
Checkpointing And Checkpointing And
Rollback Recovery Rollback Recovery
Techniques For A Techniques For A

Distributed SystemDistributed System

Preetha NatesanPreetha Natesan

Presentation OverviewPresentation Overview
Distributed System
Checkpointing Concepts
Message Logging
Rollback Recovery
Quasi-Synchronous Algorithm (QSA)

Checkpointing
Basic Recovery

Message Classification
Comprehensive Recovery in QSA
Conclusion

Distributed SystemDistributed System
Multiple processes
States of processes depend on one another due
to inter-process communication

Messages are sent/received between processes

P1

P2

P3
--Timeline -->t=0

M1

M2

M3 M4 M5

M6

M7

Checkpointing ConceptsCheckpointing Concepts
Definition

saving of program state, usually to a stable storage
useful for reconstructing at a later time

Classification
ASynchronous

checkpoints taken periodically w/o coordination
allows maximum process autonomy
low checkpointing overhead
suffers from Domino Effect

Synchronous
processes synchronize their checkpointing activities
globally consistent set of checkpoints maintained
Domino Effect free
no process autonomy
performance degradation

Communication Induced or Quasi-Synchronous
Checkpointing activity is partially synchronized
Easeness and low overhead of asynchronous checkpointing
Recovery time advantages of synchronous checkpointing

Message LoggingMessage Logging
What is it?

Generally used along with checkpointing
Restores the system to a consistent state in case of a failure

Classification
Pessimistic

Received messages are stored in stable storage before
being processed
Helps faster recovery
Performance Degradation

Optimistic
Received messages are stored in volatile storage ;
periodically flushed to stable storage during idle time
Messages stored in volatile storage lost during failure
This can cause repeated rollback

Rollback RecoveryRollback Recovery
Definition

Finding a consistent global snapshot from
previously saved checkpoints of the processes and
restarting from that state

Goal of a good rollback recovery technique
Minimize the computation due to rollback

Some salient featuresSome salient features
Checkpointing provides the backbone for :

rollback recovery (fault tolerance)
playback debugging
process migration
job swapping

Checkpointing and rollback recovery enable a system to :
 tolerate failures by periodically saving the entire state and
rolling back to the saved state if an error is detected

Rollback recovery using checkpointing is :
a cost effective method of proving fault tolerance against
transient and intermittent faults

System ModelSystem Model

A distributed system consists of N sequential
processes [P1, P2, P3....PN].
The concurrent execution of all processes on a
network of processors is called a distributed
computation.
Message passing is the only way for processes to
communicate with one another.
No assumption is made on the FIFO nature of
the channel.
The local state of a process saved in the stable
storage is called a checkpoint of the process.

Each Checkpoint (C) of a process is assigned a unique sequence
number -denoted by C.sn.
Each message (M) is piggybacked with the sequence number(M.sn) of
the latest checkpoint of the process sending it.
The checkpoint with sequence number m of Process Pi is denoted by
Ci,m.
Basic checkpoint

Independently taken by a process

Forced checkpoint
Checkpoint triggered by a message reception

Consistent Global Checkpoint
A set of local checkpoints. one from each process is called a consistent
global checkpoint if none of them is causally dependent on any other
checkpoint in the set

Definitions and NotationsDefinitions and Notations

Domino EffectDomino Effect

P1

P2 C2,k+2

C1,k C1,k+1

C2,k C2,k+1

C1,k+2
X

Fault

The fault causes process P1 to roll back to
checkpoint C1,k and process P2 to roll back to
checkpoint C2,k

A Quasi-Synchronous A Quasi-Synchronous
Checkpointing Algorithm (QSA)Checkpointing Algorithm (QSA)
Each process Pi has two variables

SN.i - seq. # of latest checkpoint taken by Pi; initialized to 0
Next.i - seq # to be assigned to the next basic checkpoint of Pi; initialized to 1

Next.i is incremented by Pi every x time units
When it is time to take a basic checkpoint

If Next.i > SN.i
Take checkpoint Ci; /* Basic checkpoint */
Ci.sn = Next.i; SN.i = Ci.sn

else
Skip the checkpoint

When Pi sends a message M
M.sn = SN.i; /* piggyback M with sequence number of current checkpoint */
send(M)

When process Pj receives a message M from Pi,
If M.sn > SN.j

Take checkpoint Cj; /* Forced checkpoint */
Cj.sn = M.sn; SN.j = Cj.sn

Process the message

QSA ExampleQSA Example

---Time-->

Legend
- Forced chkpt- Basic chkpt

- Schd. basic
 chkpt

P1

P3

P2

1 2 3 40 5

M2

M3

M1

M4M0

2 3 4 5

43

* The numbers in the chart are the chkpt seq. numbers

* When its time for a process to take a basic chkpt, it takes a basic
chkpt only if it did not already take a forced chkpt with the seq. #
that is expected to be assigned to the next basic chkpt; otherwise
it skips taking the basic chkpt.

Basic Recovery AlgorithmBasic Recovery Algorithm
Assumptions

If a process fails, then no other process fails until the system is restored to a fully
consistent state
The recovery algorithm is fully asynchronous

Each process Pi has two more variables
inc.i - Incarnation number of process Pi ; initialized to 0
rec_line.i - Recovery line number; initialized to 0

When Pi sends message M
M.rec_line = rec_line.i /* piggy back M with current recovery line number */
M.inc = inc.i /* piggy back M with current incarnation number */

When process Pj receives message M
If M.inc > inc.j /* possible if M was sent by a process that has */

rec_line.j = M.rec_line; /* already rolled back based on a failure; */
inc.j =M.inc; /* in that case, do not process M; Roll_back(Pj) */
Roll_back(Pj);

Basic Recovery Algorithm (contd)Basic Recovery Algorithm (contd)
When a process Pi fails

Restore the latest checkpoint
Increment inc.i ; rec_line.i = SN.i
send roll_back(inc.i,rec_line.i) to all other processes
continue normally

When process Pj receives roll_back(inc.i,rec_line.i) from Pi
If inc.i > inc.j /* otherwise, if inc.i = inc.j, Pj is aware of this */

inc.j = inc.i /* recovery through a msg sent by some other */
rec_line.j = rec_line.i /* process that has already rolled back; hence, */
Roll_back(Pj) /* no need for roll back in that case */

continue normally

Procedure Roll_back(Pj)
If rec_line.j > SN.j

No need to roll back;
take a new checkpoint which can be part of the recovery line

else
roll back to the earliest checkpoint C with C.sn >= rec_line.j
restore checkpoint C
Delete all the checkpoints beyond C

Basic Recovery Algorithm Basic Recovery Algorithm
- An example- An example

P3 Fails here
X

Consider failure of P3 , as shown below
Steps taken by P3

increment inc.3 to 1 /* it was initially zero */
set rec_line.3 to 5 /* the seq. # of last checkpoint */
roll back to latest checkpoint C3,5

send rollback(1,5) to processors P1 and P2

Steps taken by P2

roll back to C2,5 /* since it is the earliest chkpt whose seq. # >=5 */

Steps taken by P1
Take checkpoint (C1,5) of the current state /* since it does not have chkpt whose seq. #>=5 */
Assign seq # 5 to the checkpoint taken

Thus, {C1,5, C2,5, C3,5} will be the recovery line for this failure
Note: Seq # of all the checkpoints in the recovery line is equal. In general, that need not be the
case.P1

P3

P2

1 2 3 40 5

M2

M3

M1

M4M0

2 3 4 5

43
C1,5

Recovery Line

Basic Recovery Algorithm Basic Recovery Algorithm
- Domino Effect Free - Domino Effect Free

P1

P2 C2,k+2

C1,k C1,k+1 C1,k+3

C2,k C2,k+1 C2,k+3

C1,k+2
XFault

Recovery Line

The fault causes process P1 to roll back
to checkpoint C1,k+3 and process P2 to roll
back to checkpoint C2,k+3

Basic Recovery AlgorithmBasic Recovery Algorithm
- Analysis- Analysis

This algorithm guarantees that processes roll back to a consistent global
checkpoint in the event of a failure
 As a result of rollback,

the reception of some messages might be undone while the corresponding
send event might not have been undone, (message M5 in the figure)

So, even though the processes roll back to a consistent global checkpoint,
it may not leave the system in a consistent state

P3 Fails here

P1

P3

P2

1 2 3 40 5

M2

M3

M1

M4M0

2 3 4 5

43
C1,5

Recovery Line

M5

X

Comprehensive RecoveryComprehensive Recovery
Modify the Basic Recovery algorithm to restore the
system to a consistent state after rolling back the
processes to a consistent global checkpoint
Rollbacks could result in undoing the send and/or receive
events of many messages
This may result in several abnormal situations
These should be dealt correctly in order to restore the
system to a consistent state
Different types of messages need to be handled

Message ClassificationMessage Classification
Lost Messages

Messages whose send events are not undone but whose receive events are
undone due to rollback
Arises when a process rolls back to a chkpt prior to the reception of the
msg while the sender does not rollback to a chkpt prior to the send event
In the figure, M1 is a lost message

P2

P3

P1

P4

X
Failure

M1 M2

M5M3

M4

Recovery Line

Message ClassificationMessage Classification
Delayed Messages

Messages that were sent before the rollback whose receive events were
not recorded
Arises when messages were received while the receiving process was down
or received after the rollback of the receiving process
In the figure, M2 and M5 are delayed messages

P2

P3

P1

P4

X
Failure

M1 M2

M5M3

M4

Recovery Line

Message ClassificationMessage Classification
Duplicate Messages

Happens due to message logging and replaying them during recovery
In the figure, message M4 was sent and received before the rollback
Due to rollback, P4 undoes the receive of M4 and P3 undoes the send of M4
If P4 replays M4, then M4 will be a duplicate message since P3 will resend M4

P2

P3

P1

P4

X
Failure

M1 M2

M5M3

M4

Recovery Line

Message ClassificationMessage Classification

Orphan Messages
Messages which have been received and whose send has been undone due to
rollback, but whose receive has not been undone
Orphan messages do not arise if processes roll back to a consistent global
checkpoint
So, the Basic Recovery Algorithm does not have problems with orphan msgs
In the figure, message M is an orphan message

P1

P2 XFailure

M

Comprehensive RecoveryComprehensive Recovery
- Message Handling- Message Handling
Goal

Identify the minimal set of messages that need to be
logged to and replayed from the message log

Proposed Approach
Need to handle only delayed messages that are
received after a failed process recovers, lost
messages and duplicate messages
This is accomplished by allowing processes to

log received messages selectively and
replay logged messages selectively after a rollback

Comprehensive RecoveryComprehensive Recovery
- Message Handling : Replay Rule- Message Handling : Replay Rule
When a process Pj rolls back to a checkpoint C, it
replays a message M from its message log if and only
if M was received after the checkpoint C was taken
and M.sn < rec_line.j

This means that Pj must replay all those messages whose
receive was undone but whose send will not be undone
In other words, Pj must replay only those messages that
originated to the left of the current recovery line and
delivered to the right of the current recovery line

Comprehensive RecoveryComprehensive Recovery
- Message Handling : Logging Rule- Message Handling : Logging Rule
Suppose Pj receives a message M from Pi.
If Pj is replaying messages as a result of a rollback

Buffer message M
Process it only after finishing replaying

Otherwise
If M is a delayed message (M.inc < inc.j) , process it only
if M.sn < rec_line.j; else discard message M
Log the message M before processing it if

M.inc < inc.j && M.sn < rec_line.j OR
M.inc = inc.j && M.sn < SN.j
If M.inc > inc.j, then from the algorithm we set
inc.j = M.inc and Pj rollbacks. The message is then
handled as in the previous case

QSA QSA
- Merits- Merits
The QSA checkpointing algorithm

has the easness of asynchronous checkpointing and the
advantages of synchronous checkpointing
guarantees the existence and progression of a recovery line
consistent with the latest checkpoint of each process
has no additional control message overhead and it has nominal
checkpointing overhead

The QSA comprehensive recovery algorithm
uses the recovery line to restore the system to a consistent
state asynchronously, in the case of a single process failure
has a low recovery overhead since messages are logged and
replayed selectively
does not involve an explicit synchronization overhead
does not suffer from domino-effect

ConclusionConclusion
The talk focussed on checkpointing and recovery for a
distributed computing system
Gave an overview of the various concepts

Checkpointing, Rollback Recovery and Message logging

Presented the Quasi-Synchronous Algorithm consisting of
Checkpointing
Basic Recovery
Comprehensive Recovery

Showed examples to explain the QSA algorithm
Analyzed the different types of messages and how the
comprehensive recovery technique handled them

ReferencesReferences
D.Mannivannan and M. Singhal. "A Low-Overhead Recovery
Technique Using Quasi-Synchronous Checkpointing". Proc. IEEE
16th Int'l Conf. Distributed Computing Systems, pp 100-107
HongKong, May1996

F.Quaglia, B.Ciciani and R.Baldoni. "A Checkpointing-Recovery
Scheme for Domino-Free Distributed Systems". IEEE Annual
Workshop on Fault -Tolerant Parallel and Distributed Systems,
Geneva, April 1997

D.Mannivannan and M. Singhal. "Quasi-Synchronous Checkpointing:
Models, Charasterization, abd Classification". IEE Transactions on
Parallel and Distributed Systems, Vol.10, No. 7, July 1999.

Thank You

