<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

Outline
Evaluation Techniques
 Reliability
 Mean Time to Failure
Combinatorial Model
 Series
Parallel
 M-of-N
 Non-Series and Non-Parallel
Markov Model
 Discrete time
Continuous time

	Reliability Function
Earlier definitions	
 Reliability R(t))
 Availability A(t)
Failure rate	,
 The expected n 	umber of failures of a type of device per given time
 Device fails on 	ce every 2000 hours, λ (failure rate) = 1/2000 failures/hour
Consider a large exp	periment with N systems at time t_0
• $N_0(t)$ - number	of correctly operating systems at time t
• $N_f(t)$ - number	of failed systems at time t
 Reliability 	$R(t) = \frac{N_o(t)}{N} = \frac{N_o(t)}{N_o(t) + N_r(t)}$
	$R(t) = 1 - \frac{N_{f}(t)}{N}$
 Unreliability Q 	(t) = 1 - R(t)
	$Q(t) = \frac{N_{f}(t)}{N} = \frac{N_{f}(t)}{N_{f}(t) + N_{f}(t)}$

Efi	fect of Co	overag	e (cont.)
• If coverage is 10 increase system	0%, then g reliability a	iven lov rbitraril	v module y	reliability, ca
		Rm = 0.9	Rm = 0.7	Rm = 0.5
With low coverage, reliability saturates	C=0.99, n=2	0.989	0.908	0.748
	C=0.99, n=4	0.999	0.988	0.931
	C=0.99, n=inf	0.999	0.996	0.990
	C= 0.8 , n=2	0.972	0.868	0.700
		0.978	0.918	0.812
	C= 0.8, n=4	0.970	017 2 0	0.012

Markov Model- Closed Form Solution

$$P_{3}(s) = \frac{1}{s+3\lambda}$$

$$P_{2}(s) = \frac{3}{(s+2\lambda)} - \frac{3}{(s+3\lambda)}$$

$$P_{r}(s) = \frac{1}{s} - \frac{3}{s+2\lambda} + \frac{2}{s+3\lambda}$$

$$P_{3}(t) = e^{-3\lambda t}$$

$$P_{2}(t) = 3e^{-2\lambda t} - 3e^{-3\lambda t}$$

$$P_{r}(t) = 1 - 3e^{-2\lambda t} + 2e^{-3\lambda t}$$

$$R_{TMR} = P_{3}(t) + P_{2}(t) = 3e^{-2\lambda t} - 2e^{-3\lambda t}$$

$$\begin{aligned} & \frac{P_o(t + \Delta t)}{P_F(t + \Delta t)} = \begin{bmatrix} (1 - \lambda \Delta t) & \mu \Delta t \\ \lambda \Delta t & (1 - \mu \Delta t) \end{bmatrix} \begin{bmatrix} P_0(t) \\ P_F(t) \end{bmatrix} \\ & \frac{P_o(t + \Delta t) - P_o(t)}{\Delta t} = -\lambda P_o(t) + \mu P_F(t) \\ & \frac{\Delta t}{\Delta t} = -\lambda P_o(t) - \mu P_F(t) \\ & \Delta t \rightarrow 0 \end{aligned} \qquad \begin{aligned} & \frac{d P_o(t)}{dt} = -\lambda P_o(t) + \mu P_F(t) \\ & \frac{d P_F(t)}{dt} = \lambda P_o(t) - \mu P_F(t) \\ & \frac{d P_F(t)}{dt} = \lambda P_o(t) - \mu P_F(t) \end{aligned}$$
Solving the equations using Laplace Transform
$$\begin{aligned} & SP_o(s) - P_o(0) = -\lambda P_o(s) + \mu P_F(s) \\ & SP_F(s) - P_F(0) = \lambda P_o(s) - \mu P_F(s) \end{aligned} \qquad t = 0 \rightarrow P_o(0) = 1; P_F(0) = 0 \end{aligned}$$

