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Evaluation 

� Allows comparison of design techniques and subsequent  tradeoffs

� Qualitative

� Subjective – the benefit of one system over the other

� Quantitative

�Produces numbers to compare systems

� Quantitative Models:  vital means for system reliability and availability 
predictions

� Measure failure rate

� Calculate reliability, availability, MTTF …

� Importance of analysis and analytical model
� Evaluate a design and compare different designs
� Feedback to the designer during early design stages
� Use the model for performance analysis

Reliability Function

� Earlier definitions
� Reliability  R(t)
� Availability A(t)

� Failure rate  
� The expected number of failures of a type of device per given time
� Device fails once every 2000 hours, λ (failure rate) = 1/2000 failures/hour

� Consider a large experiment with N systems at time t0

� N0(t) - number of correctly operating systems at time t
� Nf(t) - number of failed systems at time t
� Reliability

� Unreliability Q(t) = 1 - R(t)
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Reliability Function

� Derivative of reliability

� is called instantaneous failure rate of the component

� Divide by  No(t)

� Z(t) is called hazard or hazard rate, or failure rate
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Reliability Function

� Constant failure rate during useful life
� Infant mortality and wear out periods have variable failure rate
� Reliability computation - constant failure rate

Constant 
Failure Rate

Useful Life Period

Failure Rate

Time

Wear out phase
Infant 
Mortality

Bath tub curve for failure rate
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Time varying failure rate
Waibull distribution z(t) = αλ(λt) (α-1)

α = 1 Æ z = λ
α > 1 Æ z  increases with time
α < 1 Æ z  decreases with time

R(t) = e – (λt)α



� MTTF: expected time that a system will operate before the first failure occurs
� Assume N identical systems operational at t0

� ti is the measure time that item i operates before failing
� Probability theory

� Expected value of a random variable x is 

� MTTF = expected value of time failure = 

Mean Time to Failure (MTTF)
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� Integration by parts and the fact that 

Mean Time to Failure (MTTF)
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� Example: MTTF for a system with exponential failure law

� Reliability at t = MTTF 

Mean Time to Failure (MTTF)
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�Mean time to repair – MTTR
� Assume constant repair rate (µ) and arguments similar to those 

used for failure analysis and conclude MTTR = 1/ µ 
�Mean time between failure – MTBF 

� Use heuristic arguments to conclude  can also argue MTBF = 
MTTF + MTTR
� Note: often λ << µ and hence MTTF >> MTTR , therefore the 

words MTTF and MTBF are used improperly by some

MTTR and MTBF

failures ofnumber  average
T  timetotal

=MTBF



Combinatorial Modeling

� System is divided into non-overlapping modules

� Each module is assigned either a probability of working, Pi, or a probability as 
function of time, Ri(t)

� The goal is to derive the probability, Psys, or function Rsys(t):  Prob that the 
system survives until time t

� Assumptions:

� Module failures are independent  

� Once a module has failed, it is always assumed to yield incorrect results

� System considered failed if it does not contain a minimal set of functioning 
modules

� Once system enters a failed state, other failures cannot return system to 
functional state

� Models typically enumerate all the states of the system that meet or exceed the 
requirements for a correctly functioning system

� Combinatorial counting techniques are used to simplify this process

Series Systems

� Assume system has n components, e.g. CPU, memory, disk, terminal

� All components should survive for the system to operate correctly

� Reliability of the system

where Ri(t) is the reliability of module i

� For exponential failure rate of each component

where                                         corresponds to the failure rate of the system

Effect is summation of failure rates of components

1 2 3 n

R sys = R1 • R2 •  R3 • ... • Rn
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Parallel Systems

� Assume system with spares

� As soon as fault occurs a faulty component is replaced by a spare

� Only one component needs to survive for 
the system to operate correctly

� Prob. of module i to survive = Ri

� Prob., module i does not survive = (1 - Ri)

� Prob. of no modules survive = (1 - R1)(1 - R2) ... (1 - Rn)

Prob [at least one module survives] = 1 - Prob [no module survives]

� Reliability of the parallel system
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Series-Parallel Systems

� Consider combinations of series and parallel systems

� Example, two CPUs connected to two memories in different ways

a

c

b

d
R sys = 1- (1-Ra Rb) (1-Rc Rd)

a

c

b

d
R sys = (1-(1-Ra)(1-Rc)) (1-(1-Rb)(1- Rd))

CPU Memory



A Simple Example

� Consider dynamic redundant system with spares (dynamic redundancy) 

� As soon as fault occurs, a faulty component is replaced by a spare 

� Up to (n-1) spare modules

� Rsys = 1 - (1-R1) (1-R2)... (1-Rn) 

� Example: Consider identical modules with R i = 0.9

� How can you increase Rsys to 0.999999 = 1-10-6

� Hence, need 5 spares to make reliable system
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Non-Series-Parallel-Systems

� “Success” diagram used to represent the operational modes of the system 

� Reliability of the system derived by expanding around a single module m

A B C D

E

F

YX

Each path from X to Y represents 
a configuration that leaves the system 
successfully operational

Rsys = Rm P (system works|m works) + (1-Rm)  P (system works|m fails)

P(s|m) denotes the conditional   probability “s given, m has occurred”



Non-Series-Parallel-Systems (cont.)

A C D

E

F B (“ short ”) works

A E

F C
D

B (“ open ”) fails

Reduced model with B replaced

Rsys =  RB P(system works|B works)

+ (1 - RB) {RD[1 - (1 - RARE)(1 - RFRC)]}

A DE

B (“ short ”) works, C (“ short ”) works

F

A
D

B (“ short ”) works, C (“ open ”) fails

Reduction with B and C replaced

P(system works|B works) = 

RC{RD[1 - (1 - RA)(1 - RF)]} 

+ (1 - RC)(RARDRE)

Letting RA ....RF = Rm yields Rsys = R6
m - 3R5

m + R4
m + 2R3

mLetting RA ....RF = Rm yields Rsys = R6
m - 3R5

m + R4
m + 2R3

m

Non-Series-Parallel-Systems (cont.)

� For complex success diagrams, an upper-limit approximation on 
Rsys can be used

� An upper bound on system reliability is:
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D
X Y

Reliability block diagram (RBD) 
of a system

Rpath is the serial reliability of path i

Rsys equation is an upper bound because 
the paths are not independent.
That is, the failure of a single module affects 
more than one path.
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M-out-of-N Systems

� Static or masking redundancy
� General M-out-of-N system, out of N modules, need M to function

� System can tolerate N-M failures 

� Where 

� Example: Consider TMR (Triple Modular Redundancy) 
system (2-out-of-3)
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Reliability of TMR VS. Singular
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� A system can tolerate fault and still have low reliability.

� A system can achieve a high reliability without being fault tolerant 

TMR
Singular

System Reliability

Module Reliability
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Effect of Voter

� Previous expression for reliability assumed voter 100% reliable
� Assume voter reliability Rv
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Cascading TMR Systems

• Consider n stages of original system

• Each stage replaced by TMR with Voter

Reliability of the system
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TMR with 3 Voters

� Remove single point of failure

� Use TMR with 3 voters

� Cascade such systems

32 )(2)(3 mVmVTMRV RRRRR −=

V1 VnVn-1

Reliability expression can be obtained by considering module -voter
combination as a unit; then apply TMR expression. n
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TMR in Complex Networks

Non-redundant network
M2 Mn

M3 Mi

M1

Input
Outputs

A2

B2

C2

V2

V2

V2

A3

B3

C3

V3

V3

V3

Input

A1

B1

C1

V1

V1

V1

Vn

Vn

Outputs

TMR equivalent



Pitfalls Using Single Model

� Should we use MTTF to compare the reliability of systems
� Compare reliability of simplex and TMR systems (assume perfect voter)

Rsimplex(t) = e - λt

MTTFsimplex > MTTFTMR  ÎMay conclude that TMR is not as good as simplex
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Pitfalls Using Single Model (cont.)
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� MTTF is the area under the reliability curve

� There is a point that TMR becomes less reliable than simplex

� MTTF can sometimes misrepresent the quality of a system

� Regardless, if fault-tolerance is necessary, TMR will be superior



Pitfalls Using Single Model (cont.)

� Instead of MTTF, look at mission time

� Reliability of M-out-of-N systems very high in the beginning

� Spare components tolerate failures

� Reliability sharply falls down in end

� System exhausted redundancy, more hardware can possibly fail

� Such systems useful in aircraft control

� Very high reliability, short time

� 0.99999 over 10 hour period

� Improving “Vanilla” TMR:  TMR with Recovery (e.g. Tandem), TMR 
Simplex (Run in usual TMR mode..  On first failure drop the second 
component and run in Simplex)

Effect of Coverage

� Failure detection is not perfect
� Reconfiguration may not succeed
� Attach a coverage “c”

One spare system

Rsys = R1 + c (1-R1) R2

n-1 spare system
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Effect of Coverage (cont.)

• If coverage is 100%, then given low module reliability, can 
increase system reliability arbitrarily

Rm = 0.9

0.989

0.999

0.999

0.972

0.978

0.978

Rm = 0.7

0.908

0.988

0.996

0.868

0.918

0.921

Rm = 0.5

0.748

0.931

0.990

0.700

0.812

0.833

C=0.99, n=2

C=0.99, n=4

C=0.99, n=inf

C= 0.8 , n=2

C= 0.8 , n=4

C=0.8, n=inf

With low coverage,
reliability saturates

Markov Models

� Difficulty with combinatorial models
� Many complex systems cannot be modeled easily
� Reliability block diagram difficult to construct

� Incorporating repairs in the model and analysis
� Incorporation of coverage factor – such as in duplicates 

system we may be less than 100% certain that only faulty 
unit will be eliminated when system is re-configured

�Main concept of Markov Model 
� System State
� State transition



Markov Model (Cont.)

� Example: the concept of state using TMR (8 states)
� Transitions between states occur with certain probabilities 
� Markov model assumption: Probability of transition from a 

state si to sj is independent of the method of arrival into state si

111

110

101

011

100

010

001

000

three modules 
failed

Perfect 
State

One module 
failed

Two Modules 
failed

Markov Model- Reduced

� Assumption: each module obeys exponential failure law with λ 
failures

� Probability of a module being failed at some point t+ ∆ t, given 
that it was operational at time t is Q(∆ t) = 1 – R(∆ t) = 1 – e- λ (∆t)

�At small ∆ t
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Markov Model- Reduced (Cont.)

� Reduced Markov model for a TMR system by collapsing the states

Perfect 
State

One module 
failed

Failed system

3 2 F
3 λ∆t 2λ∆t

1-3λ∆t 1-2λ∆t
1

111

110

101

011

100

010

001

000

λ∆t

λ∆t

λ∆t

1-3λ∆t

Markov Model- Transition Matrix

� Probability of the TMR being in state 3 depends on 
probability that it was in state 3 at t and the probability 
that it will transition back to state 3.

� Hence Transition matrix from Markov chain
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Markov Model- Transition Matrix

� In compact form

� At t = 0

�

� At t =2 ∆t

� At t =n ∆t

� RTMR(t) = P3(t) + P2(t)
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Markov Model- Closed Form Solution
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Markov Model- Closed Form Solution
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Markov Model – Incorporating Spares

� Example: Singular system with λ failure rate and µ repair rate

� The state matrix equation
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Markov Model- Closed Form Solution
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Markov Model- Closed Form Solution
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Availability A(t) of a system is the probability that the system will 
be operational at time t.

Good for experimental evaluation.
If not possible due to time and expense, we can estimate steady 
state availability 
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Markov Model- TMR with Repair

� State matrix 

� What if repair is allowed following the failure?
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