualifies this attribute further for the current instance. 
Similarity of two attributes, x and y is defined by            
Sim-a(x, y) in the simplest form as 

  

 

Sim-a (x,y) =                                (1) 
⎩
⎨
⎧
0
1

otherwise
yxif =

 
Similarity of values could be defined in the same way. 
 

Sim-v (x,y) =  
⎩
⎨
⎧
0
1

otherwise
yxif =

                                        
In the example shown in Figure 2, the first attribute of 
both tasks is identical. Therefore, Sim-a (Ai1, Aj1,) = 1.          
Distance between two sub-tasks Sir and Sjs is defined by   
 
Dist (Sir , Sjs) = Sim-a (Air , Ajs) ^ Sim-v (Vir , Vjs)           (2)  
 
In the example in Figure 2, the attributes as well as value 
for the first item are the same. Therefore, Dist (Ai1, Aj1,) = 
1^ 1 = 1. Similarity between tasks could be computed 
using the distance between every pair of sub-tasks. 

Sim (Ti ,Tj) = Dist (S∑
=

m

r 1
∑

=

n

s 1
ir ,Sjs)                (3) 

In the example in Figure 2, the similarity between tasks is 
  
Sim (Ti, Tj) = (1 + 1 + 0 + 1 + 1 + 1) = 5. 
 
A demand on the similarity of tasks Ti and Tj is defined by 
Equation 4, where α indicates a pre-specified threshold 
value. 
 
Dem-Sim (Ti ,Tj) = { Sim (Ti,Tj) > α }                             (4) 
 

There are several issues with having such a simplistic 
analysis of tasks. For one, the attributes and their values in 
the tasks alone do not determine the extent of similarity 
between the tasks. For instance, in the previous example, 
even if the sequence of sub-tasks in Task 2 were totally 
reversed, the same similarity would be computed. This is 
an anomaly because in the real world, the sequence of 
actions in a task determines, to a great degree, the level of 
similarity between tasks. Taking this into account, 
Equation 3 is modified as 

  Sim (Ti , Tj) =  (Dist (S∑
=

m

r 1
∑

=

n

s 1
ir , Sjs)) + SF (Ti , Tj )  
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Figure 2. Calculating similarity of tasks 

 
where SF is the Sequence Factor and is given by  
 
SF (Ti , Tj ) =  

         (5)                      
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To compute SF between two tasks Ti and Tj, matching 
sequences are located starting from the first attribute. In 
Equation 5, the variable k denotes the iteration. In the 
example in Figure 2, for the first iteration (k = 1), we start 
at the first sub-task of Task T1 and T2 and see that the 
attribute and value are matching. i.e.  = 1 
and  = 1. This contributes a value of 1 + 
1 = 2 to SF. Next, we increment r and s and still see that 
the attribute and value match for the second item as well. 
Again  +  = 1+ 1 = 2 is 
contributed to SF. In the third item, the attribute matches 
but not the value. This adds 1+ 0 = 1 to SF. Thus, at the 
end of iteration 1, SF gets a value of 11.  We start the 
second iteration from the attribute ‘Wait for?’ starting 
from  +  = 1+ 1 = 2 and 
proceed in a similar way to get a value of 9. At the end of 
sixth iteration, SF will have a value of 11+9+8+6+4+2 = 
40.  

) A , (A 211111Sim
) V , (V 211111Sim

) A , (A 212112Sim ) V , (V 211111Sim

) A , (A 221121Sim ) V , (V 221121Sim

The sequence factor could have the highest possible 
value if the compared tasks, Ti, Tj are identical. In the 
example given in Figure 2, there are six sub-tasks and 
their maximum SF value is 12+10+8+6+4+2 = 
2(6+5+4+3+2+1) = (2× 6× 7)/2 = 42. In general, the 
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maximum value of SF, for two identical tasks with n sub-
tasks is n (n+1).  The tasks discussed above are simple in 
that they are composed of sub-tasks, each having an 
attribute and a value. More complex tasks will have 
several levels of abstraction. The sub-task of a task could 
be so complex that the sub-task itself would need to be 
broken down into smaller sub-tasks. This is represented  
 in Figure 3. The formulae discussed in equations (3) and 
(5) could be modified to have several levels of nesting. 
 

Task Sub-task 
level-n 

… Sub-task 
level-2 

Sub-task 
level-1 

Attributes,
values 

        
                                  Increasing granularity → 
 

 
Figure 3.  Decomposing a task. 

 
3.2 Quantifying Human Errors 
 

Quantification of human errors is necessary to 
analyze the kind of mistakes operators commit and to 
drive the creation of automation benchmarks. Measuring 
human errors is challenging, especially because errors and 
tasks vary across applications. The definition of what an 
error is would be different for each kind of task. For an 
installer of LAN, connecting incompatible devices would 
be an error and for an administrator who uses GUI for 
provisioning services, a typo would be an error. We 
concentrate on unintentional GUI operator errors. The 
GUI is also more suitable for system defensiveness 
because humans better observe it. 

Human error is quantified based on the following 
criteria: 
 

• The extent of damage that it creates in terms of 
revenues, Er. 

• The extent of variation from the expected action, 
Ev.   

• The amount of delay it creates; this includes 
undoing any harm caused by the erroneous action 
plus the time required to perform the correct 
action, Ed.  

 The extent of damage caused in terms of revenues is 
subjective and would vary from place to place and time to 
time. The benefit-loss function (BLF) discussed in [15] 
attempts to quantify errors of this kind. In that, a system 
engineer assigns the accuracy loss in an event to a 
consequent benefit loss value. Error could also be 
expressed as a function of the three measures described 
above. 
 
E  = f (Er , Ev , Ed)                                               (6) 
 

The proposed error quantification that is based on 
variation from an expected action (Ev) could be calculated 

from the principles of similarity. Maximum similarity of 
two tasks is Sim(Ti ,Tj) in Equation 5 could be normalized 
to have a maximum value of 1. Therefore, dissimilarity 
between tasks is defined as, 

  
Dissim (Ti ,Tj)   = 1 – Sim (Ti ,Tj)                                   (7) 
 
Dissimilarity between erroneous instance and last 
successful instance could be used as a measure of error. 
 
  Ev    = Dissim (Xi , Xi) 
         = 1 – Sim (Xi , Xi)                                                   (8)             
where Xj is erroneous task instance and Xi is successful 
task instance. 
 
4. A Formal Procedure  

 
Systems that try to improve human-computer 

coordination could use the following step-by-step 
procedure to achieve a dynamic defense mechanism.  
i. Identify the operation for which dynamic system 

defense could be applied. This might appear trivial 
but it is crucial that the selected operation satisfies 
some basic criteria like having a logical beginning 
and end.   

ii. Analyze the operation and create valid task paths. 
The operation is split into several sub-tasks. The set 
of valid task paths is determined. 

iii. Build the infrastructure. This is largely a software 
architectural issue. The choice of infrastructure 
depends on the size of the desired database and the 
technology used in the operation under study. 

iv. Create the learning system. The learning system is 
created by inputting seed cases for all valid paths into 
the database. 

v. Periodically maintain the learning system. Failures do 
occur and when such occurrences are analyzed, the 
entries in the database pertaining to the failures need 
to be removed. This is because the agent should learn 
from good examples and not from bad examples. 
Seed cases of new tasks might have to be added to the 
database.  

vi. Fine-tune and customize. The behavior varies across 
different people and their fatigue levels. Individual 
characteristics of operators as well as general human 
behavioral characteristics could provide vital clues 
regarding psychological and physical fatigue level. 
These could in turn be used for appropriate defense 
question.  

vii. Analyze and specify the performance of the defense 
mechanism. It is important to determine whether the 
learning agent put in place is actually beneficial in 
reducing the human operator errors. Another 
important consideration would be to see whether the 
delay and computational overhead associated with the 
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defense mechanism could be justified by its benefits. 
The delays should be minimized using optimal 
queries to the database and by keeping the database 
size manageable. The upper limit for database size 
could be determined using the acceptable delay and 
its lower limit could be determined by the least 
acceptable level of learning deemed necessary . 

 
5. Experiments and Results 
 
  To study the effect of several layers of system 
defense on unintentional human operator errors, a series 
of experiments were devised and conducted. The 
experiments studied the effectiveness of agents in using 
machine learning to reduce human operators.  
 

  
Figure 4. GUI used for experiments 

 
A GUI screen similar to the one of the most popular 

commercial IP products (Figure 4) was chosen for the 
experiments. A large group of students with sufficient 
computer skills were asked to enter five sets of data in the 
GUI screen from a printout.  For the first experiment, the 
values entered by the user were committed to a mySQL 
database without any defense mechanism. In the second 
experiment, called Static defense, the entered values were 
displayed back to the user and user confirmation was 
requested before committing them into the database. The 
user responses for each of the experiments were recorded 
in a database. The users’ responses and the number of 
human errors encountered were analyzed. Figure 5 shows 
the percentage of fully successful entries for the 
experiments. Accordingly, our Static defense mechanism 
improved the system performance, compared with no 
defense mechanism, by nearly 9%. In the third 
experiment, called Dynamic-1, the agent software 
performed a matching of the received values with the ones 
obtained from the past using PHP scripts, and displayed 
the matched values along with the entered values back to 
the user. The data was only accepted to the database after 
the user decided that the extent of displayed match was 
acceptable. Surprisingly, Dynamic-1 resulted in worse 
performance than the one with even no defense 
mechanism. In the final experiment, called Dynamic-2, 

the matched values along with the entered values were 
displayed to the user and additional inspection was 
requested only if the mismatched value crossed a 
predetermined threshold. The threshold level was 
determined by taking into account that there were five sets 
of data and there could be several incorrect entries. Our 
experimental result shows that Dynamic-2 defense 
mechanism used in the fourth experiment resulted in a 
smaller percentage of errors compared to the other three 
experiments; it resulted in over 90% success rate. The 
defense mechanism in the third experiment offered no 
improvement to the case where there was no system 
defense at all. Possibly, more information resulted in more 
confusion for the operators. But when the user was 
interrupted with the additional information only when it 
was necessary, that is, only when a certain threshold was 
crossed, there were fewer errors committed. This 
strengthens the idea that system defense mechanisms 
could be effective in reducing human operator errors 
when relevant information is provided at the proper time.  
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Figure 5. Percentage of successful entries for experiments 
 
The types of errors committed in each of the experiments 
were also analyzed. The errors were classified into two 
broad categories. Errors of omission [5], where an 
element of a sequence <a, b, c, d> is accidentally left out 
as in <a, b, d>, and errors of commission, where another 
element is placed instead of the right one, e.g., <a, x, c, d> 
instead of <a, b, c, d>. The error classification for each of 
the three experiments is shown in Figure 6. 
 
  It was observed that the percentage of total errors due 
to omission was reduced significantly when a static 
defense mechanism was used.  Most of the errors in 
Dynamic-1 were of omission type. Finally, Dynamic-2 
resulted in the least omission and commission errors.  
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Figure 6. Percentage of errors  observed for various 
defense mechanisms 

 
6. Conclusion 
 

In this paper, we examined a mechanism to reduce 
the errors committed by human operators of large 
networks and systems. A formal procedure in which 
system defense mechanisms are used to improve the 
coordination between human operators and computer 
agents was presented. The paper provided methods to 
analyze and quantify the errors committed by human 
operators. It studied and compared human errors in 
scenarios with different levels of system defense. A 
simple static defense mechanism was determined to be 
very effective against interface errors committed by 
operators. A defense mechanism that employed the past 
knowledge of user entries and interrupted the user only 
when there was considerable mismatch resulted in 
minimum operator errors.  
 A dynamic defense strategy employing more criteria 
would likely have better results. These criteria could 
include the state of the operator [13], which is a function 
of the operator’s fatigue level and cognitive capability 
level. For instance, the layers of defense could adapt to 
become more restrictive as the fatigue level increases. 
However, this could bring about the exact opposite effect 
and is best studied with further experiments. Further 
research will compare and study intelligent agents to 
accurately determine the benefits of dynamic defense. 
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