
610272-1732/00/$10.00  2000 IEEE

The Itanium processor is the first
implementation of the Intel IA-64 architec-
ture.1 Designed for the high-end server mar-
ket, the processor provides features (see the
sidebar, next page) that maximize system reli-
ability and availability. These features include
fault coverage at the hardware level, a config-
urable multilevel error containment strategy,
an availability feature set, and a machine check
abort (MCA) architecture.

Reliability features
Soft errors are unintended transitions of

logic states in a processor typically caused by
external sources of ionizing radiation. The
ionization creates excess free carriers, which
recombine with the charges in the storage
nodes, thereby corrupting information. There
are two primary sources of external radiation
that can contribute to soft errors. The first is
alpha particles, found, as by-products of the
radioactive decay process, in materials such as
metal interconnects, solders, ceramics, plas-
tics, or epoxies. The other source comes from
high-energy neutrons. Ultra-high energy par-
ticles that originate in deep space generate
these neutrons.

A soft error may or may not be detected,

depending on the fault coverage in a proces-
sor. When undetected, a soft error can result
in the undesirable outcome of silent data cor-
ruption. When detected, either the hardware
or the software can handle the soft error in
some manner, depending on the capability of
the processor.

On a processor, memory cells are the most
susceptible to soft errors because they consti-
tute the majority of the devices and are typi-
cally built with small devices. More
important, unlike static logic, which has the
ability to mask errors,2 memory cells “remem-
ber” any soft errors that occur as long as these
cells are in use.

The Itanium processor is highly reliable as
all large memory structures are protected by
either error-correcting code (ECC) or parity.
Figure 1 shows protected memory arrays as
well as the availability features on the proces-
sor. In the figure, the hardware page walker
handles translation look-aside buffer (TLB)
misses and enforces coherency between the
two TLB levels. The L1I and L1D caches are
backed by the L2 and L3 caches. Table 1 lists
the important attributes of the caches.

Together, these reliability features let the
processor achieve low soft-error rates. Note

Nhon Quach
Intel

THE ITANIUM PROCESSOR OFFERS RELIABILITY AND AVAILABILITY FOR

MISSION-CRITICAL APPLICATIONS. THE AUTHOR DESCRIBES THE

IMPLEMENTATION OF THE MAJOR FEATURES ON THE PROCESSOR AND

EXPLAINS THE MOTIVATION AND DESIGN DECISIONS BEHIND THEM.

HIGH AVAILABILITY AND
RELIABILITY IN THE

ITANIUM PROCESSOR

that the branch prediction and branch target
buffers aren’t protected because errors in these
structures only cause harmless branch mis-
predictions.

Error detection and correction
Each structure has its own protection

scheme.

TLBs. The critical fields in the instruction
TLB1, data TLB1, and data TLB2 are pro-
tected by parity. When an error is detected in
any of the TLBs, a hardware bus reset con-
tains the error. This reset action is needed
because by the time an error is detected in the
data array, the memory transaction may have
been sent to the memory subsystem. An alter-
native would be to delay submitting the mem-
ory transaction until after the parity detection.
The Itanium processor design team deemed
this as too costly in terms of performance and
was therefore not adopted.

L1I instruction and L1D data caches. The
processor uses parity for error detection in the
L1I instruction tag and data arrays. An error
in the tag or data array causes the cache con-
troller to signal a local MCA. As defined in
the IA-64 architecture, the PAL (processor
abstraction layer)3 error handler will then
invalidate the entire L1I instruction cache to
correct the error.

L1D uses a similar parity scheme for the tag
and data arrays. However, the data arrays have
one parity bit per byte. This finer parity gran-
ularity is motivated by the need to support
byte (and multiple-byte) store operations
without requiring a read-modify-write oper-
ation to recompute and update parity.

L1I errors are detected early in the proces-
sor pipeline and are fully correctable. L1D
errors are detected one clock cycle before the
instruction retirement stage, just in time to
stop the errant data from being consumed,
but too late to stop the errant data from cor-
rupting the destination register on a data load.
For this reason, L1D tag and data parity errors
won’t be correctable if the offending instruc-
tion is a data load. This is unfortunate, as data
loads constitute a majority of the data traffic.

To solve this destination register corruption
problem, the designers used a technique called
redundant error detection in L1D. A local

62

ITANIUM PROCESSOR

IEEE MICRO

Table 1. Major attributes of the Itanium processor caches.

Size Line size

Cache (bytes) Associativity (bytes) Write policy

L1I 16 K 4 way 32 Read only
L1D 16 K 4 way 32 Write through
L2 96 K 6 way 64 Unified; write back
L3 2-4 M 4 way 64 Unified; write back

Key features
Certain features in the Itanium processor support the system:

• Either error-correcting code or a parity technique in the processor cache memory, state
arrays, and translation look-aside buffers ensures reliability. Additionally, extra hard-
ware resources allow error handling even when the processor is fielding another inter-
rupt or exception.

• A configurable, multilevel error containment strategy to prevent errors from propagat-
ing outside the processor—at the system level via a hardware bus reset pin, at the clus-
ter (or node) level via an early error indicator, and at the process level via a mechanism
called data poisoning.

• Availability features including extensive error-logging capability for error analysis and
diagnostics, a watchdog timer to prevent system hang (not executing) and a low-priority
interrupt on all corrected errors to save the operating system from polling the processor
error logs periodically.

• Enhanced machine check abort architecture lets the firmware, in close cooperation with
the hardware, correct less-critical errors and communicate critical error information to
the system firmware and the operating system more effectively.

Processor
core

pipeline

X registers

Error log

Timer

L1I

L1D

ITLB1

DTLB1

Bus cluster

Bus
queues

Error
promotion

Data
poisoning

L2
data

L3 tag + data +
modified state

L2
tag

Hardware
page walker

DTLB2

Backside bus

System bus to chip setData bus
Address command

Error-correcting code
Parity

Figure 1. Itanium processor reliability and availability features.

MCA is signaled as long as a set being accessed
contains an error in any of the four ways in a
set. Therefore, a problem would only result
when a data load hits the L1D error way exact-
ly; in the other cases the PAL error handler
will correct the errors by invalidating the
entire cache before the errors become uncor-
rectable. This simple technique reduces the
L1D error by a factor of four.

Multiple bit errors in a single cache line
caused by a single upset event are prevented
in all caches by interleaving bits from adjacent
cache lines in the physical layout. All caches
use this bit-interleaving technique; when mul-
tiple bit upsets occur, the result is multiple
cache lines with single-bit errors rather than a
single cache line with multiple-bit errors.

L2 unified cache. The L2 data array is pro-
tected for every 64 bits of data by an 8-bit
ECC, which provides single error correction
and double error detection.4 However, 8-, 16-,
and 32-bit stores require a read-modify-write
operation in the cache to recompute and
update the ECC bits. A 32-bit ECC chunk
would eliminate read-modify-write operations
for 32-bit stores. This requires 7 ECC bits for
each 32-bit data group, or 14 ECC bits for 64
data bits—almost twice as much overhead as
needed for 64-bit ECC chunks.

The L2 tag array is protected by parity and
employs the same redundant error detection
technique as the L1D cache. On error detec-
tion (in any of the ways in a set), the L2 cache
controller will signal a local MCA if the cache
line state is either shared or clean and will sig-
nal a global MCA if the cache line state is mod-
ified. A parity error detected in a clean or shared
cache line may or may not be correctable, again
depending on whether the offending instruc-
tion is a data load. Raising a local MCA gives
the PAL error handler a chance to correct the
error. Raising a global MCA ensures termina-
tion of all potentially affected processes.

L3 unified cache. Three parity bits protect the
L3 cache tag. While these parity bits detect
tag errors, the eight ECC check bits shared
between the tag and the 64-bit data correct
the errors. The ECC check bits detect data
errors as well.

The hardware corrects both tag and data
errors without the intervention of the PAL

error handler (that is, no MCA is signaled).
When the parity bits detect a tag error, the
processor aborts the offending transaction, sus-
pends all other operations to and from the L3
cache, and starts a tag correction state machine
to correct (or scrub) the tags using the ECC
check bits. The scrubbing is performed on all
four ways in a set in the L3 cache. After scrub-
bing, the state machine accesses the cache tags
again to ensure proper correction. If the scrub-
bing is successful, the aborted offending trans-
action is retried and normal operation
resumed; otherwise, a hardware bus reset is ini-
tiated for a hard error (that is, stuck-at faults).

In contrast, single-bit ECC errors in the data
arrays are detected and corrected on the fly as
the data returns to the processor core. No
cache scrubbing is performed, and the errant
line remains uncorrected in the cache. It’s pos-
sible for a second, unrelated, error to happen
to the same line, turning a single-bit ECC error
into a double-bit ECC error. The probability
of this event, however, is extremely small since
soft errors are relatively infrequent. The errant
line would most likely be evicted before it had
a chance to accumulate additional errors. The
processor will correct on the fly a cache line
with a single-bit ECC error as it is evicted to
the system memory (or to other processors).

Because of its large size, a sparse encoding
scheme protects the L3 cache state bits. In a
conventional encoding scheme, two bits are
used to encode the modified, exclusive,
shared, and invalid states of a cache line. The
Itanium processor uses four bits for this pur-
pose as shown in Table 2.

The modified state is encoded such that its
Hamming distance from the exclusive, shared,
and invalid states is three. On each access, the
L3 cache returns the state information and an
error indicator showing the integrity of the state
bits. On an error, the processor writes back a

63SEPTEMBER–OCTOBER 2000

Table 2. Itanium processor L3 cache state encoding,

error detection, and correction.

Single-bit error Processor corrects

Encoding State detected if: to the following state

1111 Modified Any of the state bits is zero Modified
0001 Exclusive Either none or two bits set Invalid
0010 Shared — —
0100 Invalid — —

line with bad modified state (that is, 1101) to
a line with clean modified state (that is, 1111)
and invalidates a line with other bad states.

Processor backside and system buses. The proces-
sor backside and system address as well as
command buses are parity protected. The sys-
tem and backside data buses have 64 and 128
bits, respectively. Eight ECC bits per 64 bits
of data protect these data buses. The ECC
logic on the system bus can detect 4-bit block
errors. A parity error in the address or com-
mand bus causes the processor to initiate a
hardware bus reset. A single-bit ECC error in
the data bus is corrected on the fly by the
processor hardware. A double-bit ECC error
in the data bus triggers a data-poisoning event.

X resources
To handle exceptions and interrupts, the

IA-64 architecture defines a set of interrup-
tion registers for holding critical processor
states. During exception or interrupt han-
dling, interrupts are masked and further
updates of these interruption registers are dis-
abled. The operating system is responsible for
ensuring that no exceptions occur. In this way,
the saved processor states’ integrity is guaran-
teed. However, since MCA cannot be masked,
an MCA that occurs during exception or
interrupt handling will corrupt critical proces-
sor states of the executing process. For these
reasons, the IA-64 architecture defines a set
of X resources3 to handle these instances.
These resources include a register set (X reg-
isters) for holding critical processor states and
a scratch register set for use by the PAL error
handler during error handling.

On an MCA, the X registers receive the
contents of the interruption registers. The
interruption registers in turn receive critical
states of the executing process. The X regis-
ters enable MCA handling when the proces-
sor is fielding another interrupt or exception.

Error containment
A critical, but often overlooked, aspect of

processor user features is error containment.
Error containment means that the processor
should never allow a detected error to get to
the system bus. A common industry error
containment strategy reboots the entire sys-
tem on any detected errors that hardware can-

not correct. While this strategy might be effec-
tive in desktop systems, it’s hardly desirable
for high-end servers. To maximize system
availability, the Itanium processor uses a more
refined strategy for error containment.

As the first line of defense, instructions with
single-bit errors detected by parity in the
instruction cache are never executed, as guar-
anteed by the processor design. Single-bit
errors in data detected in the L2 and L3 caches
will be corrected on the fly. This is instruc-
tion-level error containment.

Second, double-bit errors from the system
bus and the L2 cache (detected by ECC), or
single-bit errors in the L1 and L2 caches
(detected by parity) will signal an MCA before
the bad data is consumed. A data-poisoning
mechanism handles double-bit errors in data
from the system bus or the L2 cache that aren’t
immediately consumed by an instruction.
This is process-level error containment.

Third, single-bit errors in addresses detect-
ed in the cache tags involving dirty lines that
don’t require immediate error containment
(for example, during data load and store oper-
ations) will signal a global MCA. Assertion of
the global MCA pin provides an early error
indicator, letting the systems take proper
action, such as turning off all memory traffic
to the I/O regions and so on. The affected
cluster (or node) is then gracefully shut down.
This is cluster-level error containment.

Finally, single-bit errors in addresses detect-
ed in the cache tags involving dirty lines, or
in the TLBs requiring immediate error con-
tainment (for example, snoops hitting a dirty
line with a bad address) cause the processor to
assert the hardware bus reset pin. This is sys-
tem-level error containment.

Data poisoning
Because of the large main memory size,

double-bit ECC errors in the main memory
may propagate into the processors. Tradi-
tionally, double-bit ECC errors detected in
the main memory will cause the platform to
assert a global MCA, bringing down the sys-
tem.5 The Itanium processor implements an
error containment scheme called data poi-
soning. When a double-bit ECC error is
detected in data returned on the system bus,
the processor marks the data as bad (poisons
it) in the processor cache. Processes consum-

64

ITANIUM PROCESSOR

IEEE MICRO

ing poisoned data are terminated; the rest of
the system remains intact.

As an optimization, the processor also poi-
sons a cache line if it receives a hard-error
response on the system bus. This gives plat-
form designers additional flexibility in signal-
ing errors to the processor. A hard-error
response typically indicates platform errors
such as parity errors in the PCI bus.

Data poisoning takes place at a cache line
boundary by forcing a double-bit ECC error
in the entire cache line. Poisoned data propa-
gates among processors and memory agents.
The rules for handling a poisoned cache line
within a processor are as follows:

1. A load or fetch from a poisoned cache
line signals a local MCA.

2. A store to a poisoned cache line is
ignored. The line in the cache remains
unchanged and poisoned.

3. A snoop or eviction causes the processor to
write back the cache line with the double-
bit ECC error to the system bus and sig-
nals a corrected machine check interrupt.3

Implementing data poisoning adds signifi-
cant hardware complexity. The processor
implements three simplifications. First, the
cache line granularity data poisoning simpli-
fies the hardware poisoning logic. On a cache
line fill or eviction, data in a cache line are
moved between the bus queues and the L2
cache on a subcache line basis, taking multi-
ple cycles. However, the result of the double-
bit ECC error detection isn’t known until the
data are already stored in the cache line fill
buffer (in a fill) or the bus write-back queue
(in an eviction). Poisoning at a cache line
boundary means that on error detection the
logic doesn’t need to recall the errant data
chunk(s) and only needs to blindly set the data
poisoning bit for the entire cache line.

Next, the L1I, L1D, and the L3 caches
don’t participate in data poisoning. On the
way into the processor, the data are returned
from the bus queues to the processor core on
data loads. If a double-bit ECC error is detect-
ed, the L3 cache controller won’t write back
the line to the L3 cache but will invalidate it.
For the L1I and L1D caches, the local MCA
signaled by the processor, as required by Rule
1, lets the PAL error handler invalidate the

errant line. On the way out of the processor,
modified data in the L3 cache are evicted to
the bus queues. If a line has a double-bit ECC
error, a hardware bus reset is initiated. This is
acceptable because the probability of a dou-
ble-bit ECC error is negligible in the L3 cache.

Finally, no special double-bit ECC error pat-
tern is used to indicate the poisoned data inside
the L2 cache, in the bus queues, and on the sys-
tem bus. This enables passing, as is, a cache line
with a double-bit ECC error, without insert-
ing a special double-bit ECC error pattern.

Data poisoning requires platform cooper-
ation. Platforms that support data poisoning
must not initiate a hardware bus reset when
detecting double-bit ECC errors on proces-
sor-initiated memory read and write transac-
tions. The errant line should be returned to
the processor or written into the memory with
the double-bit ECC errors.

Error promotion
A challenge to the processor MCA imple-

mentation is the diverse types of platforms
and operating systems that the processor must
run. These platforms and operating systems
have different processor behavior expectations
on error detection. As an example, most plat-
forms want to maximize system reliability by
letting hardware correct detected single-bit
ECC errors. However, in fault-tolerant appli-
cations, where two processors are running in
lockstep, hardware correction will cause a
problem because the normal data return path
and the single-bit ECC correction path have
different timings. This will eventually cause
the processors to fall out of lockstep. For these
reasons, it’s actually preferable to promote a
hardware-correctable error to a global MCA.
External logic residing in the platform, observ-
ing the global MCA pin, may then take early
corrective action.

As another example, certain software atom-
ic events (such as accessing a platform error log
or configuration registers) are noninterruptible
even by an MCA. An MCA that occurs dur-
ing one of these atomic events may cause loss
of error containment because the processor or
platform may be in an inconsistent state. For
these reasons, during these events it’s impor-
tant to temporarily promote a local MCA into
a global MCA or a hardware bus reset.

These examples suggest that a certain level

65SEPTEMBER–OCTOBER 2000

of processor configurability is required. On
the Itanium processor, less severe errors may
be promoted to more severe ones via a con-
figuration model-specific register, manipulat-
ed via a defined PAL interface.3 However, to
simplify the hardware, only the following pro-
motion options are implemented:

• A hardware-correctable error may be pro-
moted to take a local MCA.

• A local MCA (including a promoted one
from a hardware-correctable error) may
be promoted to signal a global MCA.

• A global MCA (including a promoted
one from a local MCA) may be promot-
ed to take a hardware bus reset.

Availability features
The Itanium processor’s emphasis on sys-

tem availability is evidenced by its error con-
tainment strategy. Additional availability
features are also implemented on the processor.

Watchdog timer
The processor implements a 64-bit watch-

dog timer, the size of which roughly corre-
sponds to a time interval of eight seconds.
This timer measures the time elapsed between
two instructions that are retired and is reset
on every instruction retirement. On time-out,
the processor initiates a hardware bus reset,
breaking a potential system hang condition
where the system is not executing.

Two factors determine timer size. One is the
longest time an instruction may take to retire.
On an Itanium-processor-based platform, this
instruction is an uncacheable load to a slow
device on the ISA bus, which can take mil-
liseconds to complete. The other determining
factor is the highest frequency that the proces-
sor and its proliferation may run. A 64-bit
timer provides a good margin in both cases.

Error logging
The processor provides an extensive error

information logging capability. Each error log is
implemented as a model-specific register, acces-
sible via an internal processor bus by the PAL
error handler during the error-handling process.
Each error log consists of the following fields:

• A signaling field indicating whether a
corrected machine check interrupt, a

local MCA, a global MCA, or a hardware
bus reset is pending.

• A status field containing a valid bit, an
overflow bit, the physical address of the
offending operation (if physical address
logging is available), its status (hits or
misses in the cache), an error indicator
(error in the cache data or tag array), and
other related information.

• A control field controlling whether an
error is promoted.

The signaling and status fields are sticky, set
by the hardware and cleared only by the PAL
error handler. Either the system abstraction
layer (SAL) firmware6 or the operating system
may set the control field (via a PAL call), as
described previously. The hardware ensures
that the error log content is correct at all times,
under all pipeline conditions and microar-
chitectural corner cases. This has proven dif-
ficult to implement. On many occasions, to
simplify the hardware, the design team had to
settle for less information, resulting in fewer
errors that can be corrected.

As a further simplification, the Itanium
processor implements a log-first-error policy,
rather than logging the most severe error.
Later errors cause the processor to set an over-
flow bit if there’s a chance of losing critical
information. This causes the PAL error han-
dler to return a nonrecoverable error indicator
to the SAL and the operating system.

Corrected errors notification
An effective way of improving system

availability is to provide important error
information early to the system maintenance
staff. Early notification enables corrective
action before a correctable error becomes
uncorrectable. As an example, if the proces-
sor is experiencing an unusually high num-
ber of correctable errors, it may be prudent
to preemptively replace the processor, or the
entire processor board, if the number of
errors exceeds an empirical threshold. For
this reason, the processor and the PAL error
handler send a corrected machine check
interrupt on all hardware- or PAL-corrected
errors. This relieves the operating system of
the burden of polling the error logs periodi-
cally, slowing the system response time. The
corrected machine check interrupt is an IA-

66

ITANIUM PROCESSOR

IEEE MICRO

64 architecture interrupt and is typically
given a low priority.

Processor MCA architecture
Perhaps the most notable enhancement to

the IA-64 MCA architecture is handling
errors in the PAL error handler, invoked via
an MCA. The Itanium processor implements
all MCA events as asynchronous fault events
so that traps that happen at the same time as
the MCAs are not lost. An MCA may be sig-
naled either locally or globally, depending on
the severity of the errors.

In a local MCA, only the local processor
detecting the error enters the PAL error han-
dler. The remote processors aren’t affected.
No external pins are asserted and no external
special cycle issued on the system bus. The
PAL error handler, residing in an uncacheable
space that is defined in the architecture, runs
in physical mode with address translation
turned off. Running from an uncacheable
space in physical mode with address transla-
tion turned off ensures that the TLBs and
caches are not used during the PAL error
handling stage (SAL or operating system error
handling may turn on translation and run in
cacheable space). Because it is defined in the
architecture, the uncacheable space ensures
that the PAL error handler is immediately
available after reset.

In a global MCA, all processors on the same
system bus (and other system buses, depend-
ing on the system configuration) enter the PAL
error handler. The local processor asserts the
global MCA pin. All other processors on the
same system bus (or other system buses) will
enter the PAL error handler.

A hardware bus reset causes a similar sys-
tem response as when a global MCA occurs;
all processors in the system will enter the PAL
error handler. Additionally, assertion of the
hardware bus reset pin clears the following
states in the processors:

• certain relevant microarchitectural states;
however, all architectural states are pre-
served including the general and floating-
point register files, the caches, and the
TLBs;

• all outstanding transactions in the mem-
ory and bus queues, including the state
tracking logic in the bus unit; and

• all internal state machines, including the
lock state machines in the bus unit.

Clearing these states ensures forward progress
so that after the assertion of the hardware bus
reset pin, the first processor instruction fetch
will be issued to the PAL error handler.

Error handling flow
Figure 2 (next page) shows a simplified

hardware and PAL error-handling flow on the
Itanium processor. Hardware-correctable
errors are corrected silently and the offending
process runs uninterrupted. An MCA is only
signaled for errors that require PAL error han-
dler intervention.

Upon entry, the PAL error handler per-
forms a queue-draining operation (by allow-
ing all outstanding transactions in the
memory and bus queues to complete) to quiet
the system before attempting any error cor-
rection. The handler then performs an initial
error analysis and corrects as many errors as
possible. SAL or operating system code is
responsible for a more detailed analysis, cor-
recting any platform errors and terminating
the offending process as needed.

Before exit, the PAL error handler checks if
another MCA has occurred during the error-
handling process.

Multiple or nested MCAs
Handling multiple MCAs is always a challenge

for any MCA architecture. Multiple MCAs are
a result of either the same error detected multi-
ple times or different errors detected at the same
time. The Itanium processor uses a simple over-
flow bit in the error log to handle these cases. This
bit is set whenever critical error information need-
ed for error handling (usually the physical address
of the offending instruction) is lost. All errors that
occur before the queue-draining operation are
handled serially if the overflow bit is clear. If the
overflow bit is set, the PAL error handler returns
a nonrecoverable indicator to the SAL or oper-
ating system. This causes a cluster or systemwide
reset, depending on system configuration and
the capability of the operating system.

An error that occurs after the queue-drain-
ing operation is considered a nested MCA. To
handle this case, the PAL error handler clears
all the MCA pending bits in the processor
upon entry. If another MCA is detected after

67SEPTEMBER–OCTOBER 2000

this point, the processor error-logging logic
will set the MCA pending bit. This MCA
won’t be handled immediately since MCAs
are masked during the error-handling process.

It’s an operating system policy to determine
whether to handle nested MCAs. A less-capa-
ble operating system won’t enable MCAs dur-
ing the error-handling process. If a nested

MCA occurs, the MCA pending bit is set and
remains set on exit from the handler. This is
considered a nonrecoverable error that will be
reported once MCAs are enabled again.

A more-capable operating system that han-
dles nested MCAs may enable an MCA after it
has logged the error information in the platform
and cleared the error logs in the processor, as

68

ITANIUM PROCESSOR

IEEE MICRO

Need
hardware error
containment?

Noncorrectable
error?

Signal local or global MCA

Drain all queues
and clear MCA pending bit

Hardware
correctable?

Error detected

Correct error

Hardware action

PAL action

SAL/operating
system action

PAL correctable
errors?

Any
platform or operating system

correctable errors?

Error
handling successful?

Send corrected
machine

check interrupt

Correct error

Send corrected
machine

check interrupt

Resume

Resume

Bus reset

Send nonrecoverable
error indicator to

SAL/operating system

Send nonrecoverable
error indicator to

SAL/operating system

SAL corrects error:
operating system

terminates offending
process as needed

Y

Y

N

Y

Y

N

N

N

N

Y

Y

N

Log error

Figure 2. Simplified hardware and PAL error-handling flow.

shown in Figure 3. In this way, nested MCAs are
also handled serially, and all MCA pending bits
will stay cleared on exiting from the handler. The
processor MCA architecture enables this han-
dling in a transparent and elegant manner.

Handling platform errors
The Itanium processor MCA architecture

works seamlessly with the platform-error han-
dling firmware in the SAL layer. Platform
errors may be signaled to the processor via the
global MCA pin, the hardware bus reset pin,
a double-bit ECC data error for read opera-
tions, or a hard-error response for read and
write operations. In all cases, the processor sig-
nals an MCA and transfers control to the PAL
error handler, which, in turn, hands off con-
trol to the SAL error handler via an architec-
tural interface.3 In general, the SAL
error-handling flow is platform specific and
therefore not covered in this article.

High availability and reliability are easily
two of the most important system attrib-

utes in the high-end server space. With its exten-
sive fault coverage and hardware and firmware
support, the Itanium processor provides an
excellent basic set of high availability and relia-
bility features for future IA-64 processors to
build upon. Work is already well under way to
collect data and measure the effectiveness of
these features on the Itanium processor. MICRO

Acknowledgments
Many people have contributed to the con-

cept, implementation, and validation of the Ita-
nium processor architecture and the PAL error
handler. In particular, I would like to thank the
following individuals: Valentine Anders and
Jim Hays from Hewlett-Packard and Gary
Hammond, John Crawford, Rad Mahalikudi,

Kiran Desai, Amy O’Donnell, Susan Mar,
Suresh Marisetty, and Mani Ayyar from Intel.

References
1. Intel IA-64 Architecture Software Develop-

er’s Manual, Vol. 1, Intel, Santa Clara, Calif.,
Order No. 245317-001, Jan. 2000.

2. P. Liden et al., “On Latching Probability of
Particle Induced Transients in Combination-
al Networks,” Proc. Symp. Fault Tolerant
Computing (FTCS-24), IEEE Press, Piscat-
away, N.J., 1994, pp. 340-349.

3. Intel IA-64 Architecture Software Develop-
er’s Manual, Vol. 2, Intel, Santa Clara, Order
No. 245318-001, Jan. 2000.

4. C.L. Chen and M.Y. Hsiao, “Error Correcting
Codes for Semiconductor Memory Appli-
cations: A State-of-the-Art Review,” IBM J.
Research and Development, Vol. 28, No. 2,
Mar. 1984.

5. Intel 450NX PCIset Datasheet, Rev. 1.3,
Intel, Mar. 1999.

6. IA-64 System Abstract Layer Specification,
Intel, Order No. 245359-001, Jan. 2000.

Nhon Quach is the manager of the IA-64 sys-
tem architecture at Intel. Quach received a PhD
in computer architecture from Stanford Uni-
versity, an MS degree in silicon processing and
device physics from MIT, and a BS degree in
computer engineering from the University of
Texas at Austin. His technical interests include
computer system architecture, fault-tolerant
computing, and advanced microarchitecture
techniques. He has written more than 20 pub-
lications and holds more than 20 patents.

Direct comments and questions about this
article to Nhon Quach, Intel, 2200 Mission
College Blvd., Santa Clara, CA 95054;
nhon.quach@intel.com.

69SEPTEMBER–OCTOBER 2000

Error
logged

Drain
queues

Hand off
to SAL

Clear
error logs

Resume

Error
detected

Enter PAL
handler

Clear MCA
pending bit

Get error
info

MCA may be
reenabled

Handled by overflow bit Handled by MCA pending bits

Figure 3. Handling multiple and nested MCAs using overflow and MCA pending bits.

