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Evaluation

[0 Allows comparison of design techniques and subsequent tradeoffs
= Qualitative
[0 Subjective — the benefit of one system over the other
= Quantitative
[IProduces numbers to compare systems

0 Quantitative Models: vital means for system reliability and availability
predictions

= Measure failure rate
= Calculate reliability, availability, MTTF ...

0 Importance of analysis and analytical model
= Evaluate a design and compare different designs
= Feedback to the designer during early design stages
= Use the model for performance analysis

Reliability Function

O Earlier definitions

= Reliability R(t)

= Availability A(t)
[0 Failure rate

= The expected number of failures of a type of device per given time

= Device fails once every 2000 hours, A (failure rate) = 1/2000 failures/hour
O Consider a large experiment with N systems at time ¢,

= N,(t) - number of correctly operating systems at time ¢

= N(t) - number of failed systems at time ¢

= Reliability N (O N, (®
R(r)= N N, ®+N(1)

N ()
R(t)=1-—~
)=1-"x
= Unreliability Q(t) = 1 - R(t)
CN,® N
0l)= N N ()+N,()




Reliability Function

[0 Derivative of reliability

dR(t) _1dN.(1)

dt N dt
dN_ (1) ) )
O Ta is called instantaneous failure rate of the component
[0 Divide by N(t)
1 dN (1)

(1)

TN, di

= Z(t) is called hazard or hazard rate, or failure rate
20)= 1 (_NdR(t)j _ 1 dr@
No (1) dt R(t) dt
Ar)=——L RO RO __ry

R(t) dt dt

Reliability Function

Failure Rate

Constant
Failure Rate

Infant
Mortality! Useful Life Period
i

‘Wear out phase

»  Time
Bath tub curve for failure rate

[0 Constant failure rate during useful life
[0 Infant mortality and wear out periods have variable failure rate
[0 Reliability computation - constant failure rate




Mean Time to Failure (MTTF)

[0 MTTF: expected time that a system will operate before the first failure occurs
[ Assume N identical systems operational at t,

1 N
MTTF=—>1,

i=1

® {,is the measure time that item i operates before failing
[0 Probability theory

= Expected value of a random variable X is

+00
EX) = J.xf (x)dx | f(x) Probability density function |

+00 +

= MTTF = expected value of time failure = J. tif (t)dt = J. tif (t)dt
—0 0
f()= % | f(t) failure density function |
t

Mean Time to Failure (MTTF)

MTTF = Tt@dt

[0 Integration by parts and the fact that 400) = _$
t t

MTTF = T— t?dt = {— tR(t) + TR(t)a’t}

[~e}

0 0

=0 at t=0
=0 att=o00 2> R(t)=0

MTTF = IR(t )dt Valid for any system with R(c0) =0
0




Mean Time to Failure (MTTF)

[1 Example: MTTF for a system with exponential failure law

o0

MTTF = [edt = e
0 A 0
1 1
MTTF =0—(——) =—
A A
[] Reliability at t = MTTF
1.
RMITF)=R()=e * =e” =03678
MTTR and MTBF

L] Mean time to repair — MTTR
= Assume constant repair rate (i) and arguments similar to those
used for failure analysis and conclude MTTR =1/ pn

[ Mean time between failure —- MTBF

total time T

MTBF = -
average number of failures

= Use heuristic arguments to conclude can also argue MTBF =
MTTF + MTTR

= Note: often A << p and hence MTTF >> MTTR , therefore the
words MTTF and MTBF are used improperly by some




Combinatorial Modeling

O System is divided into non-overlapping modules

O Each module is assigned either a probability of working, P,, or a probability as
function of time, R;(t)

O The goal is to derive the probability, P

or function R ((t): Prob that the
system survives until time t

sys?

0 Assumptions:
= Module failures are independent
= Once a module has failed, it is always assumed to yield incorrect results

= System considered failed if it does not contain a minimal set of functioning
modules

= Once system enters a failed state, other failures cannot return system to
functional state

0 Models typically enumerate all the states of the system that meet or exceed the
requirements for a correctly functioning system

O Combinatorial counting techniques are used to simplify this process

Series Systems

[0 Assume system has n components, e.g. CPU, memory, disk, terminal

O All components should survive for the system to operate correctly

(=] ]
Rsys:R1°R2 o R3 0...-Rn

O Reliability of 'Elhe system
R, . (t) = H R, (t) where R;(t) is the reliability of module i
i=1

O For exponential failure rate of each component

— n A B
Rseries (t) =e Zi:l it e ﬂ'A‘yA‘temt
n

where ﬂvsys,em = i ﬂ,- corresponds to the failure rate of the system

Effect is summation of failure rates of components




Parallel Systems

0 Assume system with spares

a

As soon as fault occurs a faulty component is replaced by a spare

|

T

O Only one component needs to survive for
the system to operate correctly

O Prob. of module i to survive =R,

a

Prob., module 7 does not survive = (1 - R,)

O Prob. of no modules survive=(1 -R,)(1 -R,) (1-R)

Prob [at least one module survives] = 1 - Prob [no module survives]

[0 Reliability of the parallel system

Rparallel(t) =1.0 _ﬁ(l 0-R, (t))

Series-Parallel Systems

[0 Consider combinations of series and parallel systems

0 Example, two CPUs connected to two memories in different ways

Lo {0 ]
Rsys: 1'(1-Ra Rb) (I-RC Rd) — —
Kl

Memory

CPU
e
R s = (1-(1-Ra)(1-Rc)) (1-(1-Rb)(1- Rd)) — }7
e




A Simple Example

[0 Consider dynamic redundant system with spares (dynamic redundancy)
[0 As soon as fault occurs, a faulty component is replaced by a spare

[0 Up to (n-1) spare modules

O Rys=1-(1-R)) (1-Ry)... (1-R))

[0 Example: Consider identical modules with R ;= 0.9
00 How can you increase R, to 0.999999 = 1-10-¢

1-10°=1-(1-0.9)"
-6
Lm0 _
In(1-0.9)

[0 Hence, need 5 spares to make reliable system

Non-Series-Parallel-Systems

[0 “Success” diagram used to represent the operational modes of the system

(E] | Each path from X to Y represents
| B] ID]- Y  aconfiguration that leaves the system
7] successfully operational

[0 Reliability of the system derived by expanding around a single module m

R,s =R, P (system works|m works) + (1-R,) P (system works|m fails)

P(s|m) denotes the conditional probability “s given, m has occurred”




Non-Series-Parallel-Systems (cont.)

_mHer

B (“ short ”) works, C (“ short ”) works

Ho —{abH{e{p}-
| A

B (“ short ) works, C (“ open ”) fails
B (“ open ) fails

Reduction with B and C replaced

Reduced model with B replaced

P(system works|B works) =
ReARp[1 - (1 -R)(1 - R}
+ (1 - RO(RLRpRE)

Rs = Ry P(system works|B works)
+(1-Rp) {Rp[1 - (1 - RyRp)(1 - ReR)1}

Letting R, ...R; =R, yields R, =R -3R5 +R{ +2R%,

Non-Series-Parallel-Systems (cont.)

[1 For complex success diagrams, an upper-limit approximation on
R, can be used
L1 An upper bound on system reliability is:

Ry, <1-TJ( =R, ;) Ry is the serial reliability of path i

R,y equation is an upper bound because
the paths are not independent.
That is, the failure of a single module affects

more than one path.

R _<1-(1-R,R,R. R, \1-R,R.R,\1-R.R R
Reliability block diagram (RBD)| (1=R,R,RRo Y1~ R RoR, X1~ R, ReR»)
of a system R, < 2R31 +R; —RZ —2R; +I§1n0




M-out-of-N Systems

[] Static or masking redundancy

O General M-out-of-N system, out of N modules, need M to function

= System can tolerate N-M failures
N-M N ) ;
Ry = Z ( ; r]nv lQm
i=0

= Where (IN): %l),l'

[0 Example: Consider TMR (Triple Modular Redundancy)

system (2-out-of-3)

L (3 R
Ry = Z (l.jR:,_lQm

i=0

Ryg()=R, () + (?)Ri (OA-R, (1)) =3R, () -2R, (1)

N working
N-1 working
N-2 working
N-M working

— — —

Failed

A

B

C

Reliability of TMR VS. Singular

System Reliability

Ret) = 3R (1))~ 2R* (1)

Find the cross points

R=3R*-2R’
3R*-2R°-R=0
(R-5)R-1)=0->R=0.5R=1.0

A

w
=
3

0.25

2

TMR

Singular

»

0.0

»
0.25 0.5 0.75 1.0

Module Reliability

A system can tolerate fault and still have low reliability.

| A system can achieve a high reliability without being fault tolerant




Effect of Voter

O] Previous expression for reliability assumed voter 100% reliable

O Assume voter reliability R,

R,,=R (R -2R)

.
.

Q_.

Cascading TMR Systems

* Consider n stages of original system

» Each stage replaced by TMR with Voter

Reliability of the system

< .

R..=(R(R -2R))




TMR with 3 Voters
O Remove single point of failure _D Q_

[0 Use TMR with 3 voters —|:| Q— R, =3(RR)-2(RR)
0 Cascade such systems Q_

Vi Vn-1 Vn

Reliability expression can be obtained by considering module -voter
combination as a unit; then apply TMR expression. R, =(3(RR ) -2(RR )Y

TMR in Complex Networks

Non-redundant network
M2 Mn

>
>

—

Input
— M Outputs

My| J IMi| | &«

TMR equivalent

' gl C\jne

Inpu B, ;/XA;——P B, Vi) 4,@—>
— 2




Pitfalls Using Single Model

O Should we use MTTF to compare the reliability of systems
[0 Compare reliability of simplex and TMR systems (assume perfect voter)

Rsimplex(t) =c M

MTTF = fe*di=
plex 0 ﬂ/
R, (=R +@R2<r)(1 ~R(1)=3R ()-2R (1)

R _(t)=3e"" —2e"

: 2
MTTE, (t)=[(3e™ =2 )dt =Dy 2

0

TMR ° 22 31 ©
3 2 5
MTTF |, = ———=—
24 34 64
MTTF x> MTTF . = May conclude that TMR is not as good as simplex

Pitfalls Using Single Model (cont.)

1
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[l MTTF is the area under the reliability curve

[l There is a point that TMR becomes less reliable than simplex

[J MTTF can sometimes misrepresent the quality of a system

[ Regardless, if fault-tolerance is necessary, TMR will be superior




Pitfalls Using Single Model (cont.)

[ Instead of MTTF, look at mission time
1 Reliability of M-out-of-N systems very high in the beginning
= Spare components tolerate failures
[0 Reliability sharply falls down in end
= System exhausted redundancy, more hardware can possibly fail
[0 Such systems useful in aircraft control
= Very high reliability, short time
= 0.99999 over 10 hour period

O Improving “Vanilla” TMR: TMR with Recovery (e.g. Tandem), TMR
Simplex (Run in usual TMR mode.. On first failure drop the second
component and run in Simplex)

Effect of Coverage

[ Failure detection is not perfect
[0 Reconfiguration may not succeed
[0 Attach a coverage “c”

One spare system

Rsys = Rl Tc (I_Rl) R2

AN

Bk

n-1 spare system

n—l1 i

Rsys :Rmzcl(l_Rm)

i=0




Effect of Coverage (cont.)

» If coverage is 100%, then given low module reliability, can
increase system reliability arbitrarily

Rm=0.9 Rm=0.7 Rm=0.5

C=0.99, n=2 0.989 0.908 0.748

C=0.99, n=4 0.999 0.988 0.931
With low coverage, €=099, n=inf | 0.999 0.996 0.990
reliability saturates

C=0.8,n=2 0.972 0.868 0.700

C=0.8,n=4 0.978 0.918 0.812

C=0.8, n=inf 0.978 0.921 0.833

Markov Models

[] Difficulty with combinatorial models
= Many complex systems cannot be modeled easily
[] Reliability block diagram difficult to construct
* Incorporating repairs in the model and analysis

= Incorporation of coverage factor — such as in duplicates
system we may be less than 100% certain that only faulty
unit will be eliminated when system is re-configured

[1 Main concept of Markov Model
= System State

= State transition




Markov Model (Cont.)

[1 Example: the concept of state using TMR (8 states)
= Transitions between states occur with certain probabilities

= Markov model assumption: Probability of transition from a
state s; to s;is independent of the method of arrival into state s;

(‘@
5

Perfect : One module : Two Modules E three modules
State ' failed " failed " failed

Markov Model- Reduced

[J Assumption: each module obeys exponential failure law with A
failures

L] Probability of a module being failed at some point t+ A t, given
that it was operational at time tis Q(At)=1-R(At)=1-¢ A (A1)

(A

2!
Ay
2!

e =1+ (AN +

+...

l—e*™ =(AN) -
ClAt small At

1—e*™ =Nt




Markov Model- Reduced (Cont.)

[1 Reduced Markov model for a TMR system by collapsing the states

1-3AAt 1-2AAt |
Q 3 At 6 2AAL &
Perfect One module Failed system
State :
failed

Markov Model- Transition Matrix

| Probability of the TMR being in state 3 depends on
probability that it was in state 3 at ¢ and the probability

that it will transition back to state 3.
1-3%, 2Nt

P,(t +A1) = (1-3AA0) By (1) SV AR 6}1
P,(t +At) = 3AAt P,(t) + (1- 2AA0) P, (1)
P.(t+Af) = 2AALP,(t) + P.(t)

"1 Hence Transition matrix from Markov chain
@ (t+A) (1-34A¢) 0 0 B ()

B@t+A) |=| 3in (=244 0| B()
P.(t+1) 0 2N 1| P)




Markov Model- Transition Matrix

" In compact form  P(t+Af) = A P()

Att=0 P(Ar)=AP(0)
1
1 PO)=|0
0
L Att=2 At PQA)=AP(A)=A’ P(0)
| Att=nAt P(nAr)=A" P(0)

-~ Rpyr(t)=P5(t) + Py(t)

Markov Model- Closed Form Solution

P, (t+At) = (1-34At)P(¢)
P, (t+At) =3AAtP,(t)+ (1 -2AAt) P, (1)
P.(t+At)=2AAtP,(t)+ P.(¢)

- B -

Solving the equations using Laplace Transform




Markov Model- Closed Form Solution

RTMR = P3 (t) + P2 (t) =3 — Qe

Markov Model — Incorporating Spares

[] Example: Singular system with A failure rate and p repair rate

1-AAt AAt

[1 The state matrix equation

P(t+A)] [(-2)  ud TR
Pt+A)| | AN (I-uM) | P.(2)




Markov Model- Closed Form Solution

Bt+An) | [(1-2A1)  uA | R()
P(t+Af) |

AN (1=pAn) || Bo(9)

At—> 0

Solving the equations using Laplace Transform

t=0-P,(0)=1;P,(0)=0

Markov Model- Closed Form Solution

A+ u A+ u P (t)= [ A el
P, (s) = -
o(5) s+(A+u) |y ’ A+pu A+u
A y) PF(t)=L—Le*“””
A A+u A+pu




Markov Model- Closed Form Solution

Reliability | 2A=0.1 failures and At =0.1 Sec.

Py =—H vt (=10
A+u A+u
A A
P(0)=— T
A+u A+u
PO(CD)://L/“:/U
ﬂ, . Time (hours)
P (0)=—"—
A+u

Steady State Availability

Availability A(t) of a system is the probability that the system will
be operational at time t.

A ( t) — z tOperationd
Z tOperationd + trepair

Good for experimental evaluation.
If not possible due to time and expense, we can estimate steady

state availability

_ MTTF
S MTTF + MTTR

_1 MTTR =1
MTTF =2 i

Agg :% =F,(©)
+u




Markov Model- TMR with Repair

1-20At- pAt
[] State matrix
Be+y] [a-34)  wa O)[BO)
B(t+Ar) |=| 3AA (1-2AAr—pAr) 0| B(?)
P.(t+Ar) 0 2ANt 1| B.(®)

| What if repair is allowed following the failure?




