
 Dr. Izadi

CSE-40533

Introduction to Parallel Processing

Chapter 5

PRAM and Basic Algorithms

• Define PRAM and its various submodels
• Show PRAM to be a natural extension of the

sequential computer (RAM)
• Develop five important parallel algorithms that can

serve as building blocks

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 61

B. Parhami, UC Santa Barbara  Plenum Press, 1999

5.1 PRAM Submodels and Assumptions

Processors

.

.

.

Shared Memory

0

1

p–1

.

.

.

0
1

2
3

m–1

...

...

...

Fig. 4.6. Conceptual view of a parallel random-
access machine (PRAM).

Processor i can do the following in 3 phases of one cycle:
1. Fetch an operand from address si in shared memory
2. Perform computations on data held in local registers
3. Store a value into address di in shared memory

EREW CREW

Reads from Same Location
Exclusive Concurrent

E
x

cl
u

si
v

e
C

o
n

c
u

rr
e

n
t

CRCW

Least "Powerful",
 Most "Realistic"

Default

Most "Powerful",
Further Subdivided

ERCW
Not Useful

W
ri

te
s

to

S
am

e
L

oc
at

io
n

Fig. 5.1 Submodels of the PRAM model.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 62

B. Parhami, UC Santa Barbara  Plenum Press, 1999

CRCW PRAM is classified according to how concurrent
writes are handled. These submodels are all different from
each other and from EREW and CREW.

Undefined: In case of multiple writes, the value written is
undefined (CRCW-U)

Detecting: A code representing “detected collision” is
written (CRCW-D)

Common: Multiple writes allowed only if all store the
same value (CRCW-C); this is sometimes
called the consistent-write submodel

Random: The value written is randomly chosen from
those offered (CRCW-R)

Priority: The processor with the lowest index succeeds
in writing (CRCW-P)

Max/Min: The largest/smallest of the multiple values is
written (CRCW-M)

Reduction: The arithmetic sum (CRCW-S), logical AND
(CRCW-A), logical XOR (CRCW-X), or another
combination of the multiple values is written.

One way to order these submodels is by their
computational power:

EREW < CREW < CRCW-D

 < CRCW-C < CRCW-R < CRCW-P

Theorem 5.1: A p-processor CRCW-P (priority) PRAM
can be simulated (emulated) by a p-processor EREW
PRAM with a slowdown factor of Θ(log p).

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 63

B. Parhami, UC Santa Barbara  Plenum Press, 1999

5.2 Data Broadcasting

Broadcasting is built-in for the CREW and CRCW models

EREW broadcasting: make p copies of the data in a
broadcast vector B

Making p copies of B[0] by recursive doubling

for k = 0 to log2p – 1 Processor j, 0 ≤ j < p, do

Copy B[j] into B[j + 2k]

endfor

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

B

Fig. 5.2. Data broadcasting in EREW PRAM via
recursive doubling.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 64

B. Parhami, UC Santa Barbara  Plenum Press, 1999

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

B

Fig. 5.3. EREW PRAM data broadcasting without
redundant copying.

EREW PRAM algorithm for broadcasting by Processor i
Processor i write the data value into B[0]
s := 1
while s < p Processor j, 0 ≤ j < min(s, p – s), do

Copy B[j] into B[j + s]
s := 2s

endwhile
Processor j, 0 ≤ j < p, read the data value in B[j]

EREW PRAM algorithm for all-to-all broadcasting
Processor j, 0 ≤ j < p, write own data value into B[j]
for k = 1 to p – 1 Processor j, 0 ≤ j < p, do

Read the data value in B[(j + k) mod p]
endfor

Both of the preceding algorithms are time-optimal (shared
memory is the only communication mechanism and each
processor can read but one value per cycle)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 65

B. Parhami, UC Santa Barbara  Plenum Press, 1999

In the following naive sorting algorithm, processor j
determines the rank R [j] of its data element S[j] by
examining all the other data elements; it then writes S[j] in
element R[j] of the output (sorted) vector

Naive EREW PRAM sorting algorithm
(using all-to-all broadcasting)
Processor j, 0 ≤ j < p, write 0 into R[j]
for k = 1 to p – 1 Processor j, 0 ≤ j < p, do

l := (j + k) mod p
if S[l] < S[j] or S[l] = S[j] and l < j
then R[j] := R[j] + 1
endif

endfor
Processor j, 0 ≤ j < p, write S[j] into S[R[j]]

This O(p)-time algorithms is far from being optimal

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 66

B. Parhami, UC Santa Barbara  Plenum Press, 1999

5.3 Semigroup or Fan-in Computation

This computation is trivial for a CRCW PRAM of the
reduction variety if the reduction operator happens to be ⊗

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

S
 0:0
 1:1
 2:2
 3:3
 4:4
 5:5
 6:6
 7:7
 8:8
 9:9

 0:0
 0:1
 1:2
 2:3
 3:4
 4:5
 5:6
 6:7
 7:8
 8:9

 0:0
 0:1
 0:2
 0:3
 1:4
 2:5
 3:6
 4:7
 5:8
 6:9

 0:0
 0:1
 0:2
 0:3
 0:4
 0:5
 0:6
 0:7
 1:8
 2:9

 0:0
 0:1
 0:2
 0:3
 0:4
 0:5
 0:6
 0:7
 0:8
 0:9

Fig. 5.4. Semigroup computation in EREW PRAM.

EREW PRAM semigroup computation algorithm
Processor j, 0 ≤ j < p, copy X[j] into S[j]
s := 1
while s < p Processor j, 0 ≤ j < p – s, do

S[j + s] := S[j] ⊗ S[j + s]
s := 2s

endwhile
Broadcast S[p – 1] to all processors

The preceding algorithm is time-optimal (CRCW can do
better: problem 5.16)

Speed-up = p/log2p

Efficiency = Speed-up/p = 1/log2p

Utilization =
�W(p)
pT(p) ≈

(p–1)+(p–2)+(p–4)+�...�+(p–p/2)
p�log2p

 ≈ 1 – 1/log2p

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 67

B. Parhami, UC Santa Barbara  Plenum Press, 1999

Semigroup computation with each processor holding n/p
data elements:

Each processor combine its sublist n/p steps

Do semigroup computation on results log2p steps

Speedup(n, p) =
n

n/p�+�2�log2p =
p

1�+�(2p�log2p)/n

Efficiency(n, p) = Speedup/p =
1

1�+�(2p�log2p)/n

For p = Θ(n), a sublinear speedup of Θ(n/log n) is obtained

The efficiency in this case is Θ(n/log n)/Θ(n) = Θ(1/log n)

Limiting the number of processors to p = O(n/log n), yields:

Speedup(n, p) = n/O(log n) = Ω(n/log n) = Ω(p)

Efficiency(n, p) = Θ(1)

Using fewer processors than tasks = parallel slack

Higher degree
of parallelism
near the leaves

Lower degree
of parallelism
near the root

Fig. 5.5. Intuitive justification of why parallel slack
helps improve the efficiency.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 68

B. Parhami, UC Santa Barbara  Plenum Press, 1999

5.4 Parallel Prefix Computation

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

S
 0:0
 1:1
 2:2
 3:3
 4:4
 5:5
 6:6
 7:7
 8:8
 9:9

 0:0
 0:1
 1:2
 2:3
 3:4
 4:5
 5:6
 6:7
 7:8
 8:9

 0:0
 0:1
 0:2
 0:3
 1:4
 2:5
 3:6
 4:7
 5:8
 6:9

 0:0
 0:1
 0:2
 0:3
 0:4
 0:5
 0:6
 0:7
 1:8
 2:9

 0:0
 0:1
 0:2
 0:3
 0:4
 0:5
 0:6
 0:7
 0:8
 0:9

Fig. 5.6. Parallel prefix computation in EREW PRAM
via recursive doubling.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 69

B. Parhami, UC Santa Barbara  Plenum Press, 1999

Two other solutions, based on divide and conquer

0:0 1:1 2:2 3:3 4:4 5:5 6:6 7:7 . . . p–3:p–3 p–2:p–2 p–1:p–1

 0:1 2:3 4:5 6:7 p–4:p–3 p–2:p–1

 0:1 0:3 0:5 0:7 0:p–3 0:p–1

0:0 0:2 0:4 0:6 0:p–2

The p inputs

Parallel prefix computation of size p/2

Fig. 5.7 Parallel prefix computation using a divide-
and-conquer scheme.

T(p) = T(p/2) + 2 = 2 log2p

p/2 even-indexed inputs

Parallel prefix computation of size p/2

p/2 odd-indexed inputs

Parallel prefix computation of size p/2

0 2 4 6 . . . p–2

0 02 024 0246 024...(p–2)

 1 3 5 7 . . . p–3 p–1

 1 13 135 1357 13...(p–3) 13...(p–1)

 0:0 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:(p–3) 0:(p–2) 0:(p–1)

Fig. 5.8. Another divide-and-conquer scheme for
parallel prefix computation.

T(p) = T(p/2) + 1 = log2p Requires commutativity

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 70

B. Parhami, UC Santa Barbara  Plenum Press, 1999

5.5 Ranking the Elements of a Linked List

C F A E B D
Rank: 5 4 3 2 1 0

info next
head

Terminal element

(or distance from terminal)

Distance from head:
1 2 3 4 5 6

Fig. 5.9. Example linked list and the ranks of its
elements.

A

B

C

D

E

F

4

3

5

3

1

0

info next rank

0

1

2

3

4

5

head

Fig. 5.10. PRAM data structures representing a linked
list and the ranking results.

List-ranking appears to be hopelessly sequential

However, we can in fact use a recursive doubling scheme
to determine the rank of each element in optimal time

There exist other problems that appear to be unparallizable

This is why intuition can be misleading when it comes to
determining which computations are or are not efficiently
parallelizable (i.e., whether a computation is or is not in NC)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 71

B. Parhami, UC Santa Barbara  Plenum Press, 1999

1 1 1 1 1 0

2 2 2 2 1 0

4 4 3 2 1 0

5 4 3 2 1 0

Fig. 5.11. Element ranks initially and after each of the
three iterations.

PRAM list ranking algorithm (via pointer jumping)
Processor j, 0 ≤ j < p, do {initialize the partial ranks}

if next[j] = j
then rank[j] := 0
else rank[j] := 1
endif

while rank[next[head]] ≠ 0 Processor j, 0 ≤ j < p, do
rank[j] := rank[j] + rank[next[j]]
next[j] := next[next[j]]

endwhile

Which PRAM submodel is implicit in the preceding
algorithm?

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 72

B. Parhami, UC Santa Barbara  Plenum Press, 1999

5.6 Matrix Multiplication

For m × m matrices, C = A × B means: cij = ∑
k=0

m–1

�a ik�bk j

Sequential matrix multiplication algorithm
for i = 0 to m – 1 do

for j = 0 to m – 1 do
t := 0
 for k = 0 to m – 1 do

 t := t + aikbkj

 endfor
 cij := t

endfor
endfor

=×
i

j

ij

Fig. 5.12. PRAM matrix multiplication by using p = m2

processors.

PRAM matrix multiplication algorithm using m2 processors
Processor (i, j), 0 ≤ i, j < m, do
begin

t := 0
for k = 0 to m – 1 do

t := t + aikbkj

endfor
cij := t

end

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 73

B. Parhami, UC Santa Barbara  Plenum Press, 1999

=×
i

j

ij

PRAM matrix multiplication algorithm using m processors
for j = 0 to m – 1 Processor i, 0 ≤ i < m, do

t := 0
for k = 0 to m – 1 do

t := t + aikbkj

endfor
cij := t

endfor

Both of the preceding algorithms are efficient and provide
linear speedup

Using fewer than m processors: each processor computes
m/p rows of C

=×
i

j

ij m / p
rows

The preceding solution is not efficient for NUMA parallel
architectures

Each element of B is fetched m/p times

For each such data access, only two arithmetic operations
are performed

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 74

B. Parhami, UC Santa Barbara  Plenum Press, 1999

Block matrix multiplication

1 2 √p

1

2

√p

One processor
computes these
elements of C
that it holds in
local memory

q

q=m/√p

Fig. 5.13. Partitioning the matrices for block matrix
multiplication.

=×

i

j

ij
BlockBlock-

band

Block-band

Each multiply-add computation on q × q blocks needs

2q2 = 2m2/p memory accesses to read the blocks

2q3 arithmetic operations

So, q arithmetic operations are done per memory access

We assume that processor (i, j) has local memory to hold

Block (i, j) of the result matrix C (q2 elements)

One block-row of B; say Row kq + c of Block (k, j) of B

(Elements of A can be brought in one at a time)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 75

B. Parhami, UC Santa Barbara  Plenum Press, 1999

For example, as element in row iq + a of column kq + c in
block (i, k) of A is brought in, it is multiplied in turn by the
locally stored q elements of B, and the results added to the
appropriate q elements of C

iq

iq+1

iq+2

iq+q–1

iq+a

.

.

.

.
 .

.

kq+c

jq
jq+1

jq+2 jq+b jq+q–1. Elements of
Block (k, j)
in Matrix B

Element of
Block (i, k)
in Matrix A

jq
jq+1

jq+2 jq+b

iq

iq+1

iq+2

iq+q–1

jq+q–1

iq+a

.

.

.

.

.
 .

.

Elements of
Block (i, j)
in Matrix C

kq+c Multip
ly

Add

Fig. 5.14. How Processor (i, j) operates on an element
of A and one block-row of B to update one
block-row of C.

On the Cm* NUMA-type shared-memory multiprocessor,
this block algorithm exhibited good, but sublinear, speedup

p = 16, speed-up = 5 in multiplying 24 × 24 matrices;

improved to 9 (11) for larger 36 × 36 (48 × 48) matrices

The improved locality of block matrix multiplication can also
improve the running time on a uniprocessor, or distributed
shared-memory multiprocessor with caches

Reason: higher cache hit rates.

