
Reflections on Industry Trends and
Experimental Research in Dependability

Daniel P. Siewiorek, Fellow, IEEE, Ram Chillarege, Fellow, IEEE, and

Zbigniew T. Kalbarczyk, Member, IEEE

Abstract—Experimental research in dependability has evolved over the past 30 years accompanied by dramatic changes in the

computing industry. To understand the magnitude and nature of this evolution, this paper analyzes industrial trends, namely: 1) shifting

error sources, 2) explosive complexity, and 3) global volume. Under each of these trends, the paper explores research technologies

that are applicable either to the finished product or artifact, and the processes that are used to produce products. The study gives a

framework to not only reflect on the research of the past, but also project the needs of the future.

Index Terms—Experimental research in dependability and security, computing industry trends.

�

1 INTRODUCTION

FOR more than four decades, Moore’s Law has been a
driving force in the computer industry. Doubling on a

yearly basis leads to a three orders of magnitude increase in
only a decade. Such large increases in capacity (i.e., number
of transistors, processing performance, bits of data storage,
and communications bandwidth) require fundamental
rethinking of all phases of a product’s life cycle, from
design through usage and maintenance to replacement.
Moore’s Law also applies to volume as well as capacity.
Intel produces more transistors yearly than the number of
ants on Earth. Doubling in volume means that every couple
of years more computers will be produced than were ever
previously produced.

The IT industry has grown in many dimensions. While
the Von-Neuman machine is still at the conceptual core, the
industry that built at most a few thousand machines in
1970, today ships tens of millions annually. Employment
has gone from a few thousand to a few million. And the
breadth of the industry spans technology, manufacturing,
software, and IT-enabled services, amounting to a world-
wide figure in the range of two to three trillion dollars.

This paper identifies three trends in a computer industry
fueled by Moore’s Law, trends that directly impact
computer system dependability and security: shifting error
sources, explosive complexity, and global volume. The evolution
of three research threads in experimental dependable
systems—error monitoring, fault injection, and design
methodology—are traced based upon the personal experi-
ence of the authors to illustrate how research responds to

and, in some cases, anticipates the direction of the computer
industry. The first two trends were identified decades ago
and, hence, there is a rich history among the research
threads with respect to these. The third, just emerging, can
be used to predict future directions for research among the
three threads.

Section 2 provides background and a framework for
motivating the three industrial trends. The remaining
sections describe each trend in turn and how experimental
research in dependable and secure systems has responded.
The more mature trends will have more details related to
the three research threads due to their rich history. The
emerging trend will be more speculative with respect to the
research and, hence, have fewer details. Section 9 provides
concluding observations.

2 TREND, ARTIFACT, AND PROCESS

From the early days of computers (when vacuum tubes
were used to perform logic and arithmetic opera-tions) to
today’s generation of computing systems, reliability (or,
more broadly, dependability) has been considered a
fundamental system attribute that determines the system’s
ability to provide continuous service to the end user.
Evidence of early efforts in dependability can be found in
publications from the 1960s, e.g., [95] and [8]. An excellent
review describing the advances of IBM computer systems in
the RAS (reliability, availability, serviceability) area from
that time can be found in [52].

An important milestone in the evolution of dependable
computing (theory and practice) was the establishment in
1971 of a technical conference on fault-tolerant computing:
the First International Symposium on Fault-Tolerant Com-
puting (FTCS). This forum has established itself as a
primary arena for presentation, discussion, and dissemina-
tion of new ideas in the development of dependable
systems.

Over the years, fault/error models have evolved along
with the advances in system hardware and software. Table 1
summarizes the changes over the last four decades in terms

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 2, APRIL-JUNE 2004 109

. D. Siewiorek is with the Department of Electrical and Computer
Engineering, Carnegie Mellon University, 3519 Newell Simon Hall,
Pittsburgh, PA 15217. E-mail: dps@cs.cmu.edu.

. R. Chillarege is with Chillarege Inc., 210 Husted Avenue, Peekskill, NY
10566. E-mail: ram@chillarege.com.

. Z. Kalbarczyk is with the Coordinated Science Laboratory, University of
Illinois at Urbana-Champaign, 1308 W. Main St., Urbana, IL 61801.
E-mail: kalbar@crhc.uiuc.edu.

Manuscript received 16 June 2004; accepted 2 Sept. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0088-0604.

1545-5971/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

of the technology, error/fault sources, number of users, and

their level of sophistication/training. In Fig. 1, four twisted

funnels illustrate the trends in changes—the vertical axis

represents time, and the horizontal axis reflects the

magnitude of the changes.
The technology has evolved through dramatic changes

starting with mainframes in 1970s (where highly skilled

personnel were required to operate the systems) through

the eras of workstations in 1980s, personal computers in

1990s, and the current generation of mobile/handheld

devices (e.g., cell phones, PDAs), where the technology

reaches the general public. Today, devices must often

operate in highly variable and harsh environments. As a

result, the technology must: 1) hide complexity so that a

relatively unsophisticated customer can operate the device

and 2) operate continuously despite errors/failures.
The initial focus in the 1970s was mainly on hardware

errors, as the hardware devices were the major cause of

problems. In the 1980s, with introduction of workstations

and their network connectivity, made the network an

important additional source of errors. In the 1990s, the

wide use of personal computers executing commodity
software made software a primary source of failures. The
current decade is dominated by failures due to the
environment and operators.

It should be emphasized that the increasing complexity
of systems causes operator errors to become a significant
source of failures. For example, the analysis of failure data
collected on the Public Switched Telephone Network
(PSTN) and on three Internet sites indicate that operator
errors contribute respectively to 59 percent and 51 percent
of the system downtime [85]. While this study is rather
limited in scope, it is a good indicator of the problems one
will encounter in the near feature and emphasizes the
importance of robust user interfaces. This is one area in
which more research is needed to understand and model
actual user behavior and to make predictive robustness
analysis of systems possible.

Our framework is defined by three elements: trend,
artifact, and process. A trend refers to an industry trend that
has been taking place and has a direct impact on
dependability. Each trend is distinct and has been consis-
tently present for a substantial period of time, often
decades.

An artifact is the product of the industry, be it a piece of
hardware, a piece of software, or a service. An example of
an artifact is a computer, a piece of shrink-wrapped
software, or a cell phone contract. The artifact is the entity
of commerce and defines the work-product of engineering
effort.

A process is the means to produce an artifact. It consists of
the engineering methods, tools, or labor the industry
employs to create a viable method of manufacturing or
development. As we reflect on artifacts and processes, we
recognize that much of engineering and research is directed
to one of the two, or both.

A body of research and methods can be associated with
either the artifact or the process, and in a few instances,
with both. If the research is embodied in the product after it
is shipped, the association is with the artifact. Alternatively,
the body of research helps in production, it is associated

110 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 2, APRIL-JUNE 2004

TABLE 1
Fault Sources, Levels of Integration, Users, and User Sophistication over the Past Four Decades

Fig. 1. Changes in technology and user basis.

with the process. While quite often, academic research is
associated with the artifact (which is understandable given
the proximity of the problem set) there are examples where
the research is actively involved into the process, e.g.,
hardware and software verification, testing, software relia-
bility assessment, and development of architectural de-
scription languages.

In Table 2, trends are the rows, and artifacts and
processes are the two columns. At the intersection of each
row and column is the subject of our study. This is where
the research methods, tools, techniques, concepts, algo-
rithms, experiments, measurements, simulations, theories,
processes, and conjectures lie. The body of work is applied
sometimes on the artifact and sometime on the process, and
this is what impacts the industry. Some of the work that
applies during one part of a decade may not be as
applicable at another, or vice versa. When we look at a
trend that crosses 30 or more years, there is much change to
ac-count for. In this article, we list the research that best fits
this mosaic, allowing us to reflect on this metamorphosis of
industry and research.

Trend 1—Shifting Error Sources clearly began in the 1980s,
but was noticeable toward the end of the 1980s and by mid-
1990s had caused a major change in the dependability area.
Trend 2—Explosive Complexity began in the early 1990s when
the cost of computing was dropping substantially and
distributed computing was on a growth path. By the mid-
1990s, the Internet boom contributed to even larger growth.
Trend 3—Global Volume is only at its inception and can be
argued to have begun with the huge increase in small yet
powerful devices flooding the market. The cell phone, the
PDA, and the availability of wireless digital networks will
have their impact.

3 TREND 1—SHIFTING ERROR SOURCES

One of the dominant trends has been the change in failure
rates as well as in the dominant sources of failures. By and
large, we can conclude that hardware failure rates are
currently down, while the relative contribution of software

is up. In addition, as technology matures, the user set
changes, and the degree of product sophistication increases,
new sources of failures become prominent.

Transient faults have traditionally been associated with
the corruption of stored data values. This phenomenon was
reported as early as 1954 in adverse operating conditions
such as locations near nuclear bomb test sites and later in
space applications [121], [83]. Since 1978, dense memory
circuits, both DRAM and SRAM, have been known to be
susceptible to soft errors caused by alpha particles from
IC packaging and cosmic rays. A hardware device can
recover its full capability following a transient failure;
nevertheless, such failures can be catastrophic for the
correct execution of a program. This is because a corrupted
intermediate value, if not handled, can corrupt all sub-
sequent computations.

Continuously decreasing feature sizes and supply
voltages of devices reduce capacitive node charge and
noise margin, even flip-flop circuits inevitably become
susceptible to soft-errors [38]. The high clock rate of modern
processors further exacerbates the problem by increasing
the probability of a new failure mechanism where a
momentarily corrupted combinational signal is latched by
a flip-flop. Constantly pushing the processor performance
envelope will shortly place us in an unfamiliar realm where
logically correct implementations alone cannot ensure
correct program execution with sufficient confidence. As a
result, vendors of high-availability platforms have long
incorporated explicit error detection and correction techni-
ques in their architectures. The basic techniques involve
information redundancy (e.g., parity and ECC), space
redundancy (achieved by carrying out the same computa-
tion on multiple, independent hardware at the same time
and corroborating the redundant results to expose errors),
and time redundancy (where redundant computation is
obtained by repeating the same operations multiple times
on the same hardware).

Memory arrays can be ECC-protected relatively effi-
ciently because the cost of the coding logic can be amortized
over the array. Applying ECC to individual registers in a
processor may require a significant amount of overhead
and increases the critical path delay. Typically, information
redundancy is reserved for memory, caches, and perhaps
registers files, whereas space and time-redundant techni-
ques are employed elsewhere in the processor. Time
redundancy has the shortcoming that persistent hardware
faults may introduce identical errors to all redundant
results, making errors indiscernible. Space redundancy
has a complementary shortcoming in that a transient failure
mechanism may affect the space-redundant hardware
identically, again making errors indiscernible.

3.1 ECL to CMOS

The significant change in technology over the past decades
is not only an increase in speed and reduction in power
consumption, but also an increase in the reliability of the
devices. Fig. 2, reproduced from IBM data [103], shows that
system outages caused by hardware failure have dropped
by two orders of magnitude in two decades.

This dramatic change in reliability has been the driver of
a major portion of Trend 1. The shift in circuit technology

SIEWIOREK ET AL.: REFLECTIONS ON INDUSTRY TRENDS AND EXPERIMENTAL RESEARCH IN DEPENDABILITY 111

TABLE 2
Industry Trends, Artifacts, and Processes

from ECL (the technology for the 308X/3090 series of
mainframes) to CMOS is dramatic in terms of reliability, as
shown in the figure. TCM in the figure stands for Thermal
Conduction Module, a ceramic multichip package that is
liquid cooled. The shift in circuit technology also changed
geometry, power, and cost leading to a major shift in
industry.

Considering the beginnings of FTCS in 1971, one can see
why the focus in the early years was on hardware fault
tolerance. Product dependability was defined by how well
one could keep a box running in spite of hardware a
malfunction, be it permanent or temporary. During the
1980s, power packaging technology allowed for units with
substantially larger number of circuits in one module, this
and the complexity of integration made it harder to service
failed chips. IBM’s thermal conduction modules (TCMs)
provided significantly higher density per module, but
individual transient failure rates were quite high. To
combat transient failures, up to 25 percent of the circuitry
was used for error detection and correction. These
architectures allowed for very high data integrity, with no
data path inside the CPU left unchecked. An instruction-
retry mechanism further increased fault tolerance [102].

It was also becoming clear that the next generation of
circuit technology, CMOS, would make ECL obsolete. As
Fig. 2 illustrates, the MTTF of a high-end machine is more
than 30 years, almost two orders of magnitude better than
that class of machines two decades ago. As reported in
[101], the IBM fourth-generation CMOS microprocessor-
based mainframe (G4) achieved fault tolerance superiority
over its predecessor ECL mainframe. While CMOS technol-
ogy offered greater density (e.g., memory) and reduced
power, increased density required novel error correcting
codes to enable recovery from single chip errors.

The same time period has witnessed the growth of the
microprocessor and the PC industry. Today, Intel in the P6
family processors (Pentium Pro, Pentium II, Celeron,
Pentium III) brings high-end features to the mass market.
All the P6’s internal registers are parity-checked, and the
64-bit path between the CPU core and Level-2 cache uses
ECC. Built-in diagnostic features allow monitoring and
reporting on more than 100 events and variables inside the
chip, including cache misses, register contents, and occur-
rences of self-modifying code. The P6 also improves
support for checkpointing (i.e., rolling back the machine
to a known state in the event of an error); however, the

operating system has to be written to take advantage of
machine-check interrupts.

A 1997 Computer article [10] concludes with “Eventually,
one enterprising chip builder will deliver the first fault-
tolerant microprocessor at a competitive price, and soon
thereafter fault tolerance will be considered as indispen-
sable to computers as immunity is to humans. The
remaining manufacturers will follow suit or go the way of
the dinosaurs.” Now, about seven years later, while
processor manufactures do not always explicitly talk about
fault tolerance in their design, the current generation
microprocessors employ multiple mechanisms for detecting
and recovering from errors, as indicated by the examples
given above.

However, there is an issue with the soft-error rate (SER)
rising relative to the technology of just a couple of years
ago. This occurs as device geometry shrinks and we push
physical limits making soft errors (e.g., due to radiation) in
memories and logic of microprocessors more likely. Recent
studies [97] show that, while SER for single SRAM cells
declines slightly with decreasing device sizes and stays
relatively constant for latches, the SER for the micropro-
cessor logic circuits increases by orders of magnitude when
going from 600nm to 50nm feature size. These changes in
error sources and rates should guide future research.

Fortunately, tolerating bit flip errors today has strong
parallels with the design philosophies of yesterday’s
mainframe. Generations of IBM main frames in the late
1980s and early 1990s used thermal conduction modules
and were concerned with transient bit flips; this led to
designs with no unchecked data path. We will need to
recapture the design philosophies and modify/enhance
them to the specifics of current technology.

3.2 Software Failures

One of the consequences of the dropping hardware failure
rate is that other failure modes have become more
prominent. Software, which has also been growing in
complexity, has gradually contributed to a larger propor-
tion of system outages. Through the 1980s, while the fault
tolerance methods were being developed for hardware and
the incidence rate of hardware failures was dropping,
software failures became more prominent. At the same
time, the focus on software reliability methods was margin-
al. In the high-end server business, most of the development
budgets were focused on new functionality since that was a
growth segment all the way into the 1990s. The PC segment
was at its inception and the focus was also functionality. As
a consequence, software failures—the class of problems that
had damaging effects as significant a hardware outage that
took the entire system down—became evident.

The high-end server industry responded rapidly. Both
fault avoidance and fault tolerance techniques where
applied. Just like the hardware platforms for the high-end
servers, the software operating systems included more and
more recovery code. The result was impressive. Two
decades later, a high-end IBM server has almost no cold
starts in an entire year.

An important development in providing runtime
mechanisms for handling software failures was the
inception of design diversity. The seminal academic work

112 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 2, APRIL-JUNE 2004

Fig. 2. Failure rate changes in hardware.

materialized as N-Version Programming [9], Recovery Blocks
[2], and N-Self-Checking [68] approaches. Extensive experi-
mental studies were conducted to assess effectiveness of
the proposed solutions, e.g., [15]. Examples of industrial
use span embedded control systems in particular avionics
and railway domains, e.g., [63], [111].

3.3 Planned Outages

Faults and failures produce the mental image of uncertainty
and catastrophic consequences, which, while they do
happen, are far less common in high-end servers. However,
high-end computing has a disturbing problem called
“planned outage,” in which systems need to be shutdown
on purpose. Planned outage used to be common with
installation and maintenance of hardware; later, it became
common with software updates and maintenance. Data-
bases needed to be reorganized or networks reconfigured.
While the surprise element was not present, the unavail-
ability and disruption of services caused just as much a
problem. With businesses running globally, 24/7 availabil-
ity was vital, and planned outages accounted for more
downtime in the 1990s than unplanned outages.

4 EXPERIMENTAL RESEARCH VERSUS INDUSTRY
TREND 1

Research on experimental evaluation of dependability has
advanced following the changes in hardware and software
technologies. In general, methods and techniques employed
to assess systems correspond to stages in the system’s
lifetime. In the design stage, computer-aided design envir-
onments are used to evaluate the design via simulation,
including simulated fault injection. In the prototype stage, the
system runs under controlled workload conditions. In this
stage, controlled physical fault injection is used to evaluate
the system behavior under faults. In the installation/
operational stage, a direct measurement-based approach can
be used to evaluate systems in the field under real
workloads.

Table 3 summarizes the trends in experimental depend-
ability research across four decades, organized by two
methods: monitoring operational systems and artificial evalua-
tion by fault injection.

The individual columns highlight emerging sources of
data being colleted from systems in the field and fault/error
types being integrated into fault injection tools and environ-
ments. Analysis of failure data from operational systems
provides insight into the dominant error categories in
deployed systems. It also gives valuable feedback for driving
fault/error injection experiments. Fault/error injection allows

acceleration of failure occurrence in the system and, hence,
provides very rapid validation of prototype design and
further guidance to design decisions.

4.1 Operational Life Monitoring and
Failure Data Analysis

Understanding the characteristics of a fault source evolves
through several stages. Initial measurements focus on
summarizing the underlying statistical distribution with
averages such as mean time to an event. Since little is
known about the fault source, existing measurement
frameworks are used to make estimates. This monitoring
may be primary (such as analysis of system event logs) or
secondary (such as reports from the field). To discover more
about the statistical properties of the source (such as
distribution type and distribution parameter values),
customized error monitoring systems that are sensitive to
the fault source, while, at the same time, filtering out
extraneous information on other sources, have to be devel-
oped. In the next stage, a deeper semantic understanding of
the fault source and how it propagates is used to devise real
time anomaly detection so that the onset of a new fault can
be discovered and isolated quickly. This pattern of the
evolution of stages applies to each fault source, and the
depth of understanding of a fault source is directly related
to how many of these stages have been explored.

While substantial progress had been made in the area of
understanding hard failures, transient faults posed a much
harder problem. Once a hard failure had occurred, it was
possible to isolate the faulty component; on the other hand,
by the time a transient fault manifested itself (perhaps in the
form of a system-software crash), all traces of its nature and
location were long gone. Methods of detecting transient-
induced errors varied widely, from internally detected
errors reported in a system event-log file to specially
written pro-grams that automatically loaded diagnostics
into idle processors, initiated the diagnostics, and periodi-
cally queried the diagnostics as to their state to a triply
redundant system. Transient faults were seen to be ap-
proximately 20 times more prevalent than hard failures.
Gross attributes of observed transients were recorded [98].
The data illustrated that the manifestation of transient faults
was significantly different from the traditional permanent
fault-models of stuck-at-l and stuck-at-0.

4.1.1 Error Distributions

An in-depth understanding of system event-logs enabled
analysis of the interarrival times of transient errors. Studies
of these times indicated that the probability of crashes
decreased with time, i.e., a decreasing failure-rate Weibull
function (and not an exponential distribution) was the best
fit for the data [77] (DEC computer system), [54] (IBM-VM/
SP operating system), and [118] (Windows NT operating
system). Because experimental data supported the decreas-
ing failure-rate model, a natural question was “How far
could you stray if you assumed an exponential function
with a constant, instead of a decreasing, failure-rate?” The
difference in reliability—as a function of time between an
exponential and a Weibull function with the same para-
meters—was examined. Reliability differences of up to 0.25
were found. Because the reliability function can range only
between 0 and 1, this error is indeed substantial [22].

SIEWIOREK ET AL.: REFLECTIONS ON INDUSTRY TRENDS AND EXPERIMENTAL RESEARCH IN DEPENDABILITY 113

TABLE 3
Examples of Experimental Dependability Research

4.1.2 Impact of Workload on System Failures

One of the seminal contributions from data analysis was an
understanding of the relationship between the system load
and the system error/failure rate. The workload/failure
dependency issue was studied in the early 1980s. Two
primary approaches were employed: 1) statistical quantifica-
tion of dependency between workload [17], [54] and failure
rate and 2) stochastic modeling as function of workload [21].
The key conclusion from these studies indicated that there
is a strong correlation between workload and failure rate
and, as a consequence, dependability models must account
for the impact of system workload.

A performance-reliability model for computing systems
introduced in [20] gives quantitative results about how
much a user can expect from a system as a function of the
workload and reliability. The study indicated a four to
one range in mean time to system failure as a function of
system load. Subsequent in-depth analysis of system
event-log entries and system load led to the derivation
of a new system model—the cyclostationary model—that
predicted failures involving hardware and software errors
(see Figs. 3c and 3d). This model was an excellent match
to the measured data and also exhibited the property of a
decreasing failure-rate. A physical test demonstrated that,
at the cost of some modeling accuracy, the Weibull
function was a reasonable approximation to the cyclosta-
tionary model, with the advantage of less mathematical
complexity [21].

Concurrently, statistical analysis of failure data from
SLAC (Stanford Linear Accelerator Center) also indicated a
strong relationship between failure rate and system

utilization (a factor of 5 change in basic component
reliability due to variation in load) [17]. Subsequent study
[53] of internal CPU errors at SLAC introduced a load
hazard model to measure the risk of a failure as system
activity increases. In addition, the analysis showed that
most of the errors are transient or intermittent. The load
hazard model was applied to the software failure and
workload data collected from an IBM 3081 system at SLAC
running VM operating system [54]. Analysis in [55] showed
that the probability of a CPU-related error increases
nonlinearly with increasing workload. The resulting in-
crease in the error probability can be 50 to 100 times more
than that at a low workload (see Figs. 3a and 3b).

4.1.3 Trend and Symptom Analysis

A natural extension of work with system event-logs was to
analyze log entries to discover trends [113]. From a
theoretical perspective, the trend analysis of event-logs
was based on the common observation that a hardware
module exhibits a period of (potentially) increasing un-
reliability before final failure. Trend analysis developed a
model of normal system behavior and watched for a shift
that signified abnormal behavior. By discovering these
trends, it was possible to predict certain hard failures (and
even to discern hardware/software design-errors) prior to
the occurrence of catastrophic failure.

One trend-analysis method employed a data-grouping or
clustering technique called tupling [113]. Tuples were
clusters, or groups, of event-log entries exhibiting temporal
or spatial patterns of features. The tuple approach was based
on the observation that, because computers have mechan-
isms for both hardware and software detection of faults,

114 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 2, APRIL-JUNE 2004

Fig. 3. (a) and (b) Plots of workload hazard for the IBM 3081 system and (c) and (d) profile of disk accesses and disk failures for the DEC system.

single-error events could propagate through a system,
causing multiple entries in an event-log. Tupling formed
clusters of machine events whose logical grouping was
based primarily on proximity and time in hardware space.
A single tuple could contain from one to several hundred
event-log entries.

A methodology of automatic recognition of the symp-

toms of persistent errors in large system by statistically

relating the different manifestations of the same problem

was proposed in [56]. The approach enabled differentia-

tion between transients and intermittent errors. Lee and

Iyer [70] analyzed the reports on software failures in the

Tandem GURDIAN90 operating system to derive failure

symptoms, which can be used for identification of

recurrent software failures. Results show that 72 percent

of reported field software failures are recurrences of

known software faults and 70 percent of the recurrence

groups have identical characteristics.

4.1.4 Online Monitoring and Diagnosis

The research was slowly progressing toward the online

diagnosis of trends in systems. There were three basic parts

to the monitoring and diagnostic process, and correspond-

ingly, three basic requirements for building a system to

implement the process:

. Gathering data/Sensors. Sensors must be provided to
detect, store, and forward performance and error
information (e.g., event-log data) to a diagnostic
server whose task it is to interpret the information.

. Interpreting Data/Analyzers. Once the system perfor-
mance and error data have been accumulated, they
must be interpreted or analyzed. This interpretation
is done under the auspices of expert problem-
solving modules embedded in the diagnostic server.
The diagnostic server provides profiles of nor-mal
system behavior as well as hypotheses about
behavior exceptions.

. Confirming Interpretation/Effectors. After the diagnos-
tic server interprets the system performance and
error information, a hypothesis must be confirmed
(or denied) before issuing warning messages to users
or operators. For this purpose, there must be
effectors for stimulating the hypothesized condition
in the system. Effectors can take the form of
diagnostics or exercisers that are downline loaded
to the suspected portion of the system and then run
under special conditions to confirm the fault
hypothesis or to narrow its range.

One of the first projects exploring online monitoring

and diagnosis was CMU’s Andrew System, a distributed

personal computing environment based on a message-

oriented operating system. When a fault was exercised,

error events propagated from the lowest hardware error-

detectors, through the microcode level, to the highest level

of the operating system. The error dispersion index—the

occurrence count of related error events—was developed

to identify the presence of clustered error-events that

might have caused permanent failure in a short period of

time [71].

Subsequently the Dispersion Frame Technique (DFT)

[72] was developed to effectively extract error-log entries

(which were caused by individual intermittent faults) and a

set of rules that could be used for fault-prediction. In

ANDREW networks, these rules were able to predict

93 percent of the physical failures with recorded error-log

symptoms including both electromechanical and electronic

devices. The predictions ranged from 1 to more than 700

hours prior to actual repair actions, with a false-alarm rate

of 17 percent. A portable version of the DFT was

implemented in Dmod [96], an online system dependability

measurement and prediction module.

4.1.5 Impact of Correlated Failures on

System Dependability

In constructing reliability/availability models of systems,

one often makes simplifying assumptions to handle com-

plexity and to enable meaningful analysis. One of common

assumptions is independence of errors/failures in different

components. Experience shows that this can result in

overestimating system reliability/availability by orders of

magnitude. For example, analysis of failure data from two

VAX clusters showed that correlated failures involved

27 percent (VAX1) and 9 percent (VAX2) of all errors and

occurred due to error propagation between machines.

Table 4 shows the impact on system availability of the

assumption of failure independence. Assuming indepen-

dent failures may result in overestimating availability by

one to six orders of magnitude [108].

4.1.6 User-Perceived System Dependability

More recent studies on failure data analysis attempt to

measure dependability as it is perceived by the customers/

users. From the user perspective, the dependability char-

acterizes the ability of a machine/system to provide service,

not just to stay alive. Experience shows that there can be a

significant difference in the availability from the system and

from the user/application perspectives.
For example, in [60], a study of the LAN Windows NT-

based mail servers indicates that while the measured

availability of the system was 99 percent, the user-perceived

availability was only 92 percent, i.e., the system often can be

alive but not able to provide a required service. A more

recent study [100] reports similar figures (99 percent) on

system availability of Windows NT and 2K workstation and

servers. The need to account for the user’s perception of

system dependability is also stressed in the analysis of

Windows 2000 dependability [81].

SIEWIOREK ET AL.: REFLECTIONS ON INDUSTRY TRENDS AND EXPERIMENTAL RESEARCH IN DEPENDABILITY 115

TABLE 4
Impact of Correlated Errors/Failures on System Availability

4.1.7 Use of Measurements

Employing a single measure (e.g., an average) to character-
ize system dependability attributes may be somewhat
misleading (many studies have shown that the distributions
are highly skewed, e.g., [72], [54]). For example, study of
Internet host reliability [59] showed that on average, a host
remains unavailable to the user for 6.5 hours (during the 40-
day experiment, i.e., approximately 2.5 days per year), an
availability of 99.9 percent Examining the distribution
indicated: 1) 45 percent of hosts had a total downtime
ranging from 1,000 seconds to 7,000 seconds and a median
downtime of nearly an hour (approximately 9.5 hours per
year), 2) 49 percent of hosts had a total downtime ranging
from 7,000 seconds to 70,000 seconds and a median
downtime of about 4.5 hours (approximately 40 hours per
year), and 3) 6 percent of hosts had a total downtime
ranging from 90,000 seconds to 120,000 seconds and a
median downtime of about 2.2 days (approximately 20 days
per year).

4.1.8 Measurement-Driven Security Vulnerability

Analysis

Challenged by the increasing number and severity of
malicious attacks, security has become an issue of primary
importance in designing dependable systems. Several
studies have proposed classifications to abstract observed
vulnerabilities into easy-to-understand classes. Representa-
tive examples include Protection Analysis [13], Landwehr’s
taxonomy [67], Aslam’s taxonomy [7], and the Bugtraq
classification [123]. Similarly, taxonomies for intrusions
have been proposed. Examples include Lindqvist’s intru-
sion classification [73] and the Microsoft STRIDE model
[50]. In addition to providing taxonomies, [67] and [73]
perform statistical analysis of actual vulnerability data,
based on the proposed taxonomies.

A study presented in [24] combines an in-depth analysis
of real data on security vulnerabilities with a focused

source-code examination to develop a finite state machine
(FSM) model for depicting and reasoning about security
vulnerabilities. The developed formal reasoning uncovers
the process of exploiting the vulnerabilities, and it can be
further exploited to extract the logic predicates that need to
be met to ensure vulnerability-free system implementation.

In the FSM approach, each predicate is represented as a
primitive FSM, or pFSM. The primitive FSM consists of four
transitions and three states. In the initial state, input
specifications are checked. The other two states reflect
rejection or acceptance of the input (marked in Fig. 4 with
an X or checkmark, respectively). A hidden potential
transition (shown in the figure as a dotted line) reflects a
vulnerability that causes an input that should be rejected
according to the specifications, to be accepted. While our
objective here is to reason that a vulnerability (violation of a
derived predicate) is not present in the implementation, the
process of this reasoning can also allow us to uncover a
previously unknown vulnerability.

For example, in the process of constructing the FSM
model for the known vulnerability of the null HTTPD
application (a multithreaded web server for Linux and
Windows platforms), a new and as yet unknown vulner-
ability (Bugtraq, ID 6255) was discovered. To see why,
observe that the null HTTPD heap overflow can be modeled
as a series of four pFSMs as shown in Fig. 4. (The right side
of the figure gives the source code for the vulnerable
function, ReadPOSTData.) pFSM1 designates the predicate
that checks contentLen against the specification. Similarly,
pFSM2 designates a predicate that checks the actual length
of the supplied input.

The input should be rejected if its length is larger than
allocated buffer size, i.e., it takes the transition marked “?”.
Source code Line 11 controls the termination condition of
recv(source code Line 4). However, due to a logic error
(operator || should be && in source code Line 11), recv
does not terminate before the entire input string is read
from the socket. Thus, the outgoing transition (marked with

116 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 2, APRIL-JUNE 2004

Fig. 4. FSM for NULL HTTPD heap overflow vulnerability.

a “?”) from state X does not exist, and instead, the hidden
transition to the accept state is taken. A malicious user can
supply the right contentLen but an arbitrary-length string
input to overflow the buffer PostData. Constructing the FSM
allowed us to uncover this new vulnerability [24].

If the checks corresponding to the predicates depicted by
pFSM1 and pFSM2 are not in place, the impact of the
vulnerability is further analyzed using pFSM3, which
describes the operation of manipulating the heap layout
(as shown on the left side of Fig. 4). Specifically, in this
example, the attacker exploits this vulnerability and over-
writes the GOT (Global Offset Table) entry of the function
free() so that it points to the location of malicious code
MCode. pFSM4 depicts the consequence of the corruption of
the GOT entry of free() (i.e., addr_free). Finally, when free() is
called again, Mcode is executed. In summary, this model
consists of three operations. The first operation encom-
passes two activities, each described by an independent
pFSM (pFSM1 and pFSM2). Operation 2 and operation 3
each consist of a single pFSM. Cascading these four pFSMs
allows us to reason through all of this vulnerable code.

The proposed FSM methodology is demonstrated by
analysis of several types of vulnerabilities reported in the
Bugtraq database: stack buffer overflow, integer overflow,
heap overflow, file race condition, and format string
vulnerabilities, which constitute 22 percent of all vulner-
abilities in the database. For the studied vulnerabilities,
three types of pFSM were identified that can be used to
analyze operations involved in exploiting vulnerabilities
and to identify the security checks needed at the elementary
activity level.

4.1.9 Security Monitoring—“Know Your Enemy”

An important activity in characterizing, understanding, and
predicting security attacks is creation of efficient tools and
methods for collecting and sharing (with security commu-
nity) data on every attack and exploit against different
target systems. Currently, multiple sources of data on
security vulnerabilities, secu-rity attacks and different level
statistics are widely available, e.g., Bugtraq [123], CERT
[124], and Security Tracker [125].

Also, several projects evolved to provide directed and
systematic means of collecting and sharing data on security
attacks. Most prominent example is the Honeynet project
[49], which has been collecting and archiving information
on blackhat (adversary) activity. The primary goals of
Honeynet include: 1) making the community at large aware
of security threats and 2) providing early warning and
prediction of attacks (by identifying trends and methods
employed by the attackers, it may be possible to predict an
attack and react before it happens). An important compo-
nent of Honeynet is a concept of honeypots [104], i.e., systems
designed to be compromised by an attacker. Once compro-
mised, such systems can be used to detect and alert about
intruders or to serve as a deception mechanisms. More
information on the project and relevant publications can be
found at [126], [127].

4.2 Fault/Error Injection

Fault injection has been used for more than three decades
and it is generally recognized as an important method for

dependability analysis. It is usually employed either in the
early design stage (simulation-based tools) or at the
prototype stage (hardware and software based physical
fault injection). Fault/error injection can be employed to
conduct detailed studies of the complex interactions
between fault/error and fault/error handling mechanisms.

The earliest fault injectors use a pin-level injection, e.g.,

[4], [66]. One important step in the evolution of fault

injection was formalization of the key components of a fault

injection experiment: the faults set, the set of activations, the

set of readouts, and the derived measurements [5], [11].

These concepts were further extended by formalizing failure

acceleration (i.e., injecting faults at a high rate to increase the

number of failures observed) and applying it to an IBM 370

mainframe [25]. The seminal work on abstracting the notion

of failure was presented in [88].
The biggest advance in fault injection in the late 1980’s

was the idea of using software instead of hardware to inject
faults because the hardware faults injectors often damaged
the target system and were expensive to build. This idea is
called software implemented fault injection (SWIFI). As
result of an intense research multiple tools were developed
e.g., FIAT [94], FERRARI [61], FINE [64], ASPHALT [120],
Xception [19], NFTAPE [106], MAFALDA [90].

Another important method of injecting faults was the use

of radiation sources to induce single event upsets (SEUs) on

exposed ICs [43]. Power supply fault injections attempt to

mimic the effects of transients on the power bus of a circuit

or system [115]. Normal operation of the system is likely to

generate varying levels of current demands, and power

supply injection effectively simulates any worst-case cur-

rent demands that the system might endure. A detailed

analysis of three physical fault injection techniques—

pin-level, heavy-ion, and EMI (electromagnetic interferen-

ces)—together with the comparison with respect to SWIFI is

presented in [6].
Laser fault injection (LFI) has emerged as a preferred

contact-less method of inducing SEUs in semicon-ductor
circuits. In this approach, the laser beam mimics the effects
of heavy-ion radiation [93]. Several simulation-based tools
have been used to test fault-tolerant designs by emulating
the effects of faults, e.g., DEPEND [40], MEFISTO [58].

Analysis of monitored data drives the development (or

extension) of fault injection tools. For example, in [112],

stress-based fault injection is employed to evaluate one of

the first UNIX-based fault-tolerant systems developed by

Tandem (now a division of HP). The stress-based approach

ensures fault/error injection to system components when

they are heavily used (i.e., highly stressed). This allowed

meaningful comparison of systems and was an important

step towards system benchmarking.
While fault/error injection methods and techniques have

been extensively studied in academia, industry also
employs fault injection. Work in [79] reports on fault
injection-based testing of recovery and serviceability in the
IBM ES/9000 systems. Fault injection and software testing
were used by Ansaldo-Cris, Italy to assess dependability of
new generation of Railway Control Systems [1]. In [34],
physical fault injection at the pin-level was employed to

SIEWIOREK ET AL.: REFLECTIONS ON INDUSTRY TRENDS AND EXPERIMENTAL RESEARCH IN DEPENDABILITY 117

validate error-handling mechanisms of teraflops super-

computer developed by Intel. Software implemented fault

injection assists in evaluation of embedded flight control

system [114]. The discussion in the following sections

provides several examples of fault injection studies,

employed to assess system dependability.

4.2.1 Fault Injection at the Memory Level

Understanding an operating system’s sensitivity to errors

and identifying error propagation patterns is important in

selecting a computing platform and in assessing trade offs

involving cost, reliability, and performance. In order to

provide insight into these issues, a series of fault/error

injection experiments was conducted to obtain an insight

into how the Linux kernel responds to errors that impact

kernel code, kernel data, kernel stack, and processor system

registers, and how processor hardware architecture (in-

struction set architecture and register set) impacts kernel

behavior in the presence of errors [42]. Two target Linux-

2.4.22 systems were used: the Intel Pentium 4 (P4) running

RedHat Linux 9.0 and the Motorola PowerPC (G4) running

YellowDog Linux 3.0. The study finds for example that:

1) the activation of errors is generally similar for both

processors, 2) less-compact fixed 32-bit data and stack

access makes one of the platforms less sensitive to errors,

and 3) the most severe crashes (those that require a

complete reformatting of the file system on the disk) are

caused by reversing the condition of a branch instruction.

Since the recovery from such failures may take tens of

minutes, those failures have a profound impact on avail-

ability.

4.2.2 Fault Injection at the Operating System API Level

The success of many products depends on the robustness of

not only the product software, but also operating systems

and third party component libraries. But, until now, there

has been no way to quantitatively measure robustness.

Ballista changes this by providing a simple, repeatable way

to directly measure software robustness without requiring

source code or behavioral specifications. Ballista is a “black

box” software testing tool, and it was demonstrated on

testing the APIs of Commercial Off-The-Shelf (COTS)

software. [65] provides a comprehensive assessment of 15

POSIX-compliant operating systems and libraries as well as

the Microsoft Win32 API.
Each of the 15 different operating system’s robustness

has been measured by automatically testing up to 233

POSIX functions and system calls with exceptional para-

meter values. Overall, only 55 to 76 percent of tests

performed were handled robustly, depending on the

operating system being tested. Hardening can be accom-

plished by first probing a software module for responses to

exceptional inputs that cause “crashes” or “hangs.” When

these robustness bugs have been identified, a software

wrapper can be automatically created to filter out dangerous

inputs, thus hardening the software module. More details

and ideas on use of protective wrappers may be found in [3],

[35], [91].

4.2.3 Security Threat of Firewall Data Corruption Due to

Transient Errors

Recently, an exiting research avenue where fault/error

injection was applied is the exploration of the possibility of

security violations due to errors. In [119], it was shown that

naturally occurring hardware errors can cause security

vulnerabilities in network applications such as an FTP (file

transfer protocol) and SSH (secure shell). As a result,

relatively passive but malicious users can exploit the

vulnerabilities. While the likelihood of such events is small,

considering the large number of systems operating in the

field, the probability of such vulnerabilities cannot be

neglected. In another study, fault/error injection was

employed to experimentally evaluate and model the error-

caused security vulnerabilities and the resulting security

violations on two Linux kernel-based firewall facilities

(IPChains and Netfilter) [23]. Using data on field failures,

data from the error injection experiments, and system

performance parame-ters such as processor cache miss and

replacement rates, a SAN (Stochastic Activity Network)

model was developed and simulated to predict the mean

time to security vulnerability and the duration of the

window of vulnerability under realistic conditions. The

results indicate that the error-caused vulnerabilities can be a

nonnegligible source of security violations.

4.2.4 Dependability Benchmarking

Continuously increasing sophistication (support of new
fault/error models and targets), representativeness (ability
to create real life failure conditions), and automation of
fault/error injection experiments creates an opportunity for
fault/error injection to become an enabling technology for
dependability benchmarking. The dependability bench-
marking aims at providing cost-effective experimental
methods and procedures to evaluate the behavior of
components and computer systems in the presence of
faults, allowing the quantification of dependability attri-
butes and characterization of systems in terms of well-
defined dependability classes.

An important initiative has been undertaken by the IFIP
Working Group 10.4, which has created a Special Interest
Group (SIG) on Dependability Benchmarking to promote
the research, practice, adoption, and dissemination of
benchmarks for computer-related system dependability
[122]. While there is still a lot of work to be done before
an actual dependability benchmark(s) is/are specified and,
more importantly, accepted by the industry and the user
community, a fault/error injection should be considered as
an important (if not crucial) technology in addressing this
challenge.

5 TREND 2—EXPLOSIVE COMPLEXITY

Complexity arises from several factors, and with complex-
ity, issues in dependability become more diverse. The lines
between preship and postship are increasingly blurred by
our ability to ship fixes instantly on the Internet.
Customizability and interoperability of services further
makes products, vendors, and services less distinguishable.

118 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 2, APRIL-JUNE 2004

Wireless technology makes device and user locations
transparent, and the demands 24/7 availability spread
across the industry.

5.1 Growth and Complexity

This huge growth is not just due to selling more computers
and increasing the installed base of software. Applications,
infrastructure, and services have exhibited compounded
growth. Thus, while individual segments of the industry
show a steep linear growth, the complexity of the systems
built for them grows nonlinearly.

While it is always hard to measure individual engineer
productivity, which we believe has grown due to better
software engineering tools, the labor market growth figures
illustrate substantial growth. Since development continues
on larger components, which are themselves growing in
features and functionality, the ability to synthesis larger and
more complex systems has grown substantially. For
instance, a modern Web application is built on a number
of standard components—operating system, middleware,
Web server, transaction manager, database system, and the
rendering layers supporting streaming media—all built
upon a transport layer or network that is configured
separately. The application and business logic is an
industry-specific product layered upon these other compo-
nents. Integrating the various components and dealing with
the complexity of such systems is a new layer of con-
ceptualization with its own dependability issues.

5.2 Redefining Failure

For decades, we have assumed that failure is a well-
understood concept. The IEEE/IFIP definition of failure is
“a system not performing up to its specification” [69]. This
is an apt definition for a piece of hardware, or an IC chip, a
microprocessor, or a UNIX command that has been
unchanged for 20 years. In each of these cases, one can
find a specification. But, increasingly, piece parts (compo-
nents) do not have specifications. And, if the specifications
do exist, they are vague, incomplete, and never really meant
to provide a clear binary answer to whether a situation is
failing or is working as designed. When there is a
specification for a new product or service, it may only be
in the form of commercial material and not a detailed
technical specification.

How then does one recognize a failure? A good place to
start is the customer service desk. When customers call, the
problem diagnosis process usually tries to answer the
question: Is it working as designed, or is something wrong?
If it is not working as designed, is it because the user did
something incorrectly, or is the product or service broken?
In many cases, the answers are reasonably clear. However,
there is an increasing trend regardless of where blame is
assigned or when blame cannot be assigned at all: The
desire to retain customers and develop a better product
motivates fixing the situation so that it does not occur.

From this perspective, the definition of failure needs to
be rethought. It is the expectation in the eyes of the
customer, the satisfaction of the customer, and to a much
lesser degree, the technical specification of the product or
service [30].

5.3 Constant Development

There was a time when a product was built, assigned a
product number, and shipped. Other than for service, the
product and its functionality was encapsulated in that part
number and never changed. This was the day before
microcode and downloadable software patches. It is
conceivable (and one could argue we are already there)
that we can buy a widget and then determine what it does.

Assuming that the process of delivering the product to
an end user takes zero time, the challenge becomes the
process of developing the product and verifying that it
works. The unintended consequence is that the develop-
ment process never really has a clear start and end, which
historically was forced by the product delivery mechanism.
Now, one can argue that the product delivery mechanism is
not what should define produce start and stop, but product
and investment management.

The consequences are fascinating, especially to depend-
ability. Constant development and delivery places much
lower premium on dependability. Since the change cycle
is assumed to be fast, it tends to make design far more
reactive. It allows a larger field test of situations that
otherwise would need to be tested in-house. The
processes of development, service, and dependability
design get rolled into one big cycle that has few
distinctions between these elements. From product man-
ageability perspective, it can give rise to a far greater
number of generations of a product coexisting in the field.
This latter point makes it much harder to deliver service
and maintain the installed base.

5.4 Standards

Historically, the computer industry has used abstractions as
a means to handle complexity and allow independent
development on opposite sides of the boundary. One of the
first highly successful abstractions was the separation of
instruction set design from implementation. In the early
1960s, IBM defined the IBM System 360 instruction set
architecture. Over the next four decades, hardware
designers created tens of different hardware implementa-
tions increasing performance a thousand fold but guaran-
teeing that even the software written in the 1960s could run
unmodified. Meanwhile, software designers could write
new applications without worrying about the moving target
of hardware technology.

The contemporary embodiment of abstractions is in-
dustrial standards. Standards define functionality that
service providers can implement and service consumers
can use without concern about the implementation of the
service. A research opportunity is to apply previously
successful concepts to this new level abstraction. For
example, the Ballista approach to probing the exception
handling capabilities at the API (Application Programming
Interface) could be extended and adapted to standards
definitions.

As another example, the mnemonic reminder approach
to minimizing the generation of design errors might also be
extended to both the providers and consumers of standards.
For example, the CHILDREN mnemonic [76] has been
demonstrated to decrease the number or errors due to
common software programmer omissions and commissions.

SIEWIOREK ET AL.: REFLECTIONS ON INDUSTRY TRENDS AND EXPERIMENTAL RESEARCH IN DEPENDABILITY 119

Mnemonics aid recall of issues to consider while writing
code.

6 EXPERIMENTAL RESEARCH VERSUS INDUSTRY
TREND 2

The issues in Trend 2 that drive greater complexity bring
home a central theme in the research area of dependability:
breadth. What was once an area that was better defined by
failures and faults from well-known sources is now
dispersed across a broader set of sources and relationships.
Thus, the concepts based on clear fault models with known
specifications and design are muddied by less clear notions
of failure and the blurred lines among the design,
development, and field life of the product.

Our reflection on research that addresses these issues
consequently covers a broader range of topics. It also makes
it much harder to be complete or exhaustive. Hence, we
discuss topics and areas that we know to have a direct
relationship to experimental and empirical issues in
dependability.

6.1 Software Reliability

Measurement of software reliability is complicated by a
data-collection problem and partially by a definitional
problem. Thus, after almost 30 years of software reliability
engineering research, there are only a few studies that
measure software mean-time-between-failures (MTBF) from
field data [27], [41], [57], [117]. In sharp contrast, there are
several hundred, if not a thousand studies that propose
models (e.g., [39], [62]). Many models try to exploit test data
to predict a reliability measure and use that as a guide to the
test or development process. Since the test process can be
instrumented to collect data much better than can be done in
the field, it is possible to be sophisticated in terms of
workload, usage profiles, and time. A goal of software
reliability engineering [82] has also been to provide
assessment and feedback to the development process. The
difficulty with this approach is that it occurs very late in the
development cycle. By the time the software is stable enough
to be put through systematic testing and measurement, it is

often so late in the development cycle that it is hard to
impact the particular release. However, the information may
be useful for follow-up releases. Furthermore, the measured
or estimated reliability is just one metric, and the causal
chain that leads up to it has many factors. We need research
to establish the factors and their significance to the resultant
reliability if this discipline is to gain greater impact on the
development process. This would be a significant value to
the software engineering community since it helps greater
predictability and the development of best practices that are
measurement-based.

As an engineering community, we need measures of
MTBF for software, just like we have for hardware.
Therefore, field measurements are of particular importance
to provide a baseline for computing MFBF. Two studies,
one from IBM [27] and another from Microsoft [57]
conducted using field data from service calls, give insight
on the nature of reliability and its order of magnitude. The
studies are of particular interest since they use similar
methodologies, report similar metrics, and both concern
widely distributed products. The installed base of the
Microsoft product is at least two orders of magnitude
greater than for the IBM product, and the studies are about
10 years apart. Fig. 5 (graphs reproduced from [27] and [57])
shows that the order of magnitude of MTBF changes from
around 50 days to 200 days over the course of 12 months
after release.

Research in mechanisms to make the collection, estima-
tion, and projection of software reliability automatic and
scalable is necessary. There is work in tools for the systems
management aspect of software and its maintenance. When
these are coupled with measures and analytical tools for
reliability, they would provide considerable value to the
customers and the vendors.

6.2 Use of Formal Methods

Formal methods use mathematical techniques to represent a
design and enable analysis of computer hardware and
software. By creating an appropriate (at a certain abstrac-
tion level) formal representation/model of a system (hard-
ware and or software), one can attempt to predict the

120 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 2, APRIL-JUNE 2004

Fig. 5. Field failure rates for software, measured from service data for widely distributed software: (a) IBM product circa 1994 [27]. (b) Microsoft

product circa 2004 [57].

system properties. Over the years, many notations have
been proposed to formally represent system components,
and many tools have been developed to automate theorem
proving. Despite of all these efforts (and unquestionable
successes), acceptance of formal approaches in validation
and verification of systems in industry is rather limited (a
wonderful discussion on formal methods can be found in
[92], [44], [14]). It should be, however, recognized, that in
certain areas of industry, e.g., safety critical applications
employed in railway control or in avionics, the formal
methods are widely accepted [47], [110]. In addition, some
of the major standards, e.g., IEC 61508 (international,
generic standard for the development of safety critical
systems) recommend use of formal methods in developing
critical applications.

An important area where formal methods were very
successful is model checking, applied in the design and
verification of finite state systems, e.g., distributed
algorithms and protocols. This is achieved by verifying
whether the model, derived from a hardware or software
design, satisfies a logical specification (often expressed as
temporal logic formulas). Early work [32], [89] provides
foundation for current generation of model checking tools
such as SPIN [48].

6.3 ODC Technology

Orthogonal Defect Classification (ODC) is a technology that
has evolved over the past decade, bringing measurement
and sophistication into development process analysis. It is
tied closely to defects, as the name suggests, but it is
primarily about methods to understand and control the
development process.

6.3.1 Concept

The beginnings of ODC, interestingly, go back to begin-
nings of the software implemented fault-injection (SWIFI)
era. As we realized that fault-injection held possibilities not
merely for evaluation but also for learning about the
system, we looked in greater detail into fault occurrence
and detection mechanisms. The ODC Trigger was born out
the need to understand the error mechanisms for fault
injection by studying real field failures [107]. As we
exploited defect information for the development process,
pressing problems of the development process gained
visibility, which led to today’s ODC.

A defect, defined as a necessary change to software [28], is
the object of the final repair actions that follow the
discovery of a fault. Faults, by their nature are often not
observable except through inspection. Alternatively, fail-
ures and errors are the events and states that allow the fault
to be revealed/detected. Dependability’s primary concern
are faults that escape development and go into the field, but
the processes that lead up to product delivery are
inundated with faults and have a direct bearing on the
overall dependability. The number of defects found in the
development phase usually peaks during the coding stage,
although most literature points to the fact the requirements
and design are the likely sources of a large number of them.
Regardless, defects exist through the entire development
process and field life of a product. As far as measurement is
concerned, defects are an ideal source of information, not

merely for their wealth of information, but also for being
available abundantly across all stages of the process.

ODC requires that each defect be categorized/character-
ized by a prescribed attribute value set. A rigorous
empirical process is employed to determine the attribute
values [26]. When so classified, these attribute-value sets do
not merely describe the defect but result in a specific
measurement on the development process. For example,
Defect Type and Trigger are two key ODS attributes. The
Defect Type captures the meaning of the fix, expressed in a
value set describing design or programming terms and
maps on the development process via a set of associations and
probabilities. The defect type attributes were initially
established empirically [27]. The Trigger maps into the test
process and expresses conditions leading to a defect to
surface.

To illustrate the power of ODS approach, we discuss two
applications that have gained considerable interest in the
industry: test effectiveness, a specific analysis made possible
through ODC, and root cause analysis, a broader and more
open-ended application that is made more powerful
through ODC.

6.3.2 Application—Test Effectiveness

A simple yet powerful concept that has grown due to ODC
is the notion of test effectiveness. This helps tailor a test
strategy depending on the nature of defects present in the
process. In contrast, the classical approaches have a
sequence of test stages that begin with unit test and
culminate in requirements or scenario tests. While the
classical approaches to test use metrics such as coverage
and reliability, they suffer broadly due to the lack of insight
into the nature of the specific defects present in the specific
target artifact being tested.

The cross product of ODC defect type and trigger
provides an effectiveness measure that helps us understand
the nature of defects and the appropriate triggers that are
most effective in detecting them. IBM, the prime IT vendor,
used this method to enhance testing of systems for the 2000
Sydney Olympics [16]. To gain an understanding of the
usage profile of applications and the nature of defects, an
earlier release of the game and scoring software was
studied. Fig. 6a shows the triggers that activated defects
yielding in customer-found defects in the field. The triggers
are subgrouped under Function, System, and Performance
test, which are the most likely test phases to generate the
triggers. The data illustrate that a rich spectrum of triggers
are present: several (system test subgroup) triggers that
were inadequately represented in the prerelease testing and
several (function test subgroup) that could be eliminated
with better functional test design. Fig. 6b gives us further
insight through the cross product of type and trigger,
illustrating the types of triggers that are most effective for
specific defect types. These insights resulted in a targeted
design of the test strategy, yielding a new version with far
fewer escapes.

6.3.3 Application: 10X on Root Cause Analysis

Root cause analysis is at the core of process improvement.
However, root cause analysis, defect prevention, and
learning are among the most difficult practices to execute

SIEWIOREK ET AL.: REFLECTIONS ON INDUSTRY TRENDS AND EXPERIMENTAL RESEARCH IN DEPENDABILITY 121

and sustain. Thus, it is not surprising that they reappear
every so often under a new banner: quality circle, defect
prevention, Level 5, and Six Sigma. The significance of
learning cannot be understated and any means to help
institutionalize and sustain it is vital.

One of the limiting elements of the classical root cause
analysis has been its cost. Typical analysis cost runs around
one person-hour per defect. ODC changes this equation for
root cause analysis making it far more practical and
scalable. The cost of analysis is reduced from one hour
per defect to around 4 minutes per defect. After 8 hours of
training, students classify defects at 6 minutes per defect in
their very first week. Experts, regularly clock ODC at
2 minutes per defect, in retrospective mode. At this low
cost, all the defects in a process can be classified and are
subject to analysis, compared to the classical root cause
analysis, which is usually limited to a sample.

Classifying defects by ODC is only the first step. Actual
root cause analysis is done by an ODC process analyst with
skills in multidimensional analysis and statistical tools. This
quantitative approach to root cause analysis has multiple
side benefits:

1. Not everyone on the development team needs to be
involved in the root cause analysis, or at least not all
of them in great depth as is common with the
classical defect prevention.

2. There is greater coverage of the defect data given
lower running costs.

3. The quantitative methods allow easier comparison
of one release with another.

4. When multiple actions are involved, the data make it
far more tractable to prioritize and roll up actions.

5. Finally, communicating the results is far more
systematic.

These benefits allow the methods to be scaled to larger
projects and rolled out to organizations more readily,
yielding a larger impact. Two case studies are noteworthy.

A large IBM product needed to go through a multiyear
quality improvement process to reduce cost of operations.
The goal was to significantly enhance the code quality and
reduce maintenance costs. A couple of years of classical
methods of quality improvement had yielded a 4x
improvement in quality and then reaching a plateau. Over
the following next few years, ODC-driven analysis and

feedback yielded a ~15x improvement in quality. The
original starting point was in the range of ~1,500 defects
per million lines of code; after ODC it reached ~20 defects
per million lines of code, resulting in code quality that rivals
the best in the industry. The overall savings were ~$100
million. Since warranty costs accrue annually, the total
savings over the life of product is even higher.

A Nortel implementation of ODC for root cause analysis
and directing development to strategically tackle a difficult
development situation has a similar story. In about five
years, the overall savings exceeded $250 million when
including reduced cost in warranty, critical situation
handling, and critical accounts.

6.3.4 Research Avenues

ODC illustrates one of our themes, namely, the increasing

abstraction level of fault models and their mapping into

process space to deal with growing complexity. The

concepts are not specific to software engineering, and

therefore have the promise of being adaptable to other

domains. Thus, this research is rich with opportunities in at

least three visible directions: the data model for new

domains, models for prediction, and evaluations of design

processes and tools. The 5.11 release of ODC [84] software

has been stable for almost 10 years. Its application ranges

from systems code, microcode, and applications and has

been implemented in approximately 100 projects so far. It

has been extended at Carnegie Mellon to robotics, and

useful inferences have been possible with a limited body of

prior data [99].

6.4 Software Testing

Software testing is a vast field (which includes theory and

practice) and requires its own treatment, which is far

beyond the scope of this paper. There is a large volume of

literature covering the theory and practice of software

testing, e.g., [45] (a special section on software testing edited

by R. Hamlet), [51], [37], [109], [116]. We must, however,

mention that there are some fundamental issues that need

focus due to the explosive complexity of Trend 2. While

much of the software testing research addresses issues at a

program level, be it white box or black box, the issues of

complexity quickly dwarf this level of testing. The challenge

of integration and multiple layers of functionality have

122 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 2, APRIL-JUNE 2004

Fig. 6. (a) Trigger distribution of customer-found defects from a prior release of the software and (b) cross product of defect type and trigger of the

customer-found defects.

complicated the problem enormously. The corresponding

weak specification or lack thereof makes a difficult problem

worse. Thus, heuristics for test generation at higher levels of

abstraction are welcome in the industry.
There have been a few notable pieces of research for

issues of complexity that tend to be domain-specific.

Parsimonious test generation for screens and system
configuration gained tremendously through the ideas of

orthogonal arrays [87] furthered by heuristics such as

Telcordia’s AETG [33]. State charts [46] that blend graphical

representation with functional properties have had success
in areas where protocols and algorithms are better

specified. Model-based testing holds promise to deal with

complexity, but the terrain has been difficult due to

problems at the test formulation stage and in simplifying
for broader use.

The issue of dealing with multiple layers of software,

incomplete specification of standards, and assumed inter-

faces and services needs conceptual models that can break

us out of the morass. Along with this, we need more
appropriate notions of coverage (other than those at the

code level) to match the higher levels of abstraction that we

need to work with.

7 TREND 3—GLOBAL VOLUME

The numbers of end users has grown by orders of

magnitude in the IT industry. With this comes a pleth-ora

of changes in every aspect of the business. The user’s
tolerance for failures is lower, and the higher levels of

integration are a source of new dimensions in failures.

These trends often require altering long-held assumptions.

In other respects, ideas that were considered impossible
only a decade ago, are already in production.

7.1 Form Factor and Mobility

The smaller geometry of circuits and lower power has

reached the point where devices such as hand-held PDAs

rival the compute power of a desktop computer of only a

few years ago. While that trend has been predicted in
Moore’s law for more than two decades, it is only now that

the hand-carried or wearable device has the power for

significant computing. Coupled with the corresponding

decrease in cost, the volume of devices grows by a couple of
orders of magnitude over desktop and lap top computers.

No longer are computers numbered in hundreds of

thousands to a million per year, but in tens to hundreds

of millions, with each model having a useful operating life
of a couple years. The cell phone is an excellent example of

a form factor, technology, and accepted functionality that

will drive more CPU sales with the power of a desktop
computer than previously conceived.

This large volume of devices is not mere power in the
hands of the end users. There is an infrastructure that needs

to be laid down to enable the end-user device, manage the

end user device, and create a channel for new features and

services. All this may need to be accomplished with location
transparency and, in the ideal situation, without forcing

direct contact with the end user.

7.2 Lower Training Threshold

The increase in volume of users leads to lower levels of
training of the average end user. While this is quite evident
in the consumer segment, such as cell phone users, it is
also true in other segments. Clearly, the need for
specialized skill and the expectation that there will be the
necessary training is always true in the high-end servers
network markets. However, the desktop era demonstrated
the need to build computing elements that required lower
and lower levels of training for the end user thereby
enabling mass markets. Along with this, there has also
been the trend to place systems management and repair in
the hands of technicians who do not have a degree in
computer science and who can be trained rapidly. The
growth of education programs in information technology
that focus on solutions and capabilities and less on
engineering design reflects this trend.

Dependability demands accelerate with lower training.
What may have once been considered an acceptable level of
difficulty in use and maintenance of systems is no longer
acceptable. Thus, what are minor irritations in historic
systems become faults today. What would historically be
routine maintenance becomes a serious failure. Thus, the
design assumptions on products themselves have dramati-
cally changed to accommodate this trend.

7.3 Dependability in Systems Management

With more diversity of devices on the market, the task of
installing, delivering, maintaining, servicing, and upgrad-
ing are all now far more challenging. Some tasks that could
once be done manually cannot be done manually. Failures
in these systems have their effect multiplied by the number
of users they serve. For instance, installing the wrong
version of an application that leads to updating databases
around the world with incorrect pricing information can
cause a huge disruption in accounting. Such an error can be
triggered by a human error, lack of training, or a
programming error in version management, or it could be
a secondary problem due to the integrity of a database.

8 EXPERIMENTAL RESEARCH VERSUS INDUSTRY
TREND 3

Commencing with the workstation boom in the early 1980s,
many of the traditional system management procedures fell
to the user. Since workstation behavior was not visible to a
central site, the research community developed techniques
in trend analysis to monitor activity and report deviation
from normal behavior. Thus, rather than attempt to
reconstruct sequences of events after the fact, operational
personnel would merely be notified of unusual events.
Operational personnel could focus their attention on events
that were likely to be meaningful. In addition, the trend
analyzers provided data surrounding the event so no
reconstruction would be required.

8.1 Adaptive Model of Normal Behavior

Trend analysis creates a model of normal behavior and
looks for deviation between current behavior and normal.
Since systems and their applications continually evolve, the
model must also learn the new behavior and factor it into a

SIEWIOREK ET AL.: REFLECTIONS ON INDUSTRY TRENDS AND EXPERIMENTAL RESEARCH IN DEPENDABILITY 123

new model of normal. In its early stages of development,
Harbinger [74] saw traffic grow by an order of magnitude in
a matter of months on an Ethernet backbone. Harbinger
would flag events that were plus or minus one or two
standard deviations away from prior behavior. Operational
personnel could examine these behaviors and, if they
considered normal, do nothing. The Harbinger model
would adapt such that any change that persisted for more
than two weeks would become part of the new normal
behavior. Harbinger reduced the number of events of
interest by several orders of magnitude [75]. The case study
on using models of normal behavior for voicemail systems
in Telco shows that alarm analysis could predict failures up
to a few weeks in advance [36]. Setting up the alarm
measurement and analysis system decreased the mean time
to repair at least by a factor of two, with a corresponding
drop in unavailability.

8.2 User Interaction

In the face of the computer pervasiveness, the human-
computer interaction becomes one of the factors determin-
ing the end-user’s perception of system dependability.
Response latency is one of the important quality of service
(QoS) metrics. An early study by Miller [80] indicated that:
1) a response within 0.1 seconds is perceived by the user as
an instantaneous reaction of the system, 2) a response
within 1.0 second keeps the user’s attention to an interactive
dialog, and 3) a 10-second delay is about the limit for
holding user attention to the task at hand. For longer delays,
the user is distracted and may move to another task. Similar
conclusions are drawn from the study on a cognitive
coprocessor (a user interaction manager) [18]. More recent
work conducted in HP Laboratories on the user-perceived
latency of Web-based services reinforces these findings and
indicates that delays of around 11 seconds represent the
threshold beyond which it is difficult to keep a user’s
attention on the task [12]. For designers of dependable
systems, these findings show the importance of fast error
detection and rapid recovery in minimizing system down-
time due to errors and, hence, reducing the perceived
response latency.

Another, slightly different yet important aspect of the
human-machine interaction is the unplanned outage due to
operator error. As new devices, services, and consumer
appliances flow into the market, user/operator errors can
be argued to be usability design flaws. The problem is that
often, in practice, the usability issues are not considered in
the configuration of a system. As a result, the actual testing
of user interfaces and, in particular, their usability occurs in
the finally built system, which may be too late.

8.3 Pervasive Computing

For the past decade, computer science researchers have
been defining new services and architectures for pervasive
and ubiquitous computing environments [86]. Pervasive/
ubiquitous computing environments encompass hundreds
of embedded computers throughout the physical environ-
ment that can provide services such as displays and
printing. As mobile users and devices move through the
environment, services must be discovered and protocols
established for communicating and combining services.

Basic research in pervasive/ubiquitous computing may
provide some of the mechanisms for on-the-fly monitoring
and reconfiguration.

8.4 Cognitive Assistants That Learn

The DARPA PAL (Personal Assistant that Learns) pro-
gram’s goal is to create cognitive systems that use a variety
of learning techniques to discover user preferences and,
thus, to proactively anticipate user needs. By communicat-
ing through cognitive agents, the user that has discovered a
technique to work around a problem could share have
information with other users. Thus, rather than having a
dedicated, skilled staff to help users work through
problems, the entire user community could share what
has been discovered. (A recent study of remote user
security problems indicated an average problem resolution
time of 60 hours and up to 100 hours for problems
originated in the networks [105].)

8.5 Proactive Management

The number of operational parameters in a computing
system has grown explosively. Companies have been
founded whose sole product is to discover network
configurations and set the parameter values of the various
switches to optimize performance. One can envision such
services reaching down to individual users and their
mobile devices. Early research in artificial intelligence led
to the R1 system [78] for configuring VAX high-end
computers for Digital Equipment Corporation (DEC).
Since there were a large number of possible configura-
tions, R1 examined the purchase order and created a bill
of materials adding in missing components that were
implied by the rest of the configuration. Research in such
technology could carry beyond the manufacturing phase
into the operational life phase.

9 CONCLUSIONS

Our framework, defined by three elements—trends, arti-
facts, and processes—has allowed us to reflect on over-
arching industry trends and technologies that impact the
industry’s artifacts and/or processes. Looking back at
Table 2, following our discussions, lets us reflect on where
we have been and where opportunities for research lurk.

Trend 1—Shifting Error Sources and Trend 2—Explosive

Complexity are well underway with a substantial body of
research. Nevertheless, there remains a need for more
research, especially on issues of complexity and security
(e.g., measurement-based analysis of system security).
Trend 3—Global Volume is upon us but is young in terms
of research. We have articulated several topics that are
currently visible and certainly others will reveal themselves.
The pace of industry and its needs for research has grown
by the sheer volume of business and domains of applica-
tion. Thus, the need for this research is imminent.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
insightful comments and constructive suggestions.

124 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 2, APRIL-JUNE 2004

REFERENCES

[1] A. Amendola et al., “Experimental Evaluation of Computer-Based
Railway Control Systems,” Proc. Int’l. Conf. Fault-Tolerant Comput-
ing Systems (FTCS-27), 1997.

[2] T. Anderson et al., “Software Fault Tolerance: An Evaluation,”
IEEE Trans. Software Eng., vol. 11, no. 12, Dec. 1985.

[3] T. Anderson et al., “Protective Wrapper Development: A Case
Study,” Proc. Second Int’l Conf. OTS-Based Software Systems
(ICCBSS), 2003.

[4] J. Arlat, Y. Crouzet, and J.-C. Laprie, “Fault Injection for
Dependability Validation of Fault-Tolerant Computer Systems,”
Proc. Int’l Symp. Fault-Tolerant Computing (FTCS-19), 1989.

[5] J. Arlat et al., “Fault Injection for Dependability Validation: A
Methodology and some Applications,” IEEE Trans. Software Eng.,
vol. 16, no. 2, 1990.

[6] J. Arlat et al., “Comparison of Physical and Software-Implemented
Fault Injection Techniques,” IEEE Trans. Computers, vol. 52, no. 8,
Aug. 2003.

[7] T. Aslam, I. Krsul, and E. Spafford, “Use of A Taxonomy of
Security Faults,” Proc. 19th NIST-NCSC National Information
Systems Security Conf., 1996.

[8] A. Avizienis, “Design of Fault-Tolerant Computers,” Proc. AFIPS
Fall Joint Computer Conf., vol. 31, 1967.

[9] A. Avizienis, “The N-Version Approach to Fault-Tolerant Soft-
ware,” IEEE Trans. Software Eng., vol. 11, no. 12, Dec. 1985.

[10] A. Avizienis, “Toward Systematic Design of Fault-Tolerant
Systems,” Computer, vol. 30, no. 4, 1997.

[11] A. Avizienis, J.-C. Laprie, and B. Randell, “Fundamental Concepts
of Dependability,” Proc. Third Information Survivability Workshop,
2000.

[12] N. Bhatti, A. Bouch, and A. Kuchinsky, “Integrating User-
Perceived Quality into Web Server Design,” Proc. Ninth Int’l
WWW Conf., 2000.

[13] B. Bisbey II and D. Hollingsworth, “Protection Analysis Project
Final Report,” Technical Report ISI/RR-78-13, DTIC AD A056816,
USC/Information Sciences Inst., 1978.

[14] J. Bowen and M. Hinchey, “Seven More Myths of Formal
Methods,” IEEE Software, vol. 12, no. 4, 1995.

[15] S. Brilliant, J. Knight, and N. Leveson, “Analysis of Faults in an N-
Version Software Experiment,” IEEE Trans. Software Eng., vol. 16,
no. 2, 1990.

[16] M. Butcher, H. Munro, and T. Kratschmer, “Improving Software
Testing via ODC: Three Case Studies,” IBM Systems J., vol. 41,
no. 1, 2002.

[17] S. Butner and R. Iyer, “A Statistical Study of Reliability and
System Load at SLAC,” Proc. Int’l. Symp. Fault-Tolerant Computing
(FTCS-10), 1980.

[18] S. Card, G. Robertson, and J. Mackinlay, “The Information
Visualizer: An Information Workspace,” Proc. ACM CHI ’91 Conf.,
1991.

[19] J. Carreira, H. Madeira, and J.G. Silva, “Xception: A Technique for
the Evaluation of Dependability in Modern Computers,” IEEE
Trans. Software Eng., vol. 24, no. 2 1998.

[20] X. Castillo and D. Siewiorek, “A Performance-Reliability Model
for Computing Systems,” Proc. Int’l. Symp. Fault-Tolerant Comput-
ing (FTCS-10), 1980.

[21] X. Castillo and D. Siewiorek, “Workload, Performance, and
Reliability of Digital Computing Systems,” Proc. Int’l. Symp.
Fault-Tolerant Computing (FTCS-11), 1981.

[22] X. Castillo, S. McConnel, and D. Siewiorek, “Derivation and
Calibration of A Transient Error Reliability Model,” IEEE Trans.
Computers, vol. 31, no. 7 1982.

[23] S. Chen et al., “Modeling and Evaluating the Security Threats of
Transient Errors in Firewall Software,” Int’l J. Performance
Evaluation, vol. 56, nos. 1-4, 2004.

[24] S. Chen et al., “A Data-Driven Finite State Machine Model for
Analyzing Security Vulnerabilities,” Proc. Int’l Conf. Dependable
Systems and Networks (DSN ’03), 2003.

[25] R. Chillarege and N. Bowen, “Understanding Large System
Failures—A Fault Injection Experiment,” Proc. Int’l Symp. Fault-
Tolerant Computing (FTCS-19), 1989.

[26] R. Chillarege, W. Kao, and R. Condit, “Defect Type and its Impact
on the Growth Curve,” Proc. 13th Int’l Conf. Software Eng., 1991.

[27] R. Chillarege et al., “Orthogonal Defect Classification—A Concept
for In-Process Measurements,” IEEE Trans. Software Eng., vol. 18,
no. 11, 1992.

[28] R. Chillarege, “ODC for Process Management, Analysis, and
Control,” Proc. Fourth Int’l Conf. Software Quality, 1994.

[29] R. Chillarege et al., “Measurement of Failure Rate in Widely
Distributed Software,” Proc. Int’l Symp. Fault-Tolerant Computing
(FTCS-25), 1995.

[30] R. Chillarege, “What is Software Failure?” IEEE Trans. Reliability,
vol. 45, no. 3, 1996.

[31] R. Chillarege, “The Marriage of Business Dynamics and Soft-
ware,” IEEE Software, vol. 19, no. 6, 2002.

[32] E. Clarke and E. Emerson, “Synthesis of Synchronization
Skeletons for Branching Time Temporal Logic,” Logic of Programs:
Workshop, 1981.

[33] D. Cohen et al., “The AETG System: An Approach to Testing
Based on Combinatorial Design,” IEEE Trans. Software Eng., vol. 23,
no. 7, 1997.

[34] C. Constantinescu, “Validation of the Fault/Error Handling
Mechanisms of the Teraflops Supercomputer,” Proc. Int’l Symp.
Fault-Tolerant Computing (FTCS-28), 1998.

[35] J. DeVale and P. Koopman, “Robust Software—No More
Excuses,” Proc. Int’l Conf. Dependable Systems and Networks (DSN
’02), 2002.

[36] L. Dorron and R. Chillarege, “Early Warning of Failures through
Alarm Analysis—A Case Study in Telcom Voice Mail Systems,”
Proc. Int’l Symp. Software Reliability Eng., 2003.

[37] J. Duran and S. Ntafos, “An Evaluation of Random Testing,” IEEE
Trans. Software Eng., vol. 10, no. 4, 1984.

[38] F. Faccio et al., “Single Event Effects in Static and Dynamic
Registers in a 0:25um CMOS Technology,” IEEE Trans. Nuclear
Science, vol. 46, no. 6, 1999.

[39] A. Goel, “Software Reliability Models: Assumptions, Limitations
and Applicability,” IEEE Trans. Software Eng., vol. 11, no. 12, 1985.

[40] K. Goswami, R. Iyer, and L. Young, “DEPEND: A Simulation-
Based Environment for System Level Dependability Analysis,”
IEEE Trans. Computers, vol. 46, no. 1, 1997.

[41] J. Gray, “A Census of Tandem System Availability between 1985
and 1990,” IEEE Trans. Reliability, vol. 39, no. 4, 1990.

[42] W. Gu, Z. Kalbarczyk, and R. Iyer, “Error Sensitivity of the Linux
Kernel Executing on PowerPC G4 and Pentium 4 Processors,”
Proc. Int’l Conf. Dependable Systems and Networks (DSN ’04), 2004.

[43] U. Gunneflo, J. Karlsson, and J. Torin, “Evaluation of Error
Detection Schemes Using Fault Injection by Heavy-Ion Radiation,”
Proc. Int’l Symp. Fault-Tolerant Computing (FTCS-19), 1989.

[44] A. Hall, “Seven Myths of Formal Methods,” IEEE Software, vol. 7,
no. 5, 1990.

[45] R. Hamlet, “Special Section on Software Testing,” Comm. ACM,
vol. 31, no. 6, 1988.

[46] D. Harel and M. Politi, Modeling Reactive Systems with Statecharts:
The STATE-MATE Approach. McGraw-Hill, 1998.

[47] C. Hennebert and G. Guiho, “SACEM: A Fault Tolerant System for
Train Speed Control,” Proc. Int’l Symp. Fault-Tolerant Computing
(FTCS-23), 1993.

[48] G. Holzmann, “The Model Checker SPIN,” IEEE Trans. Software
Eng., vol. 23, no. 5, 1997.

[49] The Honeynet Project, Know Your Enemy: Revealing the Security
Tools, Tactics, and Motives of the Blackhat Community. Addison-
Wesley, 2002.

[50] M. Howard and D. LeBlanc, Writing Secure Code. Microsoft Press,
2001.

[51] W. Howden, Functional Program Testing and Analysis. McGraw-
Hill, 1987.

[52] M. Hsiao et al., “Reliability, Availability, and Serviceability of IBM
Computer Systems: A Quarter Century of Progress,” IBM J.
Research and Development, vol. 25, no. 5, 1981.

[53] R. Iyer and D. Rossetti, “A Statistical Load Dependency Model for
CPU Errors at SLAC,” Proc. Int’l Symp. Fault-Tolerant Computing
(FTCS-12), 1982.

[54] R. Iyer and D. Rossetti, “Effect of System Workload on Operating
System Reliability: A Study on the IBM 3081,” IEEE Trans. Software
Eng., vol. 11, no. 12, Dec. 1985.

[55] R. Iyer and D. Rossetti, “A Measurement-Based Model for
Workload Dependency of CPU Errors,” IEEE Trans. Computers,
vol. 35, no. 6, June 1986.

[56] R. Iyer, L. Young, and K. Iyer, “Automatic Recognition of
Intermittent Failures: An Experimental Study of Field Data,” IEEE
Trans. Computers, vol. 39, no. 4, Apr. 1990.

[57] P. Jalote and B. Murphy, “Reliability Growth in Software
Products,” Proc. Int’l Symp. Software Reliability Eng., 2004.

SIEWIOREK ET AL.: REFLECTIONS ON INDUSTRY TRENDS AND EXPERIMENTAL RESEARCH IN DEPENDABILITY 125

[58] E. Jenn et al., “Fault Injection into VHDL Models: The MEFISTO
Tool,” Proc. Int’l Symp. Fault-Tolerant Computing (FTCS-24), 1994.

[59] M. Kalyanakrishnam, R.K. Iyer, and J. Patel, “Reliability of
Internet Hosts: A Case Study from End User’s Perspective,” Proc.
Int’l Conf. Computer Comm. and Networks, 1996.

[60] M. Kalyanakrishnam, Z. Kalbarczyk, and R. Iyer, “Failure Data
Analysis of LAN of Windows NT Based Computers,” Proc. 18th
Symp. Reliable and Distributed Systems (SRDS ’99), 1999.

[61] G. Kanawati, N. Kanawati, and J. Abraham, “FERRARI: A Tool for
the Validation of System Dependability Properties,” Proc. Int’l
Symp. Fault-Tolerant Computing (FTCS-22), 1992.

[62] K. Kanoun et al., “SoRel: A Tool for Reliability Growth Analysis
and Prediction From Statistical Failure Data,” Proc. Int’l Symp.
Fault-Tolerant Computing (FTCS-23), 1993.

[63] H. Kantz and C. Koza, “The ELEKTRA Railway Signaling System:
Field Experience with an Actively Replicated System with
Diversity,” Proc. Int’l Symp. Fault-Tolerant Computing (FTCS-25),
1995.

[64] W. Kao, R.K. Iyer, and D. Tang, “FINE: A Fault Injection and
Monitoring Environment for Tracing the Unix System Behavior
under Faults,” IEEE Trans. Software Eng., vol. 19, no. 11, Nov. 1993.

[65] P. Koopman and J. DeVale, “The Exception Handling Effective-
ness of POSIX Operating Systems,” IEEE Trans. Software Eng.,
vol. 26, no. 9, 2000.

[66] J. Lala, “Fault Detection, Isolation, and Reconfiguration in FTMP:
Methods and Experimen-tal Results,” Proc. Fifth AIAA/IEEE
Digital Avionics Systems Conf. (DASC), 1983.

[67] C. Landwehr et al., “A Taxonomy of Computer Program Security
Flaws, with Examples,” ACM Computing Surveys, vol. 26, no. 3,
1994.

[68] J.-C. Laprie et al., “Definition and Analysis of Hardware-and-
Software Fault-Tolerant Ar-chitectures,” Computer, vol. 23, no. 7,
July 1990.

[69] J.-C. Laprie et al., “Dependability: Basic Concepts and Terminol-
ogy,” Dependable Computing and Fault-Tolerant Systems, 1992.

[70] I. Lee and R. Iyer, “Faults, Symptoms, and Software Fault
Tolerance in the Tandem GUARDIAN90 Operating Systems,”
Proc. Int’l Symp. Fault-Tolerant Computing (FTCS-23), 1993.

[71] T. Lin and D. Siewiorek, “Architectural Issues for On-Line
Diagnostics in A Distributed Environment,” Proc. Int’l. Conf.
Computer Design, 1986.

[72] T. Lin and D. Siewiorek, “Error Log Analysis Statistical Modeling
and Heuristic Trend Analysis,” IEEE Trans. Reliability, vol. 39,
no. 4, 1990.

[73] U. Lindqvist and E. Jonsson, “How to Systematically Classify
Computer Security Intrusions,” Proc. Symp. Security and Privacy,
1997.

[74] R. Maxion, “Distributed Diagnostic Performance Reporting and
Analysis,” Proc. Int’l Conf. Computer Design, 1986.

[75] R. Maxion and K. Tan, “Anomaly Detection in Embedded
Systems,” IEEE Trans. Computers, vol. 51, no. 2, Feb. 2002.

[76] R. Maxion and R. Olszewski, “Eliminating Exception Handling
Errors with Dependability Cases: A Comparative, Empirical
Study,” IEEE Trans. Software Eng., vol. 26, no. 9, Sept. 2000.

[77] S. McConnel, D. Siewiorek, and M. Tsao, “The Measurement and
Analysis of Transient Errors in Digital Compute Systems,” Proc.
Int’l Symp. Fault-Tolerant Computing (FTCS-9), 1979.

[78] J. McDermott, “R1: A Rule-Based Configurer of Computer
Systems,” Artificial Intelligence, vol. 19, no. 2, 1982.

[79] A. Merenda and E. Merenda, “Recovery/Serviceability/System
Test Improvements for the IBM ES/9000 520 Based Models,” Proc.
Int’l Symp. Fault-Tolerant Computing (FTCS-22), 1992.

[80] R. Miller, “Response Time in Man-Computer Conversational
Transactions,” AFIPS Fall Joint Computer Conf., vol. 33, 1968.

[81] B. Murphy and B. Levidow, “Windows 2000 Dependability,”
Microsoft Research Technical Report MSR-TR-2000-56, 2000.

[82] J. Musa, Software Reliability Engineering. McGraw Hill, 1998.
[83] E. Normand, “Single Event Upset at Ground Level,” IEEE Trans.

Nuclear Science, vol. 43, 1996.
[84] ODC ODC-511, Web Resources, 2004, www.chillarege.com;

www.research.ibm.com/softeng.
[85] D. Patterson et al., “Recovery Oriented Computing (ROC):

Motivation, Definition, Techniques, and Case Studies,” CS
Technical Report UCB/CSD-02-1175, Univ. of California at
Berkeley, 2002.

[86] IEEE Pervasive Computing, special issue on integrated environ-
ments, vol. 1, no. 2, 2002.

[87] M. Phadke, Quality Engineering Using Robust Design. Prentice Hall,
1989.

[88] D. Powell, “Failure Mode Assumptions and Assumption Cover-
age,” Proc. Int’l Symp. Fault-Tolerant Computing (FTCS-22), 1992.

[89] J. Queille and J. Sifakis, “Specification and Verification of
Concurrent Systems in Cesar,” Proc. Fifth Symp. Programming,
1981.

[90] M. Rodriguez et al., “MAFALDA: Microkernel Assessment by
Fault Injection and Design Aid,” Proc. Third European Dependable
Computing Conf. (EDCC-3), 1999.

[91] M. Rodriguez, J.-C. Fabre, and J. Arlat, “Wrapping Real-Time
Systems from Temporal Logic Specifications,” Proc. Fourth
European Dependable Computing Conf. (EDCC-4), 2002.

[92] J. Rushby, “Formal Methods and the Certification of Critical
Systems,” Technical Report CSL-93-7, CS Laboratory SRI, 1993.

[93] J. Samson, W. Moreno, and F. Falquez, “A Technique for
Automated Validation of Fault Tolerant Designs Using Laser
Fault Injection,” Proc. Int’l Symp. Fault-Tolerant Computing (FTCS-
28), 1998.

[94] Z. Segall et al., “FIAT—Fault Injection Based Automated Testing
Environment,” Proc. Int’l Symp. Fault-Tolerant Computing (FTCS-
18), 1988.

[95] F. Sellers, M. Hsiao, and L. Bearnson, Error Detecting Logic for
Digital Computers. McGraw-Hill, 1968.

[96] Y. Shi, “A Portable, Self Hosting System Dependability Measure-
ment and Prediction Module,” technical report, Electrical and
Computer Eng. Dept., Carnegie Mellon Univ., 1999.

[97] P. Shivakumar et al., “Modeling the Effect of Technology Trends
on the Soft Error Rate of Combinational Logic,” Proc. Int’l Conf.
Dependable Systems and Networks (DSN ’02), 2002.

[98] D. Siewiorek et al., “A Case Study of C. mmp, Cm*, and C. vmp,”
Proc. IEEE, vol. 66, no. 10, 1978.

[99] J. Silberman, “Robot Orthogonal Defect Classification Towards an
In-Process Measurement System for Mobile Robot Development,”
technical report, Robotics Inst. Carnegie Mellon Univ., 1998.

[100]C. Simache, M. Kaâniche, and A. Saidane, “Event Log Based
Dependability Analysis of Windows NT and 2K Systems,” Pacific
Rim Int’l Symp. Dependable Computing (PRDC ’02), 2002.

[101] L. Spainhower and T.A. Gregg, “G4: A Fault-Tolerant CMOS
Mainframe,” Proc. Int’l Symp. Fault-Tolerant Computing (FTCS-28),
1998.

[102] L. Spainhower et al., “IBM’s ES/9000 Model 982’s Fault-Tolerant
Design for Consolidation,” IEEE Micro, vol. 14, no. 1, 1994.

[103] L. Spainhower and T. Gregg, “IBM S/390 Parallel Enterprise
Server G5 Fault Tolerance: A Historical Perspective,” IBM J.
Research and Development, vol. 43, nos. 5/6, 1999.

[104] L. Spitzner, Honeypots: Tracking Hackers. Addison-Wesley, 2003.
[105]A. Steinfeld et al., “An Examination of Remote Access Help Desk

Cases,” Technical Report CMU-CS-03-190, CMU-HCII-03-100,
School of Computer Science, Carnegie Mellon Univ., 2003.

[106]D. Stott et al., “Dependability Assessment in Distributed Systems
with Lightweight Fault Injectors in NFTAPE,” Proc. Fourth Int’l
Computer Performance and Dependability Symp., 2000.

[107]M. Sullivan and R. Chillarege, “Software Defects and Their Impact
on System Availability—A Study of Field Failures in Operating
Systems,” Proc. Int’l Symp. Fault-Tolerant Computing (FTCS-21),
1991.

[108]D. Tang and R. Iyer, “Analysis and Modeling of Correlated
Failures in Multicomputer Systems,” IEEE Trans. Computers,
vol. 41, no. 5, May 1992.

[109] P. Thévenod-Fosse, H. Waeselynck, and Y. Crouzet, “Software
Statistical Testing,” Predictably Dependable Computing Systems,
1995.

[110]A. Tiwari, J. Rushby, and N. Shankar, “Invisible Formal Methods
for Embedded Control Systems,” Proc. IEEE, vol. 91, no. 1, 2003.

[111] P. Traverse, “Dependability of Digital Computers on Board
Airplanes,” Proc. First Int’l Working Conf. Dependable Computing
for Critical Applications, 1989.

[112] T. Tsai et al., “Stress-Based and Path-Based Fault Injection,” IEEE
Trans. Computers, vol. 48, no. 11, 1999.

[113]M. Tsao and D. Siewiorek, “Trend Analysis on System Error
Files,” Proc. Int’l Symp. Fault Tolerant Computing (FTCS-13), 1983.

[114] T. Vardanega et al., “On the Development of Fault-Tolerant On-
Board Control Software and its Evaluation by Fault Injection,”
Proc. Int’l. Symp. Fault-Tolerant Computing (FTCS-25), 1995.

126 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 2, APRIL-JUNE 2004

[115]K. Wagner and E.J. McCluskey, “Effect of Supply Voltage on
Circuit Propagation Delay and Test Application,” Proc. Int’l Conf.
Computer-Aided Design, 1985.

[116] E. Weyuker and T. Ostrand, “Theories of Program Testing and the
Application of Revealing Subdomains,” IEEE Trans. Software Eng.,
vol. 6, no. 3, 1980.

[117]A. Wood, “Softare Reliability from the Customer View,” Computer,
vol. 36, no. 8, 2003.

[118] J. Xu, Z. Kalbarczyk, and R. Iyer, “Networked Windows NT
System Filed Failure Data Analysis,” Proc. Pacific Rim Int’l Symp.
Dependable Computing (PRDC ’99), 1999.

[119] J. Xu et al., “An Experimental Study of Security Vulnerabilities
Caused by Errors,” Proc. Int’l Conf. Dependable Systems and
Networks (DSN ’01), 2001.

[120] C. Yount and D. Siewiorek, “The Automatic Generation of
Instruction-Level Error Mani-festations of Hardware Faults,”
IEEE Trans. Computers, vol. 45, no. 8, Aug. 1996.

[121] J. Ziegler et al., “IBM’s Experiments in Soft Fails in Computers,”
IBM J. Research and Development, vol. 40, no. 1, 1996.

[122] http://www.dependability.org/wg10.4/SIGDeB, 2004.
[123] http://www.securityfocus.com, 2004.
[124] http://www.cert.org, 2004.
[125] http://securitytracker.com/learn/statistics.html, 2004.
[126] http://www.honeypots.net/honeypots/links/, 2004.
[127] http://www.honeynet.org, 2004.

Daniel P. Siewiorek received the BS degree in
electrical engineering from the University of
Michigan and the MS and PhD degrees, both
in electrical engineering, from Stanford Univer-
sity. He is a Buhl University professor of
computer science and electrical and computer
engineering at Carnegie Mellon University, is
currently the director of the Human Computer
Interaction Institute. He helped to produce the
Cm* multiprocessor system and contributed to

the dependability design of 24 commercial computer systems. He has
published more than 400 technical papers and eight text books. He was
elected an IEEE fellow in 1981 for contributions to the design of modular
computer systems; in 1988 received the Eckert-Mauchly Award for his
contributions to computer architecture, was elected as a member of the
1994 Inaugural Class of ACM fellows and elected to the 2000 class of
the National Academy of Engineering. He is a member of the ACM, Tau
Beta Pi, Eta Kappa Nu, Sigma Xi, and the IEEE Computer Society.

Ram Chillarege received the PhD degree from
the University of Illinois, Urbana-Champaign in
computer engineering, the ME and BE degrees
from the Indian Institute of Science, Bangalore,
and the BSc degree from the University of
Mysore. He is a management consultant in
software engineering optimization. He had been
the Executive Vice President of Software and
Technology at Opus360, and prior to that was
with IBM Research for 14 years, where he

founded and headed the Center for Software Engineering. He received
the IEEE Technical Achievement for inventing Orthogonal Defect
Classification (ODC) and an expansive body of work, which ushers
new methods to the business of managing software. In the mid 1990s,
he led the effort, which culminated in IBM establishing a corporate-wide
software testing practice initiative. He has authored around 50 peer-
reviewed articles and is an active speaker at conferences. He serves on
the IEEE steering committees of Software Reliability and Dependability
symposiums, several conference committees, and the US National
Science Foundation panels. He is a fellow of the IEEE.

Zbigniew T. Kalbarczyk recieved the PhD
degree in computer science from the Technical
University of Sofia, Bulgaria. He is currently a
principal research scientist at the Center for
Reliable and High-Performance Computing in
the Coordinated Science Laboratory of the
University of Illinois at Urbana-Champaign. After
receiving his doctorate, he worked as an
assistant professor in the Laboratory for De-
pendable Computing at Chalmers University of

Technology in Gothenburg, Sweden. His research interests are in the
area of reliable and secure networked systems. Currently, he is a lead
researcher on the project to explore and develop high availability and
security infrastructure capable of managing redundant resources across
interconnected nodes, to foil security threats, detect errors in applica-
tions and the infrastructure components, and recover from failures. His
research involves also development of automated techniques for
validation and benchmarking of dependable and secure computing
systems. He has published more than 70 technical papers. He served as
a program cochair of Performance and Dependability Symposium
(PDS), a track of Conference on Dependable Systems and Networks
(DSN ’02) and is regularly invited to work on the program committees of
major conferences on design of fault-tolerant systems. He is a member
of the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SIEWIOREK ET AL.: REFLECTIONS ON INDUSTRY TRENDS AND EXPERIMENTAL RESEARCH IN DEPENDABILITY 127

