
Commercial Fault Tolerance:
A Tale of Two Systems

Wendy Bartlett, Member, IEEE Computer Society, and Lisa Spainhower, Member, IEEE

Abstract—This paper compares and contrasts the design philosophies and implementations of two computer system families: the IBM

S/360 and its evolution to the current zSeries line, and the Tandem (now HP) NonStop1 Server. Both systems have a long history; the

initial IBM S/360 machines were shipped in 1964, and the Tandem NonStop System was first shipped in 1976. They were aimed at

similar markets, what would today be called enterprise-class applications. The requirement for the original S/360 line was for very high

availability; the requirement for the NonStop platform was for single fault tolerance against unplanned outages. Since their initial

shipments, availability expectations for both platforms have continued to rise and the system designers and developers have been

challenged to keep up. There were and still are many similarities in the design philosophies of the two lines, including the use of

redundant components and extensive error checking. The primary difference is that the S/360-zSeries focus has been on localized

retry and restore to keep processors functioning as long as possible, while the NonStop developers have based systems on a loosely

coupled multiprocessor design that supports a “fail-fast” philosophy implemented through a combination of hardware and software,

with workload being actively taken over by another resource when one fails.

Index Terms—Computer systems implementation, fault tolerance, high availability.

�

1 INTRODUCTION

SINCE the 1960s, there have been a number of commercial
systems introduced with a specific focus on high

availability or fault tolerance. This paper describes the
design points and evolution of two of them—IBM’s S/360
and its evolution to the zSeries, and Tandem’s (now HP’s)
NonStop systems. Other well-known systems in this space
include Stratus and Marathon.

For enterprise customers, definitions of what constitutes

“availability” vary and may factor in not only the ability to

provide a service but also acceptable response time and

whether the results are accurate and consistent. Application

availability requirements also vary tremendously, including

different applications for the same customer. The need for

availability may be “7 x 24 x forever” (e.g., ATM/POS

applications and manufacturing floors for three-shift opera-

tions), or it may be for 100 percent availability within given

timeframes (e.g., stock markets), or it may allow for

infrequent, short disruptions (many applications). A frame-

work for describing levels of availability is shown in Fig. 1.
Both system families described in this paper were

originally targeted toward the High Availability/Fault

Tolerant quadrant and since then have evolved toward

Continuous Availability. While the goal has been the same

in both cases, their paths toward achieving it have been

different. The details appear in later sections, but Table 1

gives a high-level comparison of their approaches.

2 INITIAL TARGET AUDIENCES/APPLICATIONS FOR

THE SYSTEMS

Both systems serve commercial business audiences for
applications that require very high to continuous avail-
ability. From the beginning, IBM mainframes were de-
signed with general-purpose business processing in mind.
In the mid-1960s, most real-time business processes were
manual and System/360 mainframes were used primarily
for background jobs and overnight batch processing. The
primary availability goals were to detect failures quickly
enough to preserve data integrity and to locate and repair
those failures quickly enough to not interfere with getting
the tasks done by their deadlines. Over time, mainframes
were used for more and more of the real-time work,
although it tended to be local with well-defined hours of
usage during the day and days during the week. This
increased the requirements to lessen the frequency and
impact of failures. As businesses became more global and
moved to 24 x 7 operations, the demand for continuous
operation became common. Limiting planned downtime
required for change and upgrade became an increasingly
important goal. IBM mainframes responded to each of these
evolutionary needs for business computing.

The original Tandem NonStop systems were targeted at
a few specific applications that had very high availability
requirements, including back-end support for Automated
Teller Machines (ATMs) or Point Of Sale (POS) devices
and reliable message switching for applications such as
credit card authorization. The expectation at the time for
ATMs was that the infrastructure might be taken down
for service at designated times (typically, 2:00-6:00 a.m. on
Sundays) but otherwise was expected to supply 100 per-
cent overall availability, so the emphasis was on fault
tolerance rather than continuous operations. Individual
machines might fail, but whole sites should not be

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004 87

. W. Bartlett is with Hewlett Packard, 19333 Vallco Parkway MS 4421
Cupertino, CA 95014. E-mail: wendy.bartlett@hp.com.

. L. Spainhower is with IBM, 2455 South Road, Mail Station P314,
Poughkeepsie, NY 12601.
E-mail: lisa@us.ibm.com.

Manuscript received 10 June 2004; accepted 20 Aug. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0084-0604.

1545-5971/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

unavailable. Typically, a single site such as a bank branch
would have two ATMs, connected via two different
networks to two different systems, or at least to two
different processors in the same system. NonStop servers
soon moved into other financial markets such as stock
exchanges and then into the telecommunications arena—
not as switch replacements but for high-availability off-
switch functions such as collection of call data records and
billing. Use in other markets, including manufacturing
shop floors, emergency 911 services, retail, and health
care, followed shortly thereafter.

3 INITIAL FAULT TOLERANCE PHILOSOPHIES

3.1 zSeries

There was partial, but not complete, overlap in the original

design principles for the two systems. Both focused on

providing fault tolerance through duplicate components

and paths. They also emphasized rapid error detection, as

data integrity was and is a key requirement in their markets.
Three of the System/360 founding concepts are specific

to dependability:

1. “It must be possible and straightforward to assemble
systems with redundant I/O, storages, and CPUs so
that the system can operate when modules fail.

2. As CPUs become increasingly reliable, built-in
thorough checking against hardware malfunction is
imperative for all systems, regardless of application.

3. Since the largest servicing problem is diagnosis of
malfunction, built-in hardware fault-locating aids
are essential to reduce downtimes. Furthermore,
identification of individual malfunctions and of
individual invalidities in program syntax would
have to be provided” [1].

These concepts have come to be embodied as three

prioritized principles on how to react to faults:

1. Ensure system integrity.
2. Provide uninterrupted applications.
3. Repair without disruption.

88 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

Fig. 1. Availability dimensions.

TABLE 1
System Comparison

The zSeries, like its System/360-390 standalone main-
frame predecessors, is designed to maximize hardware
resource utilization during normal, fault-free operation,
retry and recover locally when failures are detected, and
continue operation without interrupting the ongoing
applications. System packaging facilitates online mainte-
nance of hardware components. Firmware and system
software are designed to allow updates concurrent with
normal operation in most cases. For well-tested software,
clusters of zSeries mainframes, Parallel Sysplex, can be
configured for no single point of failure in hardware or
software. Maintenance, for repair or upgrade, can be
performed online as far as the application is concerned.

Ensuring system integrity is paramount, even if applica-
tion disruption is required in order to preserve it. These
design principles apply equally well to the NonStop line,
but its implementation philosophy is somewhat different.

3.2 NonStop Server

NonStop systems always have been designed to keep
properly designed applications running after a single
failure of any kind, to support online repair and reintegra-
tion of hardware components, and to preserve data
integrity by preventing silent data corruption. For hard-
ware, these goals have been met with a loosely coupled
design based on multiple modules with multiple inter-
connections among them. The modularity helps to delineate
fault containment zones and facilitate online repair.
Individual modules are designed for ease of maintenance,
in order to minimize repair time and reduce opportunities
for service-induced failures. Fault detection is built-in to
provide “fail-fast” capability to detect errors and isolate the
offending hardware from the rest of the system. In contrast
to most architectures, the software is an equal partner to the
hardware in implementing fault tolerance and preservation
of data integrity. The operating system provides its own
layer of fault detection and fail-fast response, and supplies
the infrastructure that allows applications to survive single
processor failures. For a more detailed overview of the
NonStop fault tolerance philosophy, see [2].

4 DESIGN PRINCIPLES

Although they use different system recovery designs, both
HP and IBM mainframes rely on near-instantaneous error
detection. Whether the aim is to fail fast and rapidly switch-
over or to transparently retry and recover locally, it is
imperative that the scope of any faulty operation be strictly
contained.

4.1 zSeries

There has been a steady advancement in the fault tolerant
characteristics of IBM mainframes in the 40 years since
System/360 was introduced [3]. As previously mentioned,
the goal was and is to meet the requirements of general
purpose business processing. System/360 was designed
with robust error checking and was the first commercial
computer to include Error Correction Code (ECC) in
memory. Early system requirements were to reduce down-
time by improving diagnosis. In the 1960s, computer
downtime could be easily masked from customers and

clients. Much of the computer workload was overnight
batch and businesses depended on manual fall-back
methods to continue processing bills, invoices, and service
requests during downtime.

In the 1970s, designers improved mainframe fault
tolerance with recovery from transient failures and in-
creased the ability to mask hard failures with graceful
degradation. For a specialized class of applications, S/370
Extended Recovery Facility was developed to permit one
mainframe to monitor another and to assume its workload
upon detection of a failure.

In the 1980s and early 1990s, as more and more business
applications, particularly online transaction processing
(OLTP), started to run 24 x 7, continuous availability grew
as a mainframe requirement. To meet the demand, one
major change was that online repair capabilities, formerly
found only on multiprocessors, were greatly enhanced for
all IBM mainframes. Initially, support subsystems—power,
cooling, service processor—were either duplicated or
designed to be noncritical to the ongoing processing of
the computer. Later, those functional elements replicated
for higher performance, like CPUs and I/O channels, were
designed so that an operational element could take over in a
transparent fashion for one that had failed. Increasingly,
redundant elements were packaged so that they could be
removed, replaced, and restarted without interrupting
processing. Another type of online repair, electronic
sparing, was also introduced. Mean time to application
crash increased to 10 years with these enhancements.

The mid-1990s System/390 semiconductor technology
transition from Emitter Coupled Logic (ECL) to Comple-
mentary Metal Oxide Semiconductor (CMOS) began a
new evolution of fault tolerant design [4]. Fault tolerant
enhancements were added with each new generation of
CMOS, and today’s zSeries has the most extensive
detection and recovery in the mainframe history, as well
as mean time to hardware-caused application crash in
excess of 30 years.

Today, the zSeries memory hierarchy uses store-through
(write-through) cache design, spare elements, and Error
Correction Codes (ECC) for data redundancy [5]. Pending
instruction, results are kept in both a store-through
microprocessor cache (L1) and an ECC-protected store
buffer and completed results are immediately stored into
L2. L1 data is thus always replicated, allowing byte parity
to be sufficient within the cache. A transient L1 failure is
recovered by CPU instruction retry. For a permanent
failure, depending on the scope, a cache line or quarter-
cache delete is performed dynamically. A deleted line may
be restored with a spare line at the next power on. Shared
Level 2 (L2) cache is protected by ECC. Permanent faults in
L2 that might result in an uncorrectable data error can be
avoided by using a cache delete capability. Faulty locations
either in the data array or in the address directory can be
dynamically marked as invalid and a spare line can be
substituted for the failed one. Each main memory (L3)
array chip contributes one bit to an ECC word, so a (72,64)
SEC/DED code can protect the system from catastrophic
failures due to any single array chip failure. Automatic
online repair of faulty DRAMs is done using built-in spare

BARTLETT AND SPAINHOWER: COMMERCIAL FAULT TOLERANCE: A TALE OF TWO SYSTEMS 89

chips. Counts of correctable errors are maintained on a per
chip basis. When a threshold is exceeded, the data from the
overthreshold chip is dynamically transferred to an error-
free spare chip.

The I/O subsystem exploits the redundant paths
between all devices and main memory to minimize the
scope of any failures [6]. All paths are normally active and
are used to enhance performance as well as to provide
backup for one another if one should fail. The I/O channel
adapters perform direct memory access with robust
memory protection on behalf of I/O devices such as disk
and tape storage, network communications, and server-to-
server cluster (Parallel Sysplex) services. They prevent I/O
devices from unauthorized memory read operations and
from memory write operations into arbitrary memory
locations. I/O channel adapters also provide error isolation
by preventing the propagation of interface errors into the
system. The bulk of the I/O subsystem hardware is
packaged into various circuit cards that provide many
different I/O interfaces and most of these cards can be
concurrently replaced. Each I/O card position has an
interface that controls the soft switch on the card. Before
an I/O card is removed, the soft switch is deactivated
causing the power on the card to drop. After a card is
inserted, the soft switch is activated and the power to the
card is turned on. To reduce human errors during
concurrent card replacement, a group of LED indicators,
one for each card position, is used to positively identify the
card to be replaced.

To meet mainframe availability requirements, the power
and cooling subsystem is designed with no single points of
failure and concurrent repair capability of virtually all
components.

4.2 NonStop Server

The Tandem NonStop system shown in Fig. 2, introduced in
1976, consisted of two to 16 independent processors
connected by a pair of interprocessor buses collectively
referred to as the Dynabus. Each processor had its own
memory and ran its own copy of the operating system. Each
processor also had an I/O bus. Each dual-ported I/O
controller was connected to two processors’ I/O buses, and
had internal logic that selected which port was currently the

primary path. If a processor or its I/O bus were to fail, the
controllers whose primary paths were currently configured
to use that I/O bus would switch ownership to their backup
paths. Controller configuration was flexible enough that the
workload of a failing processor could be spread over
multiple surviving processors rather than all being taken
over by a single processor.

The general design principle was that there be at least
two of everything, including power supplies and fans as
well as the more obvious processors, controllers, and
peripherals. Dual-ported controllers and dual-ported per-
ipherals provided four paths to each device. For disks, the
use of host-based RAID-1 mirrored pairs of drives provided
eight paths to the data and offered improved data integrity.

There were several special requirements on the hardware
design. The first was that the Dynabus interfaces had to
protect against a single processor failing in a way that
disabled both buses or induced errors on both buses when
power was removed from the processor module. The
second was that power be managed in a way that allowed
a power supply failure to be tolerated. The third was that
hot insertion of boards into powered slots be supported,
which enabled both online repair and online expansion.
Battery backup, which preserved memory contents and
supported power-fail restart, was standard [7]. Online
repair was designed in for all hardware components,
including power supplies and fans.

Beyond those requirements, there was a general need for
extensive error checking using appropriate techniques such
as parity, parity prediction, ECC, self-checking, and check-
sums. Controllers had their own fail-fast requirements to
not corrupt data and, if possible, make available diagnostic
information on the failure. End-to-end checksums were
generated at the host and written to disk along with the
data, with the checksum being recalculated and compared
when the data was read back. The hardware was, in a sense,
fault-intolerant—it was designed to fail quickly and cleanly
at the first sign of a nonrecoverable error.

The system was architected to maximize useful, active
modules and minimize the existence of “redundant,”
inactive modules, both for cost reasons and to prevent the
accumulation of undetected, latent errors. This maximiza-
tion was primarily the responsibility of the operating
system software. As examples, processes were run in all
processors—there were no “standby” processors; the
message system used both paths of the Dynabus; and the
disk process issued reads against both halves of the mirror
(which also improved read performance).

Both the hardware and the software were optimized to
support the message-based operating system design, in-
cluding microcode-level support for sending and receiving
messages. The choice of design yielded a system that is both
highly distributed and fault tolerant. In addition to being
easy to repair, the system could be easily expanded online.

Software fault tolerance was built into the operating
system from the beginning [8], [9]. The system was
structured as a set of processes communicating via inter-
process messages, influenced by Dijkstra’s “THE” system
[10] and Brinch Hansen’s implementation of a message-
based operating system nucleus [11]. Each processor was

90 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

Fig. 2. Original tandem system architecture (1976).

preconfigured with a small set of daemon-type processes
that were responsible for specific tasks within that processor
such as process control and memory management, along
with a supporting set of library routines, interrupt handlers,
etc. The key software abstraction, process pairs, allowed two
communicating processes running in different processors to
collectively represent a named resource such as a disk
volume, communications line, or group of terminals, with
one process functioning as the primary at any point in time
and checkpointing necessary state to its backup. If a primary
process or its processor were to fail, the backup process
would take over and the operating system would transpar-
ently redirect requests to it without the application seeing an
error. Operating system infrastructure was put in place to
reliably maintain the named resource table that provides the
redirection transparency.

Process pairs are an effective design for recovering from

transient problems (“Heisenbugs” [12]) such as race

conditions, where the identical conditions are unlikely to

be in effect when the backup process takes over. They are

vulnerable to deterministic defects (“Bohrbugs”), but those

are relatively rare in a well-tested system. See [13] for an

empirical study on this topic.

The initial focus of the system was to provide tolerance

against single faults. Over time, the direction has been to

add more support for continuous operations in order to

serve the needs of customers who have been under

increasing pressure to provide true continuous availability.

5 ADVANCED DESIGN

5.1 Chip Technology

The designers of both system lines have had to continu-

ously redesign their error checking logic in order to deal

with both evolving technologies and the increasing rate of

transient errors that is the inevitable side effect of the

decreasing silicon feature size associated with newer, faster

microprocessors and other components [14].

5.1.1 zSeries

From System/360 through System/390 ECL mainframes,

increasingly complete and effective inline error checking

was built into the circuitry. Within the CPU, parity and ECC

were used extensively for all arrays, data paths, and control

paths. Control logic, such as state machines and ALUs, used

a variety of mechanisms such as parity prediction or illegal

state detection.

For CMOS, a totally new design approach was needed

[15]. The requirement for dynamic recovery, coupled with

other design constraints (e.g., power, performance, second-

level packaging) pointed to a highly checked single-chip

microprocessor. However, inline checking of control and

arithmetic logic was prohibited by performance penalties.

As shown in Fig. 3, the decision was made to duplicate

I-unit and E-unit and compare outputs. With a carefully laid

out floorplan, there are no cross-chip performance-limiting

paths. The cycle time is the same as if the same design were

implemented on a smaller chip with only one unchecked

I-unit and E-unit. The compare and detect cycle is

completely overlapped in the instruction execution pipe-

line, so cycles per instruction (CPI) is not increased.
Most of the microprocessor area is devoted to the

cache where data is primarily moved around unchanged.
Updates to memory are maintained in an ECC-protected
store buffer during instruction execution and transferred
to an ECC-protected L2 cache when instruction execution
completes. Thus, for the on-chip cache, low-overhead
parity checking is sufficient.

A key element of the microprocessor’s R-unit is an
ECC-protected register file, the checkpoint array. The
checkpoint array keeps track of the entire state of the
CPU including register contents and instruction ad-
dresses. Completed instructions are known to be error-
free and the checkpoint array and the store buffer
accurately describe the state of the machine at successful
instruction execution.

The R-unit permits recovery to be completely controlled
by hardware and identical for all instructions. The R-unit
manages instruction retry when an error is detected as
follows: Except for the R-unit itself, the CPU is reset and
store buffer contents are sent to L2. The state of the CPU is
returned to what it was at the last instruction completion.
Serialized instruction processing starts up, retrying the
instruction that caused the error. If it is successful, the
failure was transient and the CPU resumes pipelined
instruction processing. If not successful, then the error is
permanent and the CPU will be stopped. For permanent
failures, the service element moves the checkpoint to
another, typically spare, microprocessor and instruction
execution resumes with no apparent interruption.

Total circuit overhead for cache parity, Register Unit
ECC and duplicate I-unit and E-unit is about 30 percent.
Design, verification, and test are greatly simplified com-
pared to inline checking.

5.1.2 NonStop Server

The original NonStop system was designed in 1974-1975.
The hardware logic was based on 7400 series TTL

BARTLETT AND SPAINHOWER: COMMERCIAL FAULT TOLERANCE: A TALE OF TWO SYSTEMS 91

Fig. 3. Logical layout of the zSeries microprocessor chip.

integrated circuits, with the most complex being the 4-bit
ALU. As gate density within an IC package increased and
gate arrays became available, the designers were able to
increase the self-checking logic. Because processor design
was under Tandem’s control, it was possible to build in as
much self-checking logic as the developers deemed
necessary, using techniques such as parity on buses and
branch prediction. This approach continued to be used for
more than 10 years. In the late 1980s, Tandem moved to
ECL logic for its Cyclone processor [16]. By then, it was
becoming evident that the economics of building its own
processors from the ground up were no longer attractive,
and the Cyclone was the last internally designed processor
in the line.

In 1991, Tandem moved to building its processors
around commercial microprocessors, choosing the MIPS
3000 for its initial CMOS system. Because the amount of
error checking within the microprocessor was not within
Tandem’s control and was considered to be inadequate for
its target markets, the design changed to a scheme based on
tight lockstepping of a pair of MIPS chips. That approach
has continued to be used up until now, and a variant is
being developed for future Intel Itanium1-based platforms.
The new approach enables use of a looser, but still effective,
level of synchronization between microprocessors. This
design allows individual microprocessors to temporarily
diverge in their instruction streams, e.g., to perform
transient error recovery, without their associated logical
processors being declared down. It also supports a triplex
configuration for customers who wish to retain processor-
level hardware single fault tolerance and data protection
during processor repair actions.

5.2 Other Changes

5.2.1 zSeries

The next step in the evolution of availability beyond a
single operating system and mainframe, whether unipro-
cessor or SMP, was the tightly coupled multiprocessor.
Such mainframes were comprised of two mainframes,
which could be run as one operating system image or as
two isolated images. When run as two, there was no
common hardware, thus no single point of failure. A very
common operational mode was to run a tightly coupled
multiprocessor as one operating system image and, when
needed for maintenance or when a failure occurred,
degrade to a single mainframe. This is in keeping with
the general design philosophy of delivering all available
capacity during normal operation and only using capacity
for availability in unusual conditions.

Logical partitioning, (LPAR), further enhanced the
ability to design a single mainframe for higher availability.
LPAR allows multiple operating system instances to
concurrently reside on one mainframe. Each is isolated
from the other, test and production can be run at the same
time, and new releases run with old. With the advent of
LPAR came Extended Recovery Facility (XRF), which
allowed a backup partition to be created within the same
or a different mainframe. The partition needed very few
resources during normal operation as it monitored the
primary operating partition. It did require a high priority

such that, upon failure, it could take over the necessary
resources to keep the primary workload running on the
backup. XRF in one mainframe had no software single point
of failure (SPOF) and running across two mainframes, no
software or hardware SPOF.

A major new design paradigm came about with the
introduction of Parallel Sysplex, a data-sharing cluster
design [17]. Multiple mainframes (up to 32) can be
connected together via a coupling facility, or for the most
robust installations, two coupling facilities. All mainframes,
or at the least, all mainframes in the Sysplex sharing data,
have equal access to shared disks as well as to the coupling
facilities which manage the sharing. The basic hardware
structure of the Sysplex is therefore to have no SPOF in the
hardware.

To get the same results in the software, it is necessary to
spread identical workloads across each (or a subset) of the
mainframes in the Sysplex, shown in Fig. 4. At first, the
notion of putting all critical software on each of the
mainframes is somewhat counter intuitive if a primary
guideline has always been to isolate workloads from one
another on different hardware. With Parallel Sysplex, by
contrast, the ideal high availability configuration is one in
which each mainframe is a clone of the others, from a
software perspective. Transactions are distributed to the
mainframes via a Workload Manager (WLM) that deter-
mines which mainframe is least busy for that particular
type of work at the moment. In the event of a failure
anywhere within the Sysplex, there is no formal switch-
over—merely a cessation of assigning work to a no-longer-
available application, operating system, or mainframe. The
design makes it unnecessary to preassign backups and,
during normal operation, all available capacity can be used
by the ongoing workload.

For those customers without the stringent availability
needs of Parallel Sysplex but for whom the software
reliability of a standalone mainframe is insufficient, it is
possible to use LPAR to construct a partition (or partitions)
that will serve as coupling facilities and to build a “Sysplex
in a box.” Given the highly robust mainframe hardware,
with a mean time to unplanned customer application loss in
excess of 30 years, this middle ground is adequate for many
applications that are effectively mission-critical.

5.2.2 NonStop Server

As the engineers gained experience after the initial
shipment, they adjusted algorithms to reflect what was
seen in the field. Data integrity was and is the key system
requirement, and several refinements were made to
strengthen end-to-end data checks. Changes included
adding end-to-end checksums on messages and sequence
numbers to individual packets (originally, messages were
simply checksummed at the packet level), and including the
disk unit number in sector checksums to enable detection of
the right data being written to the wrong disk. A less
obviously availability-related feature was the addition of
instrumentation to help debug performance problems; this
was important because a poorly performing application
effectively is unavailable.

The primary hardware change for NonStop servers
(aside from the move to CMOS technology) has been to

92 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

rearchitect the system interconnect. As was shown earlier,
the original NonStop architecture used a combination of
I/O channels and interprocessor buses for its interconnect.
Both were designed in-house, once again offering the
opportunity to build in an appropriate level of checking.
However, the Dynabus had to be greatly overdesigned in
terms of capacity in order to support up to 16 processors
and allow for future online upgrades to faster processors. In
1997, the NonStop S-series systems were introduced with a
completely redesigned interconnect architecture. This ar-
chitecture, shown in Fig. 5, takes a more network-oriented
approach, which by its nature includes the capability to
scale up bandwidth in all dimensions as the system grows.

The heart of the design is ServerNet, which carries both

I/O and interprocessor traffic. The new interconnect had

requirements to improve system performance, both through

higher bandwidth and through offloading of part of the

software communication stack, while meeting all of the

expected fault tolerance requirements [18]. At the time,

there were no commercially available interconnects that met

all of the requirements, so ServerNet was designed

internally. The original design was a 6-port router with

300MB/sec aggregate bandwidth. Wormhole routing was

and is utilized to minimize both latency and the need for

buffering at the router. DMA transfers, with appropriate

protection, remove the need for host-level execution at the

remote node. Single-bit command signal errors map to

invalid commands. Each packet is protected with a cyclic

redundancy check (CRC), and each router recalculates the

CRC and appends either a “This Packet Good” or “This

Packet Bad” symbol to the packet, making it easy to isolate

link failures. ServerNet has subsequently been redesigned

to provide even better bandwidth and diagnosability [19].
NonStop servers are inherently clustered due to their

loosely coupled design. In the late 1980s, that design was

BARTLETT AND SPAINHOWER: COMMERCIAL FAULT TOLERANCE: A TALE OF TWO SYSTEMS 93

Fig. 4. zSeries parallel sysplex architecture.

Fig. 5. Tandem NonStop Server S-series architecture (two processors

shown).

extended to build the EXPAND networking product
supporting homogeneous “clusters of clusters,” allowing
multiple interconnected systems to function in many ways
as a single system image [20]. The original interconnect was
via X.25 and other WAN protocols, with support added
later for SNA, LAN, and IP. The process-and-message
architecture provided a base that could be very straightfor-
wardly extended to support multiple systems. Customers
also began to require the ability to group together multiple
systems in a data-center environment using high-speed,
low-latency connections. A fiber-optic interconnect, FOX,
was developed in 1983 to connect systems at subkilometer
distances, and EXPAND was optimized to take advantage
of the high reliability and speed of the new interconnect.
For the S series, the data-center interconnect is ServerNet,
which can cover distances of up to 15 KM.

The original software design assumed that programmers
would work “close to the metal” and use a programming
language, TAL, whose functionality was similar to C, with
some customers possibly even supplying their own file
systems. However, COBOL support also was available from
almost the beginning. It soon became evident that most
customers wanted their programmers to be able to focus on
the business problem at hand without having to do any
special coding to achieve fault tolerance and scalability. The
PATHWAY transaction processing monitor [21] was devel-
oped to meet this need by handling the distributed and
fault-tolerant aspects of the work on the programmer’s
behalf, with a high degree of transparency as far as the
application is concerned. The programmer uses normal
business logic and indicates transaction boundaries, and the
system takes care of aborting incomplete transactions,
restarting server instances, and redirecting requests when
an application server process fails.

The other need that soon became evident was for data
consistency as well as data integrity—that is to say, a
database that is transactionally consistent. The Transaction
Management Facility (TMF) was developed in the early
1980s to coordinate data accesses and updates in a manner
that guaranteed the ACID properties of atomicity, consis-
tency, isolation, and durability. In order to take advantage
of TMF, an application programmer need only determine
the appropriate locations in a program to begin, commit,
and, if necessary, abort transactions. The Remote Database
Facility (RDF) allows a TMF-protected database to be
replicated at one or multiple additional sites at any
geographic distance.

6 DESIGN TRADE OFFS

Trade offs in computing system design are generally made
among price, performance, and reliability. Most commercial
servers are optimized for price, performance, or price/
performance, and reliability enhancements which detract
from the optimization point are closely scrutinized. Over
time, reliability features once found only on servers
optimized for reliability have become standard on virtually
all servers. For instance, memory ECC and redundant
power are now common. Reasons for the evolution include
changing economics (e.g., when spare parts and warranty
costs are included in the equation, certain reliability
features may save money), technology failure rates which

are unacceptably high for a broad range of servers, and
increased customer expectation for better system avail-
ability at almost every price point.

For Tandem and zSeries systems, from the beginning, the
target markets had extremely high data integrity require-
ments and the systems had to be designed accordingly. As
described above, both systems were constructed using
proprietary processors, which allowed for extensive self
checking to be incorporated. Microprocessors have a
component to fetch and decode instructions (I-unit), one
or more instruction execution elements (E-unit), and a
cache. Modern microprocessors usually include parity for
cache data and data paths. Checking the control, arithmetic,
and logical functions in the I-unit and E-unit is considered
to be difficult, time-consuming, and to introduce perfor-
mance penalties. As a result, other than zSeries, today’s
microprocessors leave these components unchecked. The
Tandem design also checked those components in early
systems, but since 1981 the approach has been to use off-
chip logic to create perfectly checked microprocessor pairs.

In the industry, accepted wisdom is that single chip
microprocessors are sufficiently reliable, that failures are
rare and that other mechanisms—timeouts and software
detection, for instance—will discover the few problems that
do occur. This philosophy depends on continual reliability
improvements; in reality, predicting chip technology failure
mechanisms is problematic. Future CMOS technologies are
expected to be less reliable; latches and dynamic logic will
become more susceptible to alpha particles and other
cosmic radiation [14]. Latent manufacturing defects and
design errors that manifest themselves as transient pro-
blems also are sources of customer-visible errors.

Even today there is an exposure to malfunctions in the
hardware resulting in incorrect data being written to
memory. The model proposed by Horst et al. [22] projects
a pessimistic bound of one in 75 unchecked microproces-
sors causing a data corruption error each year. Horst et al.’s
prediction is based on an optimistic evaluation of software
detection. It is true that, in some cases, timeouts and
software detection will prevent data integrity problems;
however, software does not reliably fail fast when errors are
injected, resulting in corrupted data [23]. Even when the
detection is successful, a system with no recovery will
usually hang, causing application downtime, unacceptable
for systems designed for high availability. zSeries and
NonStop servers are the most well-known commercial
systems designed to prevent data corruption by including
extensive error checking in all microprocessor functional
elements—combinatorial logic as well as arrays.

There are subtle advantages of building in a high level of
integrity checking and retry/recovery logic to handle
errors. For example, the resulting system is relatively
resilient to design flaws. It may be possible to ship a system
with one or more remaining occasional transient design
errors if the occurrence rate is relatively low and the cost of
recovery is not visible at the application level. Another
advantage is that test and bringup time can be significantly
reduced. The ability to fail-fast often makes it much easier
to determine failure sources and uncover design and other
problems.

Another important design trade off is “build versus buy.”
Particularly for subsystems which are compliant with
industry standards, like I/O subsystems, there are notable

94 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

advantages in using high volume components. Commodity
components are used wherever they provide a cost or time-
to-market advantage, if the developers are able to provide
the expected level of data integrity. For instance, most
I/O adapters do not meet zSeries or NonStop server needs
for memory protection; that is, inadequate checking is
provided to assure that data does not get written to or read
from an incorrect location. Some level of customization,
through techniques such as lockstepping and end-to-end
checksums, is added to incorporate commodity components
into the two systems described herein.

6.1 zSeries

zSeries runs multiple operating systems—VM, Linux, and
TPF aswell as its flagship high-availability operating system,
z/OS, the successor of MVS. Similarly to the hardware
design principles, z/OS recognizes the inevitability of errors,
resulting in a comprehensive approach of error isolation,
identification, and recovery. z/OS provides many software
reliability and availability features, quite a few of which can
also be used by applications which run on z/OS.

Much of the z/OS kernel operating system is dedicated
to providing advanced reliability, availability, and service-
ability capabilities. All z/OS platform code is written to a
set of guidelines to assure that errors can be detected,
isolated, and documented. For example, “all code must be
protected by a recovery routine including the code of
recovery routines themselves; all control areas and queues
must be verified before continuing; recovery and retry must
be attempted if there is hope of success; all failures which
cannot be transparently recovered must be isolated to the
smallest possible unit, e.g., the current request, a single task
(thread), or single address space (process); diagnostic data
must be provided which, as an objective, will allow the
problem to be identified and fixed after a single occurrence.
The diagnostic data is provided even when retry is
attempted and successful” [24].

Approximately 30 percent of the z/OS kernel operating
system code is written to adhere to these guidelines, in
addition to component code supporting the guidelines or
code specifically designed to handle processor, storage, or
I/O error recovery. Overall, about half of the z/OS kernel
code is devoted to error handling. In addition to adhering to
the guidelines, z/OS system software is committed to
ensuring system integrity. Data and system functions are
protected from unauthorized access, whether accidental or
deliberate.

6.2 NonStop Server

Percentages of recovery code are not available for the
NonStop server kernel, but the intent is similar to that of
z/OS: to identify and contain the scope of faults in order to
minimize application-level impact while preserving system
and data integrity. Software consistency checking was built
into the Tandem operating system from the beginning. As
an example, the process ready list is kept as a doubly
linked list, with the immediate links checked on every
insertion and deletion. Data being written to disk is
checkpointed to the backup disk process, but data being
written to comm devices is not checkpointed as the
performance penalty has been deemed to be too high and
comm protocols have built-in recovery mechanisms. Data
being written to disk includes host-generated sector

checksums, which introduces a small I/O performance
penalty and, until recently, required the drives to be
specially formatted using 514-byte sectors.

7 THE PEOPLE FACTOR

In 1985, Gray [12] analyzed a set of Tandem failure data and
published his results. His conclusion was that the key to
high availability is tolerating operations and software
faults—even then, fault-tolerant systems were very effective
at masking hardware faults. Almost 20 years later, his
conclusion still is valid. Recent evaluation of three very
large Internet sites finds operator error to be the number
one contributor to system downtime [25]. If anything,
increased system complexity has offered even greater
opportunities for fatal operational mistakes.

The best tool for reducing operator errors is automation,
both to prevent operator errors and to better handle fault
analysis and recovery. Automation can help the latter in
three ways: It can analyze a long series of events more
quickly and thoroughly than a human can, it can speed up
recovery by initiating corrective action, and it can reduce
the chance of an already perilous situation turning into a
full-blown outage due to “fat-finger” mistakes. In cases
where an automated event analysis subsystem cannot
pinpoint the faulty component, it can at least narrow the
options that the human needs to consider. Ideally, a fault-
tolerant system also is a self-tending system, monitoring its
own health, making corrections as necessary, and alerting
the outside world where appropriate.

7.1 zSeries

In 2001, IBM introduced its Autonomic Computing initia-
tive, a longterm strategy to invent, design and deploy
computing systems, which operate to achieve business-level
policies [26]. The realization of Autonomic Computing will
be systems that demonstrate self-CHOP capabilities, that is,
self-configuring, healing, optimizing, and protecting. Cer-
tain characteristics of zSeries servers exemplify what is
meant by each of these.

Dynamic CPU Sparing, a process by which a failed CPU
can be transparently replaced by a spare, was earlier
described and is a good example of self-healing. Spare
CPUs can also be brought online to meet increased
customer resource requirements, a process known as
Capacity Upgrade on Demand, and an example of self-
configuring. LPAR, earlier mentioned as a mechanism for
running multiple concurrent operating systems on one
mainframe and keeping them isolated from one another, is
also a self-optimizing feature. LPAR will maximize resource
utilization in the server based on user established priorities.
If a high priority partition is not using its allowed resources,
LPAR will make them available to lower priority partitions.
It will attempt to keep the mainframe as busy as possible all
the time. A partition can also be capped, meaning that, even
if all other operating system partitions are in a wait state,
the capped partition can have only a certain amount of
resources. This is useful for service providers who are
“renting” capacity to others, but can also serve as a self-
protecting mechanism to prevent denial of service attacks
from taking over the entire mainframe.

BARTLETT AND SPAINHOWER: COMMERCIAL FAULT TOLERANCE: A TALE OF TWO SYSTEMS 95

7.2 NonStop Server

Automation is easier to construct if there is a unified
logging subsystem to provide access to an integrated stream
of information about what is going on in the system. In the
mid 1980s, Tandem built a Distributed System Management
subsystem (DSM) [27] to meet this need. DSM provides a
consolidated log and logging infrastructure that are avail-
able to partners and end user applications as well as to the
system provider, and includes a call-home capability. DSM
events are tokenized, and can be viewed in filtered form to
meet specific needs for programmatic response, Web
viewing, PDA viewing, hardware incident analyzers, and
so forth. However, the logging infrastructure alone is not
sufficient; subsystems need to be intelligently instrumented
to use it, and incident analysis software needs to be kept
updated as new patterns are seen in the field. NonStop
servers have long had a high degree of self-tending built
into the system, both within the operating system and
individual subsystems and, especially for hardware, in the
form of incident analyzers.

8 CONCLUSION

Fault tolerance and rapid fault detection for both hardware
and software are key building blocks for constructing
continuously available applications, but are not in them-
selves sufficient to accomplish the task. Similarly, built-in
error recovery is important for handling the increasing rate
of transient hardware and software errors. But, for builders
of highly available systems, much of the current challenge
lies in addressing the “second 90 percent” of the problem
—the network, the environment, cyber attacks and, most
importantly, the people and operational procedures re-
sponsible for keeping applications and systems running on
an ongoing basis. The move toward self-tending systems by
the producers of today’s highly available commercial
systems is a recognition of that need, and a trend that the
authors expect to see continue.

ACKNOWLEDGMENTS

Wendy Bartlett would like to thank Joel Bartlett, Bob Taylor,
and Kate Wilson. Lisa Spainhower would like to thank Bob
Abrams.

REFERENCES

[1] G.M. Amdahl, G.A. Blaauw, and F.B. Brooks, “Architecture of the
IBM System/360,” IBM J. Research and Development, vol. 8, pp. 87-
101, 1964.

[2] W.B. Bartlett and B. Ball, “Tandem’s Approach to Fault
Tolerance,” Tandem Systems Rev., vol. 8, pp. 84-95, Feb. 1988.

[3] L. Spainhower, “System/360 to zSeries: Dependability in IBM
Mainframes,” Dependable Computing Systems: Paradigms, Perfor-
mance Issues and Applications, 2004.

[4] L. Spainhower and T.A. Gregg, “IBM S/390 Parallel Enterprise
Server G5 Fault Tolerance: A Historical Perspective,” IBM
J. Research and Development, vol. 43, nos. 5/6, pp. 863-874, 1999.

[5] P.R. Turgeon, P. Mak, M.A. Blake, M.F. Fee, C.B. Ford III, P.J.
Meaney, R. Seigler, and W.W. Shen, “The G5/G6 Binodal Cache,”
IBM J. Research and Development, vol. 43, nos. 5/6, pp. 661-670, 1999.

[6] T.A. Gregg, “S/390 CMOS Server I/O: The Continuing Evolution,”
IBM J. Research and Development, vol. 41, nos. 4/5, pp. 449-462, 1997.

[7] J.A. Katzman, “System Architecture for NonStop Computing,”
Proc. IEEE CS Int’l Conf. Technologies for the Information Superhigh-
way, pp. 77-80, 1977.

[8] J.F. Bartlett, “A ‘NonStop’ Operating System,” Proc. Hawaii Int’l
Conf. System Sciences, pp. 103-119, 1978.

[9] J.F. Bartlett, “A NonStop Kernel,” Proc. Eighth SIGOPS European
Workshop, pp. 22-29, 1981.

[10] E.W. Dijkstra, “The Structure of the ‘THE’ Multiprogramming
System,” Comm. ACM, vol. 11, pp 341-346, 1968.

[11] P.B. Hansen, “The Nucleus of a Multi-Programming System,”
Comm. ACM, vol. 13, pp. 238-241, Apr. 1970.

[12] J. Gray, “Why Do Computers Stop and What Can Be Done About
It?” Technical Report TR85.7, Tandem Computers, Cupertino,
Calif., June 1985.

[13] I. Lee, “Software Dependability in the Tandem Guardian System,”
IEEE Trans. Software Eng., vol. 8, pp 455-467, May 1995.

[14] C. Constantinescu, “Impact of Deep Submicron Technology on
Dependability of VLSI Circuits,” Proc. 2002 Int’l Conf. Dependable
Systems and Networks, pp. 205-209, 2002.

[15] C.F. Webb and J.S. Liptay, “A High-Frequency Custom CMOS
S/390 Microprocessor,” IBM J. Research and Development, vol. 41,
nos. 4/5, pp. 463-473, 1997.

[16] D. Siewiorek and R. Swarz, Reliable Computer Systems: Design and
Evaluation. Burlington, Mass.: Digital Press, pp. 586-648, 1992.

[17] J.M. Nick, B.B. Moore, J.Y. Chung, and N.S. Bowen, “S/390
Cluster Technology: Parallel Sysplex,” IBM Systems J., vol. 36,
no. 2, pp. 172-201, 1997.

[18] B. Horst, “TNet: A Reliable System Area Network,” IEEE Micro,
vol. 15, no. 1, pp. 37-45, Feb. 1994.

[19] D. Garcia and W. Watson, “ServerNet II,” Proc. Parallel Computing,
Routing, and Comm. Workshop, 1997.

[20] Tandem Computers, EXPAND Reference Manual. Cupertino, Calif.,
1986.

[21] TandemComputers, Introduction toPathway.Cupertino,Calif., 1985.
[22] R. Horst, D. Jewett, and D. Lenoski, “The Risk of Data Corruption

in Microprocessor-Based Systems,” Proc. Fault-Tolerant Computing
Symp., pp. 576-585, 1993.

[23] S. Chandra and P.M. Chen, “How Fail-Stop Are Faulty Pro-
grams?” Proc. 28th Int’l Symp. Fault Tolerant Computing, pp. 240-
249, 1998.

[24] S. Turner, C. Henry, G. Horvath, and J. Kibble, “Selecting a
Server—Value of S/390,” IBM Redbook SG24-4812-01, 1999.

[25] D.A. Patterson and D. Oppenheimer, “Architecture and Depend-
ability of Large-Scale Internet Services,” IEEE Internet Computing,
pp. 41-49, Sept.-Oct. 2002.

[26] J.O. Kephart and D.M. Chess, “The Vision of Autonomic
Computing,” Computer, vol. 36, no. 1, pp. 41-50, Jan. 2003.

[27] P. Homan, B. Malizia, and E. Reisner, “Overview of DSM,”
Tandem Systems Rev., vol. 4, no. 3, Oct. 1988.

Wendy Bartlett received the BS degree in
statistics and the MS degree in computer
science: computer engineering, both from Stan-
ford University. She is a distinguished technol-
ogist in Hewlett Packard’s NonStop Enterprise
Server Division. She was employed at Four
Phase from 1976-1978, and has been employed
by Tandem Computers, Compaq, and HP since
then. She currently heads the indestructible
scalable computing initiative for the NonStop

server. She is a member of the IEEE Computer Society.

Lisa Spainhower is a graduate of the University
of Michigan. She is a distinguished engineer in
the Systems Technology and Architecture orga-
nization in IBM’s Systems and Technology
Group in Poughkeepsie, New York. She is a
member of the IBM Academy of Technology, the
IEEE, and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

96 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

