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Abstract: The operation of logarithmic addition was always eclipsed with heavy 

volumes of look-up tables. So with a goal to reduce the ROM size, an elegant and 

novel technique for logarithmic addition using RNS (Residue Number System) is 

demonstrated in this paper. To formulate this technique, the properties of Finite Fields 

and Finite Rings are exploited. A multiple base logarithm has been defined first, 

which was then successfully used for the formulation of our proposed technique for 

logarithmic addition. With our approach, the ROM requirement has been reduced to a 

bare minimum, thereby reducing the complexity of logarithmic addition, enabling an 

elegant and efficient implementation.  

 

1 Introduction 

Computing techniques based on logarithmic principles can simplify 

multiplication, division, roots and powers. When logarithms are used, multiplication 

and division are reduced to addition and subtraction respectively, and powers and 

roots are reduced to multiplication and division respectively. In contrast, addition and 

subtraction involve complicated operations and require prohibitively large ROM size 

[1]. Hence, it is of great interest to probe into the issues related to the reduction of 

ROM size. It is observed that RNS is the most appropriate choice to achieve the same.   
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An RNS is defined by a set of relatively prime integers (moduli) m1 , m2 ,…, mr . 

Each integer X in the range 0 to M-1 for M mii
r=∏ =1  is uniquely represented by an r 

tuple ( x1 , x2 ,…, xr ), where each residue xi = X mod mi  is defined as the least 

remainder when X is divided by the modulus mi . In RNS, arithmetic operations on 

large integers are done by converting them into smaller residues and performing the 

operations independently and all in parallel, thereby speeding up the whole operation 

[2,3]. 

 

2 Index Representations in Finite Fields and Finite Rings 

It follows from Number Theory that an algebraic field is formed with a set of 

elements together with two operations, + and *, satisfying certain properties [4,5]. 

Finite fields (Galois fields) are classified into two types: prime fields GF(p) with p 

integer elements,  and polynomial fields GF(pm) with  pm algebraic polynomials, 

where p is any prime and m is a positive integer. 

In  GF(p), all the integers in the range 0 to p-1 are closed under modulo addition 

and all the nonzero integers are closed under modulo multiplication. By virtue of the 

latter, each and every integer in the multiplicative group G(p) can be generated as 

successive powers of a certain primitive root g. ∀  a∈ G(p), ∃  g and i such that 

1g
p

)p( ≡φ and ag
p

i ≡ , where φ(p) = p-1. )p(φ  represents the number of  non-negative 

integers less than p which are relatively prime to p and can be calculated using the 

general expression: 







−Π=φ

q
11n)n( n|q , where the symbol Πq|n means the product 

extended over all primes q that divide into n. 
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In finite fields GF(pm), the elements themselves are algebraic polynomials. When 

these elements are treated as integers, they do not form a field, but form a quotient 

ring called the ring of integers modulo pm, denoted by Z/(pm). These finite rings 

modulo pm form two categories, namely Z/(2m) and Z/(pm) for even and odd values of 

p, and the elements in these are strictly integers. 

Any integer x∈  [1, 2m -1] can be uniquely coded in Z/(2m) as a triple index code 

<α,β,γ> using the relationship m2
1)(52x γβα −= , where α∈ {0,1,…,m−1}, 

β∈ {0,1,…,(2m-2-1)} and γ∈ {0,1} [6,7]. But it may be noted that the triplet codes 

formed for the even integers are not unique. In a similar manner, in Z/(pm) for odd 

prime p, it can be seen that, ∃  g∈  Z/(pm) such that 1g
mp

)mp( ≡φ , where ‘g’ is a 

primitive root of the quotient ring. So all nonzero elements of Z/(pm) can be generated 

using the relationship mp
pg βα , where, α∈  {0,1,…,φ(pm)-1} and β∈  {0,1,…,m-1} [8]. 

 

3 Logarithms - Definitions and Properties 

Recalling from elementary algebra, the logarithm of a number x is defined as the 

exponent y to which a base a must be raised to obtain x. i.e., for yax = , xlogy a= . The 

above definition can be directly applied to numerical calculations in the case of 

elements under GF(p), since these elements are expressed as powers of a single base g 

(primitive root), reduced to mod p. On the other hand, elements of the quotient ring 

Z/(pm) for both odd and even values of p, can only be expressed as the product of the 

powers of  two and three elements respectively, reduced to modulo pm. Hence a single 

base logarithm is not sufficient in the above cases of Z/(pm). This insufficiency brings 

us to the definition of a multiple base logarithm. 
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Definition 1: The multiple base logarithm of a number X, denoted here as 

)X(lm )b,...,b,b( m21
, is an m-tuple of exponents (α1,α2,…,αm) to which m bases b1,b2,…,bm 

must be raised respectively to satisfy the equality m21
m21 b...bbX ααα=  ,  where m>1. 

i.e. if  m21
m21 b...bbX ααα= , then (α1,α2,…,αm) = )X(lm )b,...,b,b( m21

 

3.1 Algebraic properties of Multiple base logarithms 

All algebraic properties satisfied by normal logarithms apply to multiple base 

logarithms also. If any two integers 
2,1=iiX  satisfy the equality 

)X(lm),...,,( i)b,...,b,b(im2i1i m21
=ααα , then the following relations hold: 

(a) )X(lm)X(lm)XX(lm 2)b,...,b,b(1)b,...,b,b(21)b,...,b,b( m21m21m21
+=  

(b) )X(lm)X(lm
X
Xlm 2)b,...,b,b(1)b,..,.b,b(

2

1
)b,...,b,b( m21m21m21

−=






  

(c ) ( ) )X(lmrXlm )b,...,b,b(
r

)b,...,b,b( m21m21
=  

(d) ( ) )X(lm
r
1Xlm )b,...,b,b(

r
)b,...,b,b( m21m21

=  

The definition of multiple base logarithm can now be easily adopted for defining dual 

base logarithm for Z/(pm) and triple base logarithm for Z/(2m).  

Definition 2: For any nonzero integer X∈  Z/(pm) such that mp
pgX βα= , the dual base 

logarithm of X with respect to the bases (g, p) can be expressed as (α,β) = lm(g,p) (X). 

Definition 3: For any nonzero integer X∈  Z/(2m) such that m2
1)(52X γβα −= , the triple 

base logarithm of X with respect to the bases (2,5,-1) can be expressed as (α,β,γ) = 

lm(2,5,-1) (X). 
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4  Logarithmic Computations 

In all the three cases of GF(p), Z/(pm) and Z/(2m) described above, multiplication 

of two integers is performed by adding their corresponding indices and then finding 

the inverse index value [7,8,9]. Thus multiplication is easily transformed into mere 

addition. But addition and subtraction in logarithmic domain are considered more 

complicated and they need heavy volumes of look up tables. One brute-force way is to 

perform these operations with the use of complete look-up tables [1]. However, the 

size 22n × n bits of such a table is prohibitive for any reasonable value of n, n being the 

number of bits in an operand. As an alternative, the following method is commonly 

used in logarithmic number processors, which reduces the look-up table size to no 

larger than 2n × n [1].  

Let  BAC ±= such that ,bB,bA beae == and cebC = . By taking A as common 

factor, C can be expressed as 






 ±=
A
B1AC . Taking logarithms on both sides,   

)aebe(
bbbbbc b1logAlog

A
B1logAlog

A
B1Aloge −±+=±+=






 ±=  

fa ee +=  , where )aebe(
bf b1loge −±=  

The value of  ef  should be precalculated and stored in a look-up table. Although 

the above method reduces the look-up table size, still, for large operand sizes the 

ROM size becomes prohibitively large. Hence the necessity arises to explore other 

techniques to reduce the size of look-up tables needed to perform logarithmic 

addition/subtraction. 

5  Logarithmic Addition using RNS  

It is observed that, by exploiting the properties of RNS, together with those of 

finite fields and finite rings, the look-up table size can be successfully brought down 
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to a bare minimum. Based on this observation, a novel technique of logarithmic 

addition using residue number systems is proposed in this paper. As mentioned 

earlier, it follows from Number Theory that, in a finite field GF(p) addition is a closed 

operation in mod p. Based on the above property, we propose the following theorem 

which shows how logarithmic addition can be carried out in a finite field. 

Theorem1: For any two nonzero integers ,gX)p(GFY,X
p

xα=∋∈ and 
p

ygY α= , where p 

is a prime, the index α of their sum reduced mod p is 1pfx −α+α , where 

p
gf

1pxy
g1log −

α−α
+=α . 

Proof: By applying logarithmic principles, the indices of X and Y can be written as 

Ylogand,Xlog gygx =α=α . By the additive closure property of GF(p), 
pp

gYX α=+ , 

for some value of ).p(GF∈α  Hence, 
p

gpg X
Y1XlogYXlog 






 +=+=α
 

fx
p

gg
1pxy

g1logXlog α+α=++= −
α−α

, where 
p

1pxy
gf g1log −

α−α
+=α . But in GF(p), 

since 1pfxp
1p ,1g −

− α+α=α≡ .      QED 

Now let us consider addition under the finite rings in  a similar manner. It 

becomes apparent that, a single index addition is not sufficient, rather an index vector 

addition is required in these cases. This necessitates the proposition of the following 

Lemma. 

Lemma 1: If  )Y(lm),...,,(and)X(lm),...,,( )b,...,b,b(m21)b,...,b,b(m21 m21m21
=βββ=ααα , then  

( )....,,,),...,,(),...,,( mm2211m21m21 β+αβ+αβ+α=βββ+ααα  

Proof:  

)Y(lm)X(lm),...,,(),...,,( )b,...,b,b()b,...,b,b(m21m21 m21m21
+=βββ+ααα     
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   ( )mm2211
m21m21 m21)b,...,b,b()b,...,b,b( b...bblm)XY(lm β+αβ+αβ+α==  

    ( )mm2211 ...,,, β+αβ+αβ+α=           QED 

By using the definitions given in Section 3 and also applying Lemma 1, addition 

in finite rings can be performed. The following Theorems 2 and 3 state the 

expressions for performing logarithmic addition in finite rings  Z/(pm) and Z/(2m).  

Theorem 2: For any two nonzero integers m
xx

p
m pgX)p/(ZY,X βα=∋∈  and 

,pgY
mp

yy βα=  the index pair ),( βα  of their sum is given by 

( )( )
( )














 β+βα+α

β≥ββ+βα+α
=βα

Φ

Φ

otherwise,

for,
),(

fy)p(fy

xyfx)p(fx

m

m

 

.otherwise,1sand

for,0swith,pg1lm),(,where xy

p

)()1()()1(

)p,g(ff
m

xy
s

)mp(xy
s

=

β≥β=+=βα β−β−α−α−
Φ

 

Proof : By the additive closure property of  Z/(pm),  .)Z/(pYX m
pm ∈+   

So mm
pp pgYX βα=+   for some value of  α  and β . 

Hence  (α , β )
m

m

p
)p,g(p)p,g( X

Y1XlmYXlm 






 +=+=            

)1(
X
Y1lm)X(lm

mp
)p,g()p,g( ++=  

)2(pg
X
Y

m

xy)mp(xy

m
p

)(

p

β−βα−α
Φ=  

But when ,xy β<β .0awhere,pp axy >= −β−β  Then, 
m

)mp(xy

m

p

a
p p

g
X
Y Φ

α−α

= .  
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Since ap  and mp  are non-relatively prime, 
mpX

Y cannot be evaluated. So Eqn. 1 is 

rewritten as: 
m

m
p

)p,g()p,g(p)p,g( Y
X1lm)Y(lmXYlm),( ++=+=βα  

                             )3(pg1lm)Y(lm
m

yx)mp(yx

p

)(
)p,g()p,g(

β−βα−α
Φ++=  

However, when ,xy β≥β  Eqn. 1 becomes  

         )4(pg1lm)X(lm),(
m

xy)mp(xy

p

)(
)p,g()p,g(

β−βα−α
Φ++=βα                       

Combining Eqns. 3 and 4, 














++

β≥β++

=βα
β−βα−α

β−βα−α

Φ

Φ

otherwise,pg1lm)Y(lm

for,pg1lm)X(lm

),(

m

yx)mp(yx

m

xy)mp(xy

p

)(
)p,g()p,g(

xy
p

)(
)p,g()p,g(

 

Hence )5(
otherwise),(),(

for),(),(
),(

ffyy

xyffxx







βα+βα

β≥ββα+βα
=βα  

otherwise,1sand

for,0swith,pg1lm),(,where xy

p

)()1()()1(

)p,g(ff
m

xy
s

)mp(
xy

s

=

β≥β=+=βα β−β−α−α−
Φ

 

Using Lemma 1, Eqn. 5 results in   

( )( )
( )














 β+βα+α

β≥ββ+βα+α
=βα

Φ

Φ

otherwise,

for,
),(

fy)p(fy

xyfx)p(fx

m

m

 

                    QED 

In the  above  case, whenever  β≥m, the sum is made zero [8]. 

Theorem3: For any two nonzero integers m
xxx

2
m )1(52X)2/(ZY,X γβα −=∋∈  and 

m
yyy

2
)1(52Y γβα −= , the index triplet ),,( γβα

 of their sum is given by, 
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( )
( )






γ+γ+β+βα+α

α≥αγ+γ+β+βα+α
=γβα

−

−

otherwise,)(

for,)(
),,(

2fy2fyfy

xy2fx2fxfx

2m

2m
 

otherwise1sand

for0swith,)1(521lm),,(

,where

xy

2
2

)()1()()1()()1(
)1,5,2(fff

m

m
2

xy
s

2m2
xy

s
xy

s

=

α≥α=−+=γβα
γ−γ−β−β−α−α−

−
−

Proof: By the additive closure property of  Z/(2m), ).2/(ZYX m
2m ∈+   

So,  m2YX +  m2
)1(52 γβα −=  for some value of  α , β  and γ . 

Hence ),,( γβα   m2)1,5,2( YXlm += −   
m2

)1,5,2( X
Y1Xlm 






 += −  

     
m2

)1,5,2()1,5,2( X
Y1lm)X(lm ++= −−   (6) 

But     
m2X

Y
m

m

2xy2m2xyxy
2

2

)( )1(52
γ−γβ−βα−α −= −      (7) 

When ,xy α<α .0bwhere,22 bxy >= −α−α   

Then  
m2X

Y

m

m

2xy2m2xy

2

b
2

2

)1(5
γ−γβ−β

−
=

−

.  Since b2  and m2  are non-relatively prime, 

m2X
Y cannot be evaluated. So Eqn. 6 is rewritten as: 

m
m

2
)1,5,2()1,5,2(2)1,5,2( Y

X1lm)Y(lmXYlm),,( ++=+=γβα −−−  

          
mm

yx2m2yxyx

22
2

)(
)1,5,2()1,5,2( )1(521lm)Y(lm

γ−γβ−βα−α
−− −++= −             (8) 

However, when xy α≥α ,   Eqn. 6 becomes, 

mm

xy2m2xyxy

22
2

)(
)1,5,2()1,5,2( )1(521lm)X(lm),,(

γ−γβ−βα−α
−− −++=γβα −             (9) 

Combining Eqns. 8 and 9, 
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











−++

α≥α−++

=γβα
γ−γβ−βα−α

−−

γ−γβ−βα−α
−−

−

−

otherwise,)1(521lm)Y(lm

for,)1(521lm)X(lm

),,(

m
m

yx2m2yxyx

m
m

xy2m2xyxy

2
2

)()(
)1,5,2()1,5,2(

xy
2

2
)()(

)1,5,2()1,5,2(

 

Hence  






γβα+γβα

α≥αγβα+γβα
=γβα

,otherwise),,(),,(

for),,(),,(
),,(

fffyyy

xyfffxxx     (10) 

otherwise1sand

for0swith,)1(521lm),,(

,where

xy

2
2

)()1()()1()()1(
)1,5,2(fff

m

m
2

xy
s

2m2
xy

s
xy

s

=

α≥α=−+=γβα
γ−γ−β−β−α−α−

−
−

 

Using Lemma 1, Eqn. 10 results in 

( )
( )






γ+γ+β+βα+α

α≥αγ+γ+β+βα+α
=γβα

−

−

otherwise,)(

for,)(
),,(

2fy2fyfy

xy2fx2fxfx

2m

2m
 

                                 QED 

Whenever α = m-1, β and γ are made zero, and when α > m-1, the sum is made 

zero [8]. The following example illustrates how logarithmic addition is performed in 

finite fields and finite rings. 

Example 1: This example shows the procedure for performing logarithmic addition in 

the three different cases of GF(p), Z/(pm), and Z/(2m). 

Case 1: Modulus is 31 with primitive root g = 3. The index coding for the nonzero 

elements of GF(31) is given in Table 1(a). Let 21 and 18 be the indices of two 

operands X=15 and Y=4 respectively. Using Theorem 1, the index of their sum is 

3031

302118
3 31log21 −++=α = 4, which corresponds to a sum of 19.  

Case 2: Modulus is 33  with primitive root g = 2. Also, φ(33) = 18. The index coding 

for the nonzero elements of Z/(33) is given in Table 1(b). Let (5,1) and (2,0) be the 

index pairs of the operands  X=15 and Y=4 respectively. Since  βy < βx, s = 1 in 



 11

Theorem 2. Hence  ( ) )0,10(25lm321lm, )3,2(33

)01(1825
)3,2(ff ==+=βα −− . Using Theorem 2, 

the index pair corresponding to the sum of the operands is given by  

( ) )0,12(00,102),( 18 =++=βα . This corresponds to the number 19, thus verifying the 

result. 

Case 3: Modulus is 25. Also, 2m-2 = 8. An index coding for the nonzero elements of 

Z/(25) is given in Table 1(c). Let (0,4,1) and (2,0,0) be the index triplets of the 

operands X=15 and Y=4 respectively. In Theorem 3, since .0s,xy =α≥α  Hence,  

( ) )0,3,0(29lm)1(521lm,, )1,5,2(
22

1040)02(
)1,5,2(fff

55
28 ==−+=γβα −

−−−
− . So the sum 

)1,7,0()01,34,00(),,(
28

=+++=γβα . This corresponds to the number 19.  

The look-up tables showing the index coding in the cases of GF(31), Z/(33), and z/(25) 

are given in Tables 1(a), 1(b) and 1(c). 

Table 1(a). Index coding for elements x of  GF(31) with a primitive root of 3 

x 1 2 3 4 5 6 7 8 9 10 

α  0 24 1 18 20 25 28 12 2 14 

 

x 11 12 13 14 15 16 17 18 19 20 

α  23 19 11 22 21 6 7 26 4 8 

 

x 21 22 23 24 25 26 27 28 29 30 

α 29 17 27 13 10 5 3 16 9 15 
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Table 1(b). Index coding for elements x of Z/(33) with a primitive root of 2 

x 1 2 3 4 5 6 7 8 9 10 11 12 13 

α, β 0,0 1,0 0,1 2,0 5,0 1,1 16,0 3,0 0,2 6,0 13,0 2,1 8,0 

 

x 14 15 16 17 18 19 20 21 22 23 24 25 26 

α, β 17,0 5,1 4,0 15,0 1,2 12,0 7,0 4,1 14,0 11,0 3,1 10,0 9,0 

 

 

Table 1(c ). Index coding for elements x of Z/(25)  

x 1 2 3 4 5 6 7 8 9 10 

α, β,γ 0,0,0 1,0,0 0,3,1 2,0,0 0,1,0 1,3,1 0,2,1 3,0,0 0,6,0 1,1,0 

 

x 11 12 13 14 15 16 17 18 19 20 

α, β,γ 0,5,1 2,3,1 0,7,0 1,2,1 0,4,1 4,0,0 0,4,0 1,6,0 0,7,1 2,1,0 

 

x 21 22 23 24 25 26 27 28 29 30 31 

α, β,γ 0,5,0 1,5,1 0,6,1 3,3,1 0,2,0 1,7,0 0,1,1 2,2,1 0,3,0 1,4,1 0,0,1 

 

6  ROM Requirements 

It has been shown in [10] that a 36-bit processor can be implemented using a 

balanced 5-bit moduli set {17,19,23,25,27,29,31,32}. Small look-up tables are used to 

generate the relevant logarithms. For generating αf for each prime modulus, look-up 

tables of size up to 32×5 only are needed. For moduli 25 and 27, the look-up table 

sizes needed for generating ),( ff βα  are 64×6 and 128×7 respectively. For the 

modulus 32, the corresponding look-up table size is 128×7, for generating 

),,( fff γβα , thus requiring only a total of less than 500 bytes for the entire system.  
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7 Conclusions 

A novel technique for logarithmic addition that finds wide applications in many 

fields of scientific computing, is proposed in this paper. A new multiple base 

logarithm has been defined which was used to formulate an algorithm for logarithmic 

addition in integer rings. Furthermore, by exploiting the properties of RNS and those 

of finite fields and finite rings, we have succeeded in reducing the ROM requirements 

for logarithmic addition to a bare minimum of less than 500 bytes, for a 36-bit RNS 

based processor using a 5-bit balanced moduli set.  
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