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Preface

The fundamental idea behind any physical theory is to develop predictive power with a
minimal set of experimentally tested postulates. However, historical development of a
theory is not always that systematic. Different theorists and experimentalists approach
the subject differently and achieve successes in different directions which gives the subject
a rather “patchy” appearance. This has been particularly true for quantum mechanics.
However, now that the dust has settled and physicists know quantum mechanics reasonably
well, it is necessary to consolidate concepts and put together that minimal set of postulates.

The minimal set of postulates in classical mechanics is already very well known and
hence it is a much easier subject to present to a student. In quantum mechanics such a set
is usually not identified in text books which, I believe, is the major cause of fear of the sub-
ject among students. Very often, text books enumerate the postulates but continue to add
further assumptions while solving individual problems. This is particularly disconcerting in
quantum mechanics where, physical intuition being nonexistent, assumptions are difficult
to justify. It is also necessary to separate the postulates from the sophisticated mathe-
matical techniques needed to solve problems. In doing this one may draw analogies from
classical mechanics where the physical postulate is Newton’s second law and everything
else is creative mathematics for the purpose of using this law in different circumstances. In
quantum mechanics the equivalent of Newton’s second law is, of course, the Schrédinger
equation. However, before using the Schrédinger equation it is necessary to understand
the mathematical meanings of its components e.g. the wavefunction or the state vector.
This, of course, is also true for Newton’s law. There one needs to understand the relatively
simple concept of particle trajectories.

Some previous texts have successfully separated the mathematics from the physical
principles. However, as a consequence, they have introduced so much mathematics that the
physical content of the theory is lost. Such books are better used as references rather than
textbooks. The present text will attempt a compromise. It will maintain the separation
of the minimal set of postulates from the mathematical techniques. At the same time
close contact with experiment will be maintained to avoid alienating the physics student.
Mathematical rigor will also be maintained barring some exceptions where it would take
the reader too far afield into mathematics.
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A significantly different feature of this book is the highlighting of numerical methods.
An unavoidable consequence of doing practical physics is that most realistic problems do not
have analytical solutions. The traditional approach to such problems has been a process
of approximation of the complex system to a simple one and then adding appropriate
numbers of correction terms. This has given rise to several methods of finding correction
terms and some of them will be discussed in this text. However, these techniques were
originally meant for hand computation. With the advent of present day computers more
direct approaches to solving complex problems are available. Hence, besides learning to
solve standard analytically solvable problems, the student needs to learn general numerical
techniques that would allow one to solve any problem that has a solution. This would
serve two purposes. First, it makes the student confident that every well defined problem is
solvable and the world does not have to be made up of close approximations of the harmonic
oscillator and the hydrogen atom. Second, one very often comes up with a problem that is
so far from analytically solvable problems that standard approximation methods would not
be reliable. This has been my motivation in including two chapters on numerical techniques
and encouraging the student to use such techniques at every opportunity. The goal of these
chapters is not to provide the most accurate algorithms or to give a complete discussion
of all numerical techniques known (the list would be too long even if I were to know them
all). Instead, I discuss the intuitively obvious techniques and encourage students to develop
their own tailor-made recipes for specific problems.

This book has been designed for a first course (two semesters) in quantum mechanics
at the graduate level. The student is expected to be familiar with the physical principles
behind basic ideas like the Planck hypothesis and the de Broglie hypothesis. He (or she)
would also need the background of a graduate level course in classical mechanics and some
working knowledge of linear algebra and differential equations.
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