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Preface

The fundamental idea behind any physical theory is to develop predictive power with a
minimal set of experimentally tested postulates. However, historical development of a
theory is not always that systematic. Di®erent theorists and experimentalists approach
the subject di®erently and achieve successes in di®erent directions which gives the subject
a rather \patchy" appearance. This has been particularly true for quantum mechanics.
However, now that the dust has settled and physicists know quantum mechanics reasonably
well, it is necessary to consolidate concepts and put together that minimal set of postulates.

The minimal set of postulates in classical mechanics is already very well known and
hence it is a much easier subject to present to a student. In quantum mechanics such a set
is usually not identi¯ed in text books which, I believe, is the major cause of fear of the sub-
ject among students. Very often, text books enumerate the postulates but continue to add
further assumptions while solving individual problems. This is particularly disconcerting in
quantum mechanics where, physical intuition being nonexistent, assumptions are di±cult
to justify. It is also necessary to separate the postulates from the sophisticated mathe-
matical techniques needed to solve problems. In doing this one may draw analogies from
classical mechanics where the physical postulate is Newton's second law and everything
else is creative mathematics for the purpose of using this law in di®erent circumstances. In
quantum mechanics the equivalent of Newton's second law is, of course, the SchrÄodinger
equation. However, before using the SchrÄodinger equation it is necessary to understand
the mathematical meanings of its components e.g. the wavefunction or the state vector.
This, of course, is also true for Newton's law. There one needs to understand the relatively
simple concept of particle trajectories.

Some previous texts have successfully separated the mathematics from the physical
principles. However, as a consequence, they have introduced so much mathematics that the
physical content of the theory is lost. Such books are better used as references rather than
textbooks. The present text will attempt a compromise. It will maintain the separation
of the minimal set of postulates from the mathematical techniques. At the same time
close contact with experiment will be maintained to avoid alienating the physics student.
Mathematical rigor will also be maintained barring some exceptions where it would take
the reader too far a¯eld into mathematics.
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A signi¯cantly di®erent feature of this book is the highlighting of numerical methods.
An unavoidable consequence of doing practical physics is that most realistic problems do not
have analytical solutions. The traditional approach to such problems has been a process
of approximation of the complex system to a simple one and then adding appropriate
numbers of correction terms. This has given rise to several methods of ¯nding correction
terms and some of them will be discussed in this text. However, these techniques were
originally meant for hand computation. With the advent of present day computers more
direct approaches to solving complex problems are available. Hence, besides learning to
solve standard analytically solvable problems, the student needs to learn general numerical
techniques that would allow one to solve any problem that has a solution. This would
serve two purposes. First, it makes the student con¯dent that every well de¯ned problem is
solvable and the world does not have to be made up of close approximations of the harmonic
oscillator and the hydrogen atom. Second, one very often comes up with a problem that is
so far from analytically solvable problems that standard approximation methods would not
be reliable. This has been my motivation in including two chapters on numerical techniques
and encouraging the student to use such techniques at every opportunity. The goal of these
chapters is not to provide the most accurate algorithms or to give a complete discussion
of all numerical techniques known (the list would be too long even if I were to know them
all). Instead, I discuss the intuitively obvious techniques and encourage students to develop
their own tailor-made recipes for speci¯c problems.

This book has been designed for a ¯rst course (two semesters) in quantum mechanics
at the graduate level. The student is expected to be familiar with the physical principles
behind basic ideas like the Planck hypothesis and the de Broglie hypothesis. He (or she)
would also need the background of a graduate level course in classical mechanics and some
working knowledge of linear algebra and di®erential equations.
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Chapter 1

Mathematical Preliminaries

1.1 The state vectors

In the next chapter we shall consider the complete descriptor of a system to be its state
vector. Here I shall de¯ne the state vector through its properties. Some properties and
de¯nitions that are too obvious will be omitted. I shall use a slightly modi¯ed version of
the convenient notation given by Dirac [1]. A state vector might also be called a state or a
vector for short. In the following, the reader is encouraged to see analogies from complex
matrix algebra.

A state vector for some state s can be represented by the so called ket vector jsi. The
label s can be chosen conveniently for speci¯c problems. jsi will in general depend on all
degrees of freedom of the system as well as time. The space of all possible kets for a system
will be called the linear vector space V . In the following, the term linear will be dropped as
all vector spaces considered here will be linear. The fundamental property (or rule) of V is

Rule 1 If jsi; jri 2 V then
ajsi+ bjri 2 V ;

where a; b 2 C (set of complex numbers)

The meaning of addition of kets and multiplication by complex numbers will become obvious
in the sense of components of the vector once components are de¯ned. The physical content
of the state vector is purely in its \direction", that is

Rule 2 The physical contents of jsi and ajsi are the same if a 2 C and a6= 0.

At this stage the following commonly used terms can be de¯ned.

1



CHAPTER 1. MATHEMATICAL PRELIMINARIES 2

De¯nition 1 A LINEAR COMBINATION of state vectors is a sum of several vectors
weighted by complex numbers e.g.

ajpi+ bjqi+ cjri+ djsi+ : : :

where a; b; c; d 2 C.

De¯nition 2 A set of state vectors is called LINEARLY INDEPENDENT if no one mem-
ber of the set can be written as a linear combination of the others.

De¯nition 3 A subset U of linearly independent state vectors is called COMPLETE if any
jsi 2 V can be written as a linear combination of members of U .

1.2 The inner product

The inner product is de¯ned as a mapping of an ordered pair of vectors onto C, that is, the
inner product is a complex number associated to an ordered pair of state vectors. It can
be denoted as (jri; jsi) for the two states jri and jsi. The following property of the inner
product is sometimes called sesquilinearity.

Rule 3

(ajri+ bjui; cjsi+ djvi) =
a¤c(jri; jsi) + b¤c(jui; jsi) + a¤d(jri; jvi) + b¤d(jui; jvi):

This indicates that the inner product is linear in the right argument in the usual sense but
antilinear in the left argument. The meaning of antilinearity is obvious from rule 3. For
compactness of notation one de¯nes the following.

De¯nition 4 Vy, is called the adjoint of V. For every member jsi 2 V there is a cor-
responding member jsiy 2 Vy and vice versa. The hsj (bra of s) notation is chosen such
that

jsiy ´ hsj; hsjy ´ jsi
The one-to-one correspondence of V and Vy is speci¯ed as follows through the corresponding
members jri and hrj.

jriyjsi ´ hrjjsi ´ hrjsi ´ (jri; jsi) (1.1)

where jsi is an arbitrary ket.
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The names \bra" and \ket" are chosen because together they form the \bracket" of the
inner product. From rule 3 and de¯nition 4 it can be seen that

(ajri+ bjui)y = a¤hrj+ b¤huj; (1.2)

(ahrj+ bhuj)y = a¤jri+ b¤jui: (1.3)

Using this new notation, rule 3 can now be written as

Rule 3

(ajri+ bjui)y(cjsi+ djvi)
= (a¤hrj+ b¤huj)(cjsi+ djvi)
= a¤chrjsi+ b¤chujsi+ a¤dhrjvi+ b¤dhujvi:

Another property of the inner product that is necessary for our applications is

Rule 4

hrjsi¤ ´ hrjsiy = jsiyhrjy = hsjri:

At this stage it might have occurred to the student that state vectors are a generalization
of vectors in arbitrary dimensions. In fact they will be seen to be of in¯nite dimensionality
in most cases. The kets are like column vectors and the bras like row vectors of complex
matrix algebra. The inner product is the equivalent of the scalar or dot product.

Extending the analogy one can de¯ne orthogonality, and norm.

De¯nition 5 Two nonzero vectors represented by the kets jri and jsi are de¯ned to be
ORTHOGONAL if hrjsi = 0.

De¯nition 6 The NORM of a vector jsi is de¯ned as its inner product with itself viz.
hsjsi. Note that, for convenience, this is chosen to be the square of the usual de¯nition of
the norm.

From rule 4 it is obvious that the norm of any vector must be real. Another rule that one
needs can now be introduced.

Rule 5 The norm of every vector in V is positive de¯nite except for the zero vector (the
additive identity) which has a norm of zero.
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Now one can prove two useful theorems relating orthogonality and linear independence of
a set of vectors.

Theorem 1.1 A set of mutually orthogonal nonzero vectors is linearly independent.

Proof: Let the set of mutually orthogonal vectors be fjfiig where the label i distinguishes
di®erent members of the set. Here I shall choose i to be a positive integer. But the
proof presented here can be readily generalized for i belonging to any set of integers
or even a continuous set of real numbers.

We shall prove the theorem by contradiction. Hence, let us assume that the set is
not linearly independent i.e. some member jfki of the set can be written as a linear
combination of the others. Then

jfki =
X
i6=k
aijfii: (1.4)

Multiplying ( i.e. taking an inner product) from the left by hfjj (j6= k), one obtains

hfjjfki =
X
i6=k
aihfjjfii: (1.5)

From the mutual orthogonality condition the left side vanishes and the right side has
only one term remaining i.e.

0 = ajhfjjfji: (1.6)

From rule 5 we conclude that hfj jfji cannot be zero and hence
aj = 0 8j: (1.7)

This leads to the right side of equation 1.4 being zero. But the vector jfki is not zero.
This contradiction completes the proof.

Theorem 1.2 Members of a set of n linearly independent nonzero vectors can be written
as a linear combination of a (nonunique) set of n mutually orthogonal nonzero vectors.

Proof: Let the given set of linearly independent vectors be fjgiig. For convenience the label
i can be considered to be a positive integer (i = 1; 2; : : : ; n). However, a generalization
for i belonging to any set of integers or even a continuous set of real numbers is
possible.

We shall prove this theorem by construction. Let us de¯ne a set of vectors fjfiig
(i = 1; 2; : : : ; n) by

jfki = jgki ¡
k¡1X
i=1

hfijgki
hfijfii jfii: (1.8)
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This set can be seen to be a mutually orthogonal set (by induction). If the jgki's are
linearly independent then all the jfki's can be shown to be nonzero. Also it is evident
from equation 1.8 that the jgki's can be written as a linear combination of the jfki's.
This completes the proof.

De¯nition 7 A linear transformation from a linearly independent nonzero set fjgiig to a
mutually orthogonal nonzero set fjfiig is called ORTHOGONALIZATION. This is not a
unique transformation and the one shown in equation 1.8 is just an example.

1.3 Linear operators

An operator de¯ned on the space V is an object that maps the space V onto itself. If Q is
an operator then its operation on a ket jsi is written as Qjsi and Qjsi 2 V. An operator Q
is a linear operator if

Rule 6

Q(ajri+ bjsi) = aQjri+ bQjsi;
where a; b 2 C and jri; jsi 2 V.

The addition of two operators and multiplication by a complex number is de¯ned by the
following.

De¯nition 8
(aP + bQ)jsi ´ a(P jsi) + b(Qjsi); (1.9)

where a; b 2 C; jsi 2 V and P and Q are linear operators (to be called just operators from
here on as nonlinear operators will never be used).

Product of two operators P and Q is de¯ned to be PQ in an obvious way.

De¯nition 9
(PQ)jsi ´ P (Qjsi); (1.10)

where jsi 2 V.

In general PQ6= QP . Hence, we de¯ne:

De¯nition 10 The COMMUTATOR BRACKET (or just COMMUTATOR) of two oper-
ators P and Q is de¯ned as

[P;Q] = PQ¡QP (1.11)
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The following identities involving commutators can be readily proved from the above de¯-
nition.

[P;Q] = ¡[Q;P ]; (1.12)

[P;Q+R] = [P;Q] + [P;R]; (1.13)

[P;QR] = [P;Q]R+Q[P;R]; (1.14)

[P; [Q;R]] + [R; [P;Q]] + [Q; [R;P ]] = 0: (1.15)

These are the same as the properties of the Poisson bracket in classical mechanics. Postu-
late 2 in the next chapter uses this fact.

Operation of an operator Q on a bra hsj is written as hsjQ and is de¯ned as follows.

De¯nition 11
(hsjQ)jri ´ hsjQjri ´ hsj(Qjri) (1.16)

where jri 2 V.

Another useful de¯nition is:

De¯nition 12 The adjoint of an operator Q is called Qy and de¯ned as

Qyjsi ´ (hsjQ)y (1.17)

where jsi 2 V.

For the description of observables the following kind of operators will be needed.

De¯nition 13 An operator H is said to be HERMITIAN (or SELF ADJOINT) if

Hy = H (1.18)

1.4 Eigenstates and eigenvalues

De¯nition 14 If for some operator Q, there exists a state jqi and a complex number q
such that

Qjqi = qjqi; (1.19)

then q is called an EIGENVALUE of Q and jqi the corresponding EIGENSTATE.

It is in general possible for more than one eigenstate to have the same eigenvalue.
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De¯nition 15 When n(> 1) linearly independent eigenstates have the same eigenvalue,
they are said to be (n-FOLD) DEGENERATE.

For our purposes the eigenvalues and eigenstates of hermitian operators are of particular
interest. IfH is a hermitian operator, some useful theorems can be proved for its eigenstates
and corresponding eigenvalues.

Theorem 1.3 All eigenvalues of a hermitian operator H are real.

Proof: If jhi is the eigenstate corresponding to the eigenvalue h then

Hjhi = hjhi (1.20)

The adjoint of this relation is (see problem 4)

hhjHy = h¤hhj:

As H is hermitian this is the same as

hhjH = h¤hhj: (1.21)

Multiplying (that is taking the inner product) equation 1.20 from the left by hhj one
gets

hhjHjhi = hhhjhi: (1.22)

Multiplying equation 1.21 from the right by jhi one gets

hhjHjhi = h¤hhjhi: (1.23)

Hence, barring the trivial case of jhi being the zero vector, equations 1.22 and 1.23
lead to

h = h¤: (1.24)

This completes the proof.

Theorem 1.4 Eigenstates jh1i and jh2i of a hermitian operator H are orthogonal (i.e.
hh1jh2i = 0) if the corresponding eigenvalues h1 and h2 are not equal.

Proof: By de¯nition

Hjh1i = h1jh1i; (1.25)

Hjh2i = h2jh2i: (1.26)
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As H is hermitian, using theorem 1.3, the adjoint of equation 1.25 is seen to be

hh1jH = h1hh1j: (1.27)

Multiplying equation 1.26 from the left by hh1j one gets

hh1jHjh2i = h2hh1jh2i: (1.28)

Multiplying equation 1.27 from the right by jh2i one gets

hh1jHjh2i = h1hh1jh2i: (1.29)

Subtracting equation 1.28 from equation 1.29 gives

(h1 ¡ h2)hh1jh2i = 0: (1.30)

As h16= h2 this means
hh1jh2i = 0: (1.31)

This completes the proof.

Corollary 1.1 From theorem 1.2 it can be shown that the orthogonalization of a set of
n-fold degenerate eigenstates produces a set of mutually orthogonal n-fold degenerate eigen-
states with the same common eigenvalue.

Corollary 1.2 From theorem 1.4 and corollary 1.1, one can readily see that any set of
linearly independent eigenstates of a hermitian operator can be linearly transformed (only
the degenerate eigenstates need be transformed) to a set of mutually orthogonal eigenstates
with the same eigenvalues.

De¯nition 16 A set of eigenvalues is called DISCRETE if it has a one to one correspon-
dence with some subset of the set of integers and any real number between two successive
members of the set is not an eigenvalue.

De¯nition 17 A set of eigenvalues is called CONTINUOUS if it has a one to one corre-
spondence with the set of points on a segment of the real line.

Hence, for a discrete set of eigenvalues (of a hermitian operator) the eigenstates can be
labelled by integers and chosen such that

hhijhji = ni±ij
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where i and j are integers, jhii and jhji are eigenstates and ±ij is the Kronecker delta
(equation 1.61 gives a de¯nition). Rule 2 can be used to choose ni, the norm of the i-th
eigenstate, to be unity. With this choice we obtain

hhijhji = ±ij; (1.32)

where i and j are integers. For continuous eigenvalues one cannot use equation 1.32 as the
eigenstates cannot be labelled by integers. They will have real numbers as labels. It is
very often convenient to use the eigenvalue itself as a label (unless there is a degeneracy).
Hence, for continuous eigenvalues one writes the equivalent of equation 1.32 as its limiting
case of successive eigenvalues getting inde¯nitely close. In such a limit the Kronecker delta
becomes the Dirac delta function (see equation 1.63 for a de¯nition). So, once again, using
rule 2 suitably one gets

hhjh0i = ±(h¡ h0) (1.33)

where jhi and jh0i are the eigenstates with real number labels h and h0 and ±(h¡ h0) is the
Dirac delta function. Note that in this case the norm of an eigenstate is in¯nite.

De¯nition 18 The choice of suitable multipliers for the eigenstates (using rule 2) such that
the right sides of equations 1.32 and 1.33 have only delta functions, is called NORMAL-
IZATION and the corresponding mutually orthogonal eigenstates are called NORMALIZED
EIGENSTATES or ORTHONORMAL EIGENSTATES. From here on, all eigenstates of
hermitian operators will be assumed to be normalized according to equation 1.32 or equa-
tion 1.33. However, very often for brevity equation 1.32 might be used symbolically to
represent both cases. As these are mutually exclusive cases there would be no confusion.

The completeness de¯nition of section 1.1 can now be written in terms of discrete and
continuous labels.

De¯nition 19 A set of states fjhiig with label i is said to be COMPLETE if any jsi 2 V
can be written as a linear combination of the jhii i.e.

jsi =
X
i

aijhii (1.34)

where ai are complex coe±cients. For continuous eigenvalues the above summation is to be
understood to be its obvious limit of an integral over the continuous label (or labels).

jsi =
Z
a(h)jhidh (1.35)

where a(h) is a complex function of the label h.

Now one can state and prove the completeness theorem for the eigenstates of a hermitian
operator. The proof presented here is not for the most general case. However, it illustrates
a method that can be generalized. In a ¯rst reading this proof may be omitted.
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Theorem 1.5 An orthonormal (not necessary but convenient) set of all linearly indepen-
dent eigenstates of a hermitian operator is complete.

Proof: Let the hermitian operator be H and let the orthonormal set of all linearly inde-
pendent eigenstates of H be fjhiig with i as the label. For convenience, the label will
be chosen to be discrete (i = 1; 2; : : :). However, the proof can be readily extended
for other discrete sets of labels as well as continuous labels.

The theorem will be proved by contradiction. Hence, it is assumed that the set fjhiig
be not complete. From theorem 1.2 it then follows that there exists a complemen-
tary set fjgiig of orthonormal states that together with fjhiig will form a complete
orthonormal set. This would mean that all jgii's are orthogonal to all jhii's. The
operation of H on jgii can then be written as a linear combination of the complete
set:

Hjgii =
X
j

aijjgji+
X
j

bij jhji: (1.36)

Multiplying from the left by hhkj one gets
hhkjHjgii = bik; (1.37)

where use is made of the orthonormality of the jgii's and jhii's. As hhkj is the bra
adjoint to the eigenket jhki with eigenvalue hk and H is hermitian,

hhkjH = hkhhkj: (1.38)

Using this in equation 1.37 one gets (using orthonormality)

bik = hkhhkjgii = 0: (1.39)

Hence, equation 1.36 becomes

Hjgii =
X
j

aijjgji: (1.40)

Now let us consider the set Vc of all states that are linear combinations of the jgii's
i.e.

jki 2 Vc () jki =
X
i

cijgii; (1.41)

for some set of complex numbers ci. It can be readily shown (problem 4) that
hkjHjki=hkjki is a real number and hence would have some minimum value for all
jki 2 Vc. If e is this minimum value 1 then for any jki 2 Vc

hkjHjki=hkjki ¸ e: (1.42)

1If e = ¡1 one needs to be more careful, but the proof of the theorem still holds in an appropriate
limiting sense. To be rigorous, one also needs to consider the possibility that the range of hkjHjki=hkjki for
all jki is an open set. Then equation 1.42 does not have the possibility of equality. Here again a limiting
choice is to be made for jg1i such that (a11 ¡ e)! 0.
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Without loss of generality the ¯rst of the set fjgiig, viz. jg1i, could be chosen to be
the one for which equation 1.42 becomes an equality (theorem 1.2) i.e.

hg1jHjg1i = e; (1.43)

where it is noted that hg1jg1i = 1 from orthonormalization. Also from equations 1.40
and 1.43 one sees that

a11 = e: (1.44)

If jki 2 Vc then from equations 1.40, 1.41 and 1.42 one obtainsX
ij

cic
¤
jaij ¸ e

X
i

jcij2: (1.45)

As the ci's are arbitrary, one may choose them all to be zero except

c1 = 1; cm = ²+ i±; (1.46)

where ² and ± are real and m6= 1. Then from equations 1.45 and 1.44 it follows that

²(am1 + a1m) + i±(am1 ¡ a1m) + (²2 + ±2)(amm ¡ e) ¸ 0: (1.47)

For small enough ² and ±, it can be seen that the last term on the left hand side will
contribute negligibly and hence, the inequality can be violated with suitable choices
for the signs of ² and ±, unless

am1 + a1m = 0; am1 ¡ a1m = 0: (1.48)

This gives
a1m = am1 = 0: (1.49)

This being true for any m6= 1, one concludes from equation 1.40 that

Hjg1i = a11jg1i: (1.50)

This, of course, means that jg1i is an eigenstate of H thus contradicting the original
statement that the jgii's are not eigenstates of H. Hence, the set fjgiig must be
empty and the set fjhiig must be complete. This completes the proof.

From the completeness theorem 1.5, we see that if fjhiig is a set of all orthonormal eigen-
states of H then any state jsi can be written as

jsi =
X
i

csijhii: (1.51)

De¯nition 20 The coe±cient csi in equation 1.51 is called the COMPONENT of jsi along
jhii.
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Multiplying equation 1.51 from the left by hhjj and using orthonormality one obtains
csj = hhj jsi: (1.52)

Replacing this in equation 1.51 we get

jsi =
X
i

jhiihhijsi: (1.53)

Symbolically this can be written as

jsi =
ÃX

i

jhiihhij
!
jsi; (1.54)

giving the object in parenthesis the meaning of an operator in an obvious sense. But this
operator operated on any state produces the same state. Hence, it is the identity operator

I =
X
i

jhiihhij: (1.55)

Equation 1.55 can be seen to be a compact mathematical statement of the completeness of
the eigenstates fjhiig.

Very often it is useful to de¯ne the projection operators corresponding to each jhii.

De¯nition 21 The projection operator for jhii is de¯ned to be
Pi = jhiihhij (1.56)

which selects out the part of the vector jsi in the \direction" jhii.
Pijsi = csijhii: (1.57)

Also from equations 1.55 and 1.56
I =

X
i

Pi: (1.58)

We shall sometimes use equations 1.55 and 1.58 symbolically in the same form for continuous
eigenvalues as well. However, it should be understood to mean

I =

Z
jhihhjdh (1.59)

for the real valued label h. In the same spirit equation 1.53 will also be used for continuous
eigenvalues and would be interpretted as

jsi =
Z
jhihhjsidh: (1.60)

In fact in future chapters, as a general rule, a summation over indices of a complete set of
eigenvalues will be understood to be an integral over eigenvalues for continuous eigenvalues.
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1.5 The Dirac delta function

The Kronecker delta is usually de¯ned as

De¯nition 22

±ij =

(
1 if i = j,
0 if i6= j. (1.61)

where i and j are integers.

However, the following equivalent de¯nition is found to be useful for the consideration of a
continuous index analog of the Kronecker delta.X

j

±ijfj = fi; (1.62)

where i and j are integers and fi represents the i-th member of an arbitrary sequence of
¯nite numbers.

The Dirac delta is an analog of the Kronecker delta with continuous indices. For
continuous indices the i and j can be replaced by real numbers x and y and the Dirac delta
is written as ±(x¡ y). The di®erence (x¡ y) is used as the argument because the function
can be seen to depend only on it. Likewise fi is replaced by a function f(x) of one real
variable. f(x) must be ¯nite for all x. Hence, the continuous label analog of equation 1.62
produces the following de¯nition of the Dirac delta function.

De¯nition 23 Z
±(x¡ y)f(y)dy = f(x); (1.63)

where f(x) is ¯nite everywhere. An integral with no limits shown explicitly is understood
to have the limits ¡1 to +1.

From this de¯nition it is seen that, f(x) being an arbitrary function, the only way equa-
tion 1.63 is possible is if ±(x ¡ y) is zero everywhere except at x = y. At x = y, ±(x ¡ y)
would have to be in¯nite as dy is in¯nitesimal. Hence, the following are true for the Dirac
delta function.

±(0) = 1; (1.64)

±(x) = 0 if x6= 0: (1.65)

Because of the in¯nity in equation 1.64, the Dirac delta has meaning only when multiplied
by a ¯nite function and integrated. Some identities involving the Dirac delta (in the same
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integrated sense) that can be deduced from the de¯ning equation 1.63 are

±(x) = ±(¡x); (1.66)Z
±(x)dx = 1; (1.67)

x±(x) = 0; (1.68)

±(ax) =
1

a
±(x) for a > 0; (1.69)

±(x2 ¡ a2) =
1

2a
[±(x¡ a) + ±(x+ a)] for a > 0; (1.70)Z

±(a¡ x)±(x¡ b)dx = ±(a¡ b); (1.71)

f(x)±(x¡ a) = f(a)±(x¡ a): (1.72)

The derivatives of a Dirac delta can be de¯ned once again in the sense of an integral. I
shall consider only the ¯rst derivative ±0(x).Z

±0(x¡ y)f(y)dy = ¡f(y)±(x¡ y)j+1¡1 +
Z
±(x¡ y)f 0(y)dy; (1.73)

where a prime denotes a derivative with respect to the whole argument of the function.
Thus Z

±0(x¡ y)f(y)dy = f 0(x): (1.74)

Some identities involving the ±0(x) can be derived in the same fashion.

±0(x) = ¡±0(¡x); (1.75)

x±0(x) = ¡±(x): (1.76)

To understand the Dirac delta better it is very often written as the limit of some better
known function. For example,

±(x) = lim
g!1

sin(gx)

¼x
; (1.77)

±(x) = lim
a!0

1

a
p
¼
exp

Ã
¡x

2

a2

!
; (1.78)

±(x) =
1

2¼

Z
exp(ikx)dk: (1.79)

Problems

1. The norm hsjsi of a vector jsi is sometimes written as jjsij2. In this chapter the norm
has been de¯ned from the inner product. However, it is possible to ¯rst de¯ne the
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norm and then the inner product as its consequence. Such an approach needs fewer
rules but is more unwieldy. The inner product is then de¯ned as:

hrjsi =
1

2
[jjri+ jsij2 ¡ ijjri+ ijsij2

+ (i¡ 1)(jjrij2 + jjsij2)]:

Prove this result using the de¯nition of inner product and norm as given in this
chapter.

2. In equation 1.8, show that a linearly dependent set fjgiig would give some of the jfii's
to be the zero vector.

3. Using the de¯ning equation 1.11 of the commutators prove the identities in equa-
tions 1.12 through 1.15.

4. Prove the following operator relations (for all operators P andQ, jsi 2 V, and a; b 2 C)
(a) (Qjsi)y = hsjQy
(b) Qyy = Q

(c) (aP + bQ)y = a¤P y + b¤Qy

(d) (PQ)y = QyP y

(e) PQ is hermitian if P and Q are hermitian and [P;Q] = 0.

(f) For a hermitian operator H and jsi 2 V, hsjHjsi is real.

5. Prove the corollary 1.1.

6. Using the de¯ning equation 1.63 of the Dirac delta, prove the identities in equa-
tions 1.66 through 1.72. For the derivative of the Dirac delta prove the identities in
equations 1.75 and 1.76. [Hint: Remember that these identities have meaning only
when multiplied by a ¯nite function and integrated.]



Chapter 2

The Laws (Postulates) of Quantum
Mechanics

In the following, the term postulate will have its mathematical meaning i.e. an assumption
used to build a theory. A law is a postulate that has been experimentally tested. All
postulates introduced here have the status of laws.

2.1 A lesson from classical mechanics

There is a fundamental di®erence in the theoretical structures of classical and quantum
mechanics. To understand this di®erence, one ¯rst needs to consider the structure of
classical mechanics independent of the actual theory given by Newton. It is as follows.

1. The fundamental measured quantity (or the descriptor) of a sytem is its trajectory in
con¯guration space (the space of all independent position coordinates describing the
system). The con¯guration space has dimensionality equal to the number of degrees
of freedom (say n) of the system. So the trajectory is a curve in n dimensional space
parametrized by time. If xi is the i-th coordinate, then the trajectory is completely
speci¯ed by the n functions of time xi(t). These functions are all observable.

2. A predictive theory of classical mechanics consists of equations that describe some
initial value problem. These equations enable us to determine the complete trajectory
xi(t) from data at some initial time. The Newtonian theory requires the xi and their
time derivatives as initial data.

3. The xi(t) can then be used to determine other observables (sometimes conserved
quantities) like energy, angular momentum etc.. Sometimes the equations of motion

16
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can be used directly to ¯nd such quantities of interest.

The above structure is based on the nature of classical measurements. However,
at small enough scales, such classical measurements (like the trajectory) are found to be
experimentally meaningless. Thus, a di®erent theoretical structure becomes necessary. This
structure is that of quantum mechanics. The structure of quantum mechanics, along with
the associated postulates, will be stated in the following section. It is itemized to bring out
the parallels with classical mechanics.

The reader must be warned that without prior experience in quantum physics the
postulates presented here might seem rather ad hoc and \unphysical". But one must be
reminded that in a ¯rst course in classical physics, Newton's laws of motion might seem
just as ad hoc. Later, a short historical background will be given to partially correct this
situation. About the \unphysical" nature of these postulates, very little can be done. Phe-
nomena like the falling of objects due to gravity are considered \physical" due to our long
term exposure to their repeated occurrence around us. In contrast, most of the direct
evidence of quantum physics is found at a scale much smaller than everyday human experi-
ence. This makes quantum phenomena inherently \unphysical". Hence, all one can expect
of the following postulates is their self consistency and their ability to explain all observed
phenomena within their range of applicabilty. To make quantum phenomena appear as
\physical" as classical phenomena, one needs to repeatedly experience quantum aspects of
nature. Hence, this text (like most others) tries to provide as many examples as possible.

At ¯rst sight, the reader might also ¯nd the postulates to be too abstract and com-
putationally intractable. The next two chapters should go a long way in correcting this
problem.

2.2 The postulates of quantum mechanics

In the following, the postulates of quantum mechanics are presented within a theoretical
structure that has a °avor similar to classical mechanics. The reader is encouraged to
observe similarities and di®erences of the two theories.

1. The descriptor is given by the zeroth postulate. Its relation to measurements is
somewhat indirect (see postulates 2 through 5).

Postulate 0 The complete descriptor (but not a measured quantity) of a system is its
state vector jsi and the complete descriptor of an observable q is a hermitian operator
Q de¯ned to operate on any jsi 2 V. jsi, in general, depends on as many variables
as there are degrees of freedom and time.
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2. Predictive power comes from the initial value problem described by the following
somewhat generalized SchrÄodinger equation.

Postulate 1

i¹h
@

@t
jsi = Hjsi; (2.1)

where H is the hamiltonian operator obtained by replacing the classical position and
momentum in the classical expression of the hamiltonian by their quantum operator
analogs. ¹h (¼ 1:0545£10¡34 Joule.sec.) is a universal constant. 2¼¹h(= h) is usually
called Planck's constant.

3. Quantum measurements of observables are conceptually distinctly di®erent from clas-
sical measurements. Classical measurements can be theoretically predicted with indef-
inite accuracy (but the theory fails completely at smaller scales) . Quantum mechanics
can predict only the probabilities of measurements (at all scales but would very often
be impractical at larger scales). Every observable has an associated operator that
operates on the space of state vectors V.

Postulate 2 All measurable aspects of observables are completely determined by the
mutual commutators of their respective operators. These commutators are determined
by the following transition from classical to quantum.

fq; pg ¡! [Q;P ]

i¹h
; (2.2)

where q and p are classical observables with quantum operator analogs given by Q and
P respectively and f; g is the Poisson bracket.

Postulate 3 The possible results of measurement of an observable, represented by
the operator Q, are its eigenvalues qi only.

Postulate 4 If a system is in a state jsi and a measurement of an observable rep-
resented by the operator Q is made on it, the probability that the result will be the
eigenvalue qi is proportional toX

deg

hqijsihsjqii =
X
deg

jhqijsij2 (2.3)

where jqii is an eigenstate corresponding to qi and the summation is over all degen-
erate states with the same eigenvalue qi. The proportionality constant can be chosen
arbitrarily for computational convenience. It is very often chosen to keep the total
probability of all outcomes as unity.

Postulate 5 If the result of the measurement is indeed qi, then after the measurement
the system will collapse into a corresponding eigenstate jqii.
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This completes the set of postulates necessary in a theory of quantum mechanics. To
understand the theory we need to use these postulates in physical examples. The rest of
the book will be seen to be creative applications of mathematics to do just this.

2.3 Some history of the postulates

At the end of the nineteenth century one of the major experimental results that ba²ed
classical physicists was the blackbody radiation spectrum. Classical physics had been highly
successful in explaining and predicting a large variety of phenomena but for the radiation
spectrum of a blackbody it gave the absurd result of in¯nite emission at in¯nite frequency
(sometimes called the \ultraviolet catastrophe"). Planck was able to suitably \explain" the
experimentally observed spectrum by a hitherto arbitrary assumption that the energies of
oscillators producing radiation of frequency º can have energies only in integer multiples
of hº. This was the origin of the constant h. At the same time discreteness was also
noticed in the frequency spectra of atoms. Such observations led to the hypothesis (by
de Broglie) that just as Planck had noticed that electromagnetic waves have a discrete
(particle) nature, particles (like elctrons) have a wave nature. The wavelength ¸ of a particle
of momentum p is given by h=p. This led SchrÄodinger to the equation in postulate 1 in a
particular representation that will be discussed as the position representation in the next
chapter. The \wavefunction" of SchrÄodinger's equation is the equivalent of the state vector
(postulate 0). The generalized properties of the state vector (linearity etc.) have their
origin in the wavefunction. The state vector was later chosen as the descriptor to allow
greater generality, mathematical convenience, and economy in concepts.

The postulates 2 through 5 were discovered in the process of consolidating experimen-
tal observations with a theory of wavefunctions (or state vectors).

After this rather short and oversimpli¯ed narration of the history of quantum physics,
in general, the historical approach will be avoided in this text. This is not to downplay the
role of history, but to avoid many of the confusions that arose in the historical development
of the subject. As we now have the advantage of twenty-twenty hindsight, we shall use it.



Chapter 3

Popular Representations

To get numerical results from the laws discussed in the previous chapter it is very often
convenient to use some less abstract \representations" of state vectors and operators.

We ¯rst note (from postulate 0) that operators corresponding to observables are her-
mitian and therefore have real eigenvalues (theorem 1.3). Hence, from postulate 3, we see
that measured quantities will be real as expected. It was shown in theorem 1.5 that the
eigenstates of a hermitian operator form a complete orthonormal set. This makes it natural
to expand any state as a linear combination of the eigenstates of an operator corresponding
to an observable. For example, if Q is such an operator with jqii as its eigenstates, then an
arbitrary state jsi can be written as

jsi =
X
i

csijqii; (3.1)

where the components csi are given by (de¯nition 20 on page 11)

csi = hqijsi: (3.2)

De¯nition 24 The set of components, csi, of jsi along the eigenstates of the operator Q
completely describes the state jsi and hence, will be called the Q REPRESENTATION of
jsi.

Two popular representations are discussed below.

3.1 The position representation

The most popular choice of representation is that of the position vector operator R for a
single particle system. The eigenvalues of R are known to be continuous as every value of

20
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position is measurable. The corresponding eigenstates are assumed to be nondegenerate
for now1. Hence, they can be uniquely labeled by the eigenvalues r i.e. jri. Then, from
equation 3.2, the position representation of the state jsi could be written as the components

hrjsi ´ ªs(r): (3.3)

So this set of components can now be seen as values of a function at di®erent positions
r. This function, ªs(r), is conventionally known as the wavefunction because of its wave
nature in some typical situations. Historically, this representation of the state has been
the most popular for two reasons. First, the wave nature of this representation had early
experimental consequences. Second, it will be seen to reduce most problems to di®erential
equations. The mathematics of di®erential equations, including methods of approximation,
is very well known and makes problem solving easier.

The wavefunction ªs(r) can be seen from another point of view. Applying postulate 4
for the position operator, one sees that the probability of ¯nding the particle at the position
r is proportional to

hrjsihsjri = ªs(r)ª¤s(r): (3.4)

This is usually known as the probability density which when integrated over a ¯nite volume
gives the probability of ¯nding the particle in that volume.

We shall now derive the forms of the position and momentum operators and their
eigenstates in the position representation just de¯ned. We shall do this in one space di-
mension. Extension to three dimensions is straightforward (problem 1).

The eigenstates of X, the position operator in one dimension, are jxi with correspond-
ing eigenvalues x i.e.

Xjxi = xjxi: (3.5)

For an arbitrary state jsi the result of operation by X is Xjsi. Its position representation
is hxjXjsi. Using equations 3.3 and 3.5 and the hermiticity of X one gets

hxjXjsi = xhxjsi = xªs(x): (3.6)

This shows that in the position representation the e®ect of operating by X is just multipli-
cation of the wavefunction by the corresponding eigenvalue x.

To ¯nd the position representation of the momentum operator we note that the rep-
resentations of the operators X (position) and P (momentum) must satisfy postulate 2.
Hence, as their classical Poisson bracket is 1, we may write

[X;P ] ´ XP ¡ PX = i¹h; (3.7)

1A degeneracy would mean that there are degrees of freedom other than just position. Such internal
degrees of freedom have no classical analog and can be ignored for now. However, quantum theory allows such
degrees of freedom and experiments have veri¯ed their existence. Hence, they will be discussed separately
in the later chapter on particle spin.
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or
[XP ¡ PX]jsi = i¹hjsi; (3.8)

for any jsi. If the eigenkets of X are jxi, then the position representation of equation 3.8
is obtained by multiplying on the left by the corresponding eigenbra hxj.

hxj[XP ¡ PX]jsi = i¹hhxjsi: (3.9)

Inserting the identity operator of equation 1.59 in two places in the equation we getZ Z
[hxjXjx0ihx0jP jx00ihx00jsi ¡ hxjP jx0ihx0jXjx00ihx00jsi]dx0dx00 = i¹hhxjsi: (3.10)

Using the fact that jxi are eigenstates ofX and the orthonormality of continuous eigenstates
one obtainsZ Z

[x±(x¡ x0)hx0jP jx00i ¡ hxjP jx0ix00±(x0 ¡ x00)]hx00jsidx0dx00 = i¹hhxjsi: (3.11)

Integrating over x0 gives Z
hxjP jx00i(x¡ x00)hx00jsidx00 = i¹hhxjsi: (3.12)

Using the de¯ning equation 1.63 of the Dirac delta2 and equation 1.76, one notices that the
above equation is satis¯ed by

hxjP jx00i = i¹h±(x¡ x
00)

x¡ x00 = ¡i¹h±0(x¡ x00): (3.13)

Now in the position representation the operation of P on any state jsi would be (inserting
an identity operator)

hxjP jsi =
Z
hxjP jx0ihx0jsidx0: (3.14)

Then using equations 3.13 and 1.74, one obtains

hxjP jsi = ¡i¹h @
@x
hxjsi = ¡i¹h @

@x
ªs(x): (3.15)

Here a partial derivative is used as the function, in general, depends on time as well.
Hence, in the position representation the e®ect of operating by P on a state is equivalent
to operating the corresponding wavefunction by the di®erential operator ¡i¹h@=@x.

2Mathematical note: To use equation 1.63 one must have hxjsi to be strictly a ¯nite function of x. We do
not know this for a fact even though from the probability interpretation it might seem reasonable. However,
it is possible to extend equation 1.63 to also apply for a certain class of f(x) that are in¯nite at some points.
For example, from equation 1.71 one sees that the f(x) of equation 1.63 itself could be a Dirac delta. For
fear of getting too deep into mathematics, I shall restrict the discussion to only those wavefunctions (¯nite
or in¯nite) that satisfy equation 1.63 when substituted for f(x). Problem 5 demonstrates how some types
of in¯nite wavefunctions cannot be allowed. The mathematically oriented reader might try to solve for
hxjP jx00i from equation 3.12 for a more general class of wavefunctions.
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It is now possible to ¯nd the position representations of the eigenstates of position and
momentum. The position eigenstates are jxi. Their position representation at the position
x0 is, by de¯ntion, hx0jxi. As the position eigenstates must be orthonormal

hx0jxi = ±(x¡ x0): (3.16)

The eigenstates of momentum are jpi (with eigenvalue p) and their position representation
is, by de¯nition, hxjpi. From the de¯nition of eigenstates and equation 3.15

¡i¹h @
@x
hxjpi = phxjpi: (3.17)

The solution is
hxjpi = A exp(ixp=¹h): (3.18)

Normalization gives the value of A. That is

±(p¡ p0) = hpjp0i =

Z
hpjxihxjp0idx

=

Z
hxjpi¤hxjp0idx

= A¤A
Z
exp[ix(p0 ¡ p)=¹h]dx

= A¤A2¼¹h±(p¡ p0):

This gives
A = (2¼¹h)¡1=2 exp(i®); (3.19)

where ® is an arbitrary real number that could depend on time. But it has no physical
signi¯cance due to rule 2. Hence, choosing ® = 0, equation 3.18 gives

hxjpi = (2¼¹h)¡1=2 exp(ixp=¹h): (3.20)

3.2 The momentum representation

Another popular representation is the momentum representation. It is analogous to the
position representation. The momentum representation of a state jsi would be a function
of momentum eigenvalues given by the components

©s(p) = hpjsi: (3.21)

The e®ect of operating jsi by momentum P in the momentum representation would be like
multiplying by p.

hpjP jsi = phpjsi: (3.22)
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The e®ect of operating jsi by X would be

hpjXjsi = i¹h @
@p
hpjsi = i¹h @

@p
©s(p): (3.23)

The momentum representation of the eigenstates of momentum are

hp0jpi = ±(p0 ¡ p): (3.24)

The momentum representation of the eigenstates of position are

hpjxi = (2¼¹h)¡1=2 exp(¡ipx=¹h): (3.25)

Problems

1. Generalize equations 3.6, 3.15, 3.16 and 3.20 for three dimensions.

2. Derive equations 3.22, 3.23, 3.24 and 3.25.

3. Generalize the results of problem 2 for three dimensions.

4. For any state jsi, show that its momentum representation is a Fourier transform of
its position representation. [Hint: Use equation 1.59]

5. If the position representation (wavefunction) of a state jsi goes to in¯nity (monoton-
ically) at in¯nity, show that its momentum representation is in¯nite for all p.

6. Consider two arbitrary state vectors jri and jsi. Let their respective position rep-
resentations be ªr(x) and ªs(x) and their respective momentum representations be
©r(p) and ©s(p). Show that the inner product hrjsi is given by

hrjsi =
Z
ª¤rªsdx =

Z
©¤r©sdp:



Chapter 4

Some Simple Examples

4.1 The Hamiltonian, conserved quantities and expectation
value

The observational philosophy of quantum mechanics is so di®erent from that of classical
mechanics that we need to discuss it in more concrete terms before considering examples.
From the laws of quantum mechanics (postulate 4) we have learnt that predictions are only
probabilistic. Hence, given a system in a state jsi, the result of a measurement on it will
in general be di®erent at di®erent times. Furthermore, as a result of the ¯rst measurement
the state of the system might change violently as it has to transform into an eigenstate
of the operator just measured (postulate 5). What, then, would be the use of such a
measurement? It seems that a measurement made at any time will say very little about
later measurements and without such predictive power a theory has little use.

However, the situation is not that hopeless. Certain measurements can still be pre-
dicted rather well by the quantum theory. For example consider a conservative system1

with a hamiltonian (same as energy for our purposes) operator H. The following theorem
shows that energy measurements in such a system are predictable.

Theorem 4.1 For a conservative system an energy eigenstate changes with time only by
a multiplicative factor and hence, stays in the same physical state.

Proof: Let the eigenstates, jEi, of the hamiltonian, H, be labeled by E, the eigenvalues.
1Note: This is usually not a restrictive assumption in quantum mechanics as most quantum systems of

interest are microscopic in nature where all forms of energy loss can be accounted for and included in the
system to make it conservative. Hence, most of the text will deal with conservative systems and when a
nonconservative system is to be studied, special care will be taken.

25
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As the system is conservative, H has no explicit time dependence and hence, E will
be time independent. Let the eigenstate jEi change to some state jEit in time t. jEit
is not necessarily an eigenstate of H. From the SchrÄodinger equation (postulate 1)

i¹h
@

@t
jEit = HjEit: (4.1)

The known initial condition at time t = 0 is

jEi0 = jEi (4.2)

From equation 4.1 we see that in an in¯nitesimal time dt after t = 0 the state jEi
changes to jEidt given by

jEidt = (1¡ iHdt=¹h)jEi = (1¡ iEdt=¹h)jEi
as E is the energy eigenvalue of jEi. If n such increments in time are made successively
such that n!1, dt! 0 and ndt = t (¯nite t), then one obtains

jEit = lim
n!1(1¡ iEdt=¹h)

njEi; (4.3)

which can be seen to give (see problem 1)

jEit = exp(¡iEt=¹h)jEi: (4.4)

So an eigenstate of energy changes in time only by a multiplicative factor which
means that it remains the same eigenstate and from rule 2, it is evident that there is
no physical change. This completes the proof.

Now if a measurement of energy yields the value E, we know from postulate 5, that the
system collapses into the eigenstate jEi. Theorem 4.1 states that once this happens there is
no more temporal change in the state of the system (unless otherwise disturbed). If another
measurement of energy is made on the system after some time (with no other disturbance)
the probability of obtaining a value E0 is given by postulate 4 to be related to jhE0jEij2.
From the orthogonality of eigenstates of H, this is seen to give zero probability of E0 being
anything other than E. This is perfect predictability and is restricted by experimental
errors alone (like in classical mechanics).

Such predictability of repeated energy measurements makes the hamiltonian a very
special operator in quantum mechanics. However, for speci¯c problems, one may ¯nd other
observables which have the same predictability in repeated measurements. Such observables
are called conserved quantities and are de¯ned as follows.

De¯nition 25 An observable is a CONSERVED QUANTITY if repeated measurements of
it at di®erent times result in the same value as long as the system is not disturbed in any
way between measurements.
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To identify such observables we shall use the following theorem.

Theorem 4.2 For a conservative system with hamiltonian H, an observable Q (with no
explicit time dependence) is a conserved quantity if and only if [Q;H] = 0 (i.e. Q and H
commute).

Proof: We shall ¯rst prove that if Q is a conserved quantity [Q;H] = 0. Suppose a
measurement of Q results in the eigenvalue q. Hence, the resulting eigenstate of Q is
one of a set of some nq-fold degenerate eigenstates with eigenvalue q. This state will
be labelled as jqii, q giving the eigenvalue and i(= 1; 2; : : : ; nq) labelling the di®erent
degenerate states. At a time t after the measurement, the same state will change to
jqiit. jqii can be expanded in eigenstates of H as

jqii =
X
E

aqiE jEi: (4.5)

The sum over all energies E is really a shorthand for sum or integral over all energy
eigenstates which means that degenerate eigenstates are individually included. From
the result of problem 2 one can also see that

jqiit =
X
E

aqiE jEit: (4.6)

Using equation 4.4 this gives

jqiit =
X
E

aqiE exp(¡iEt=¹h)jEi: (4.7)

As Q does not depend on time explicitly, its set of eigenvalues are unchanged with
time. So it is meaningful to say that if Q is a conserved quantity then q should be
its only possible measured value in the time developed state jqiit as well. In other
words, jqiit must be a linear combination of the nq degenerate eigenstates of Q with
eigenvalue q.

jqiit =
nqX
j=1

uij(t)jqji: (4.8)

Hence, jqiit is an eigenstate of Q at all times and to satisfy equation 4.7 at all times
the energy eigenstates must also be eigenstates ofQ (for degenerate energy eigenstates
some suitable linear combination may have to be chosen). Thus we conclude that forQ
to be a conserved quantity, there must exist a complete set of simultaneous eigenstates
of Q and H. We shall label these eigenstates by the corresponding eigenvalues of both
operators i.e. jqEi (the labels for distinguishing degenerate states will be suppressed
for convenience).
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Now let us expand an arbitrary state jsi as a linear combination of this complete set
of eigenstates.

jsi =
X
qE

cqE jqEi: (4.9)

Then it follows that

QHjsi =
X
qE

cqEqEjqEi

=
X
qE

cqEHQjqEi

= HQjsi:
Hence, a necessary condition for Q to be a conserved quantity is

[Q;H]jsi = 0:
As jsi is an arbitrary state, one may write the condition as

[Q;H] = 0: (4.10)

Now it will be shown that equation 4.10 is also a su±cient condition. Once again,
let jqii, (i = 1; 2; : : : ; nq) denote a set of nq-fold degenerate eigenstates of Q with
eigenvalue q. As Q is not explicitly dependent on time, q will be independent of time.
Then, for all i

Qjqii = qjqii: (4.11)

Operating this with H gives
HQjqii = qHjqii: (4.12)

Given that [Q;H] = 0, this leads to

QHjqii = qHjqii: (4.13)

This means that the state Hjqii is also an eigenstate of Q with eigenvalue q. Hence,
it must be some linear combination of the nq degenerate states i.e.

Hjqii =
nqX
j=1

cijjqji: (4.14)

The above equation can be used to show that repeated operations (meaning higher
powers) of H on jqii will still produce some linear combination of the nq degenerate
states. This leads to the conclusion that the time development operator of problem 2,
operated on jqii will also produce a linear combination of the same nq degenerate
states i.e.

jqiit = Ut(t)jqii =
nqX
j=1

uij(t)jqji: (4.15)
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So the time developed state jqiit is an eigenstate of Q with eigenvalue q at all times.
Hence, the measured value remains q at all times thus showing Q to be a conserved
quantity. This completes the proof.

Conserved quantities are known to be of importance in classical mechanics as they are often
used to label speci¯c trajectories. Correspondingly, in quantum mechanics state vectors
are labeled by eigenvalues of conserved quantities (e.g. energy, angular momentum etc.).
Further, there is a classical result that has the same physical signi¯cance as theorem 4.2:

dq

dt
= fq;Hg+ @q

@t
; (4.16)

where q represents the classical observable corresponding to the quantum operator Q. The
last term, in the above equation, is nonzero only when q depends explicitly on time. In
quantum mechanics explicit time dependence of observables is uncommon2. Hence, the
vanishing of the commutator brackets in quantum mechanics would classically mean the
vanishing of the Poisson brackets (postulate 2) giving q to be a classically conserved quan-
tity. One can also prove the following quantum result that looks more like the classical
relation of equation 4.16.

Theorem 4.3 If Q is an observable and jri and jsi are two arbitrary states then
d

dt
hrjQjsi = hrj[Q;H]jsi

i¹h
+ hrj@Q

@t
jsi

Proof: Using the product rule for derivatives and postulate 1,

d

dt
hrjQjsi =

µ
@

@t
hrj
¶
Qjsi+ hrjQ

µ
@

@t
jsi
¶
+ hrj@Q

@t
jsi

=

µ
¡hrjH
i¹h

¶
Qjsi+ hrjQ

µ
Hjsi
i¹h

¶
+ hrj@Q

@t
jsi

=
hrj[Q;H]jsi

i¹h
+ hrj@Q

@t
jsi:

This completes the proof.

In quantum mechanics theorem 4.3 is not as useful as theorem 4.2 because it does not give
the actual measured values explicitly. However, theorem 4.3 can be used to ¯nd the time

2For explicitly time dependent observables, @q=@t 6= 0. In general, fq;Hg depends on the properties
of the speci¯c system through H, but @q=@t does not. This means fq;Hg cannot exactly cancel @q=@t on
the right side of equation 4.16. So, explicitly time dependent observables cannot be classically conserved
quantities. In quantum mechanics such nonconserved quantities have limited predictability and thus are of
lesser importance
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dependence of the average measured value of any operator. For this we need to de¯ne the
average measured value in quantum mechanics which is the so called expectation value. In
giving meaning to an average value in quantum mechanics, one has to be careful. Making
a measurement on a state can change it so radically that making repeated measurements
over time and then averaging (time average) has no physically useful meaning. Hence, the
meaning of an average must be that of an ensemble average as stated below.

De¯nition 26 The EXPECTATION VALUE hQis of an observable Q in a state jsi is
de¯ned as the average of Q measurements made on a large number (tending to in¯nity) of
identical systems all in the same state jsi with no two measurements made on the same
system.

Consider a state jsi. For an observable Q, the probability of measuring its eigenvalue q, in
this state, is known from postulate 4. Hence, using this postulate and the de¯nition of an
average, the expectation value measured for a large number (tending to in¯nity) of systems
all in state jsi would be

hQis =
P
q qhsjqihqjsiP
qhsjqihqjsi

; (4.17)

where jqi denotes an eigenstate with eigenvalue q and Pq a sum over all eigenstates (de-
generate states considered individually). Then using equation 1.55 twice

hQis =
P
qhsjQjqihqjsi
hsjsi =

hsjQjsi
hsjsi : (4.18)

Then theorem 4.3 will give

d

dt
hQis = h[Q;H]is

i¹h
+

¿
@Q

@t

À
s

(4.19)

This is a generalization of what is known as Ehrenfest's theorem. It provides a means of
comparison of classical and quantum measurements. It is seen that averages of measure-
ments (expectation values) in quantum mechanics obey the classical equations of motion
given by equation 4.16. This is in accordance with the idea that classical measurements are
on larger scale objects and hence so inaccurate that only averages of quantum measurements
adequately agree with them.

4.2 Free particle in one dimension

To understand the principles discussed in chapter 2 and to use some of the mathematical
results obtained in chapter 3 and this chapter, we will study the simplest possible system
viz. the one dimensional free particle. The classical case of this problem is quite trivial as
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it would give the solution to be a constant velocity trajectory. In quantum the problem
is not as trivial and does merit discussion. It is to be noted that for a particle to show
quantum behavior it must be small enough e.g. an electron.

The form of the SchrÄodinger equation tells us that the system is described completely
by the hamiltonian H. From classical physics the form of the free particle hamiltonian is
known to be

H =
P 2

2m
; (4.20)

where P is the momentum and m the mass. In quantum, P is known to be an operator. We
shall now try to predict the measurement of three common observables viz. momentum,
energy and position.

4.2.1 Momentum

We already know P has continuous eigenvalues that can take values from minus to plus
in¯nity. So if we start with some state jsi the result of a P measurement will be p with
probability jhpjsij2 (postulate 4) if jpi is the eigenstate corresponding to the eigenvalue p.
As a result of the measurement the system will collapse into the state jpi. As an operator
commutes with itself i.e. [P,P] = 0, it is easy to see that (equation 1.14)

[P;H] = 0: (4.21)

Hence, from theorem 4.2, P is a conserved quantity and subsequent measurement of mo-
mentum on this system will continue to give the same value p as long as the system is not
disturbed in any other way. The state of the system stays jpi.

4.2.2 Energy

If jEi is an energy eigestate with eigenvalue E then the probability of measuring E in a
state jsi would be jhEjsij2. As we are considering only conservative systems, energy is of
course conserved and hence every subsequent measurement of energy will produce the same
value E as long as the system is not otherwise disturbed. Now it can be seen that jpi is
also an eigenstate of H (see problem 3).

Hjpi = P 2

2m
jpi = p2

2m
jpi = Ejpi: (4.22)

Hence, the set of states jpi are the same as the set of states jEi. However, we choose to
label these simultaneous eigenstates with p and not E. This is because, in E, they are
degenerate. Two states with opposite momenta have the same value for E(= p2=2m).
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In chapter 3 we saw that the position representation of jpi i.e. its wavefunction (for
¯xed time) is

ªp(x) = hxjpi = A exp(ixp=¹h): (4.23)

As this is also an eigenstate of energy, from equation 4.4 we see that the time dependence
of this wavefunction is given by

ªp(x; t) = A exp[i(xp¡ Et)=¹h]: (4.24)

This function is seen to be a wave with wavelength 2¼¹h=p and angular frequency E=¹h.
Historically, it was this wave form of the position representation of the energy eigenstates
of a free particle that inspired the name wavefunction. In early interference type experi-
ments this relationship between wave properties (wavelength and frequency) and particle
properties (momentum and energy) was discovered.

Now one can see why the position representation has been historically preferred. Ex-
periments like electron di®raction basically make position measurements on some given
state. By making such measurements on several electrons (each a di®erent system) in the
same state the probability distribution of position measurements is obtained. And this
probability distribution is directly related to the position representation of a state as given
by equation 3.4.

4.2.3 Position

The position operator X is not a conserved quantity as it is seen not to commute with the
hamiltonian. Using equation 3.7 and the properties of commutator brackets, one obtains

[X;H] = [X;
P 2

2m
] = i¹h

P

m
: (4.25)

Hence, position measurements are meaningful only in certain types of experiments. A
position measurement on a system can predict very little about subsequent position mea-
surements on the same system even if it is not disturbed in any other way. However, in
particle scattering type experiments, a position measurement is made only once on each
particle. In such experiments position is measured for di®erent particles each in the same
state to obtain information on the probability distribution of position measurements3. This
is the kind of situation we will be interested in.

If a particle is in a state jsi, its position probability distribution is jhxjsij2. In partic-
ular if jsi is a momentum (or energy) eigenstate, this distribution is jhxjpij2 which, from
equation 3.20, is seen to be independent of x. Hence, a particle with its momentum known

3For this, each particle needs to behave like a separate isolated system which means the density of
particles must be low enough to ignore interactions amongst them.
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exactly, is equally likely to be anywhere in space! This is a special case of the celebrated
Heisenberg uncertainty principle (see appendix B).

To understand the unpredictable nature of nonconserved quantities, it is instructive to
further analyze this speci¯c example of the position operator for a free particle. So we shall
see what happens if repeated position measurements are made on the same free particle.
Whatever the initial state, the ¯rst measurement results in a value, say x1. This collapses
the state to jx1i. Due to nonconservation of position, this state starts changing with time
right after the measurement. If the ¯rst measurement is made at time t = 0, at later times
t the state will be jx1it which can be found from the SchrÄodinger equation:

i¹h
@

@t
jx1it = Hjx1it: (4.26)

To observe the time development of jx1i, as given by the above equation, it is convenient
to expand it in energy eigenstates4 which in this case are the momentum eigenstates jpi.
So, for t = 0 we write

jx1i =
Z
hpjx1ijpidp: (4.27)

The time development of this state is given by (problem 2)

jx1it =
Z
hpjx1ijpitdp; (4.28)

where jpit is the time development of the energy eigenstate as given by equation 4.4. Then
using equation 3.25 we get

jx1it = (2¼¹h)¡1=2
Z
exp(¡ipx1=¹h) exp(¡iEt=¹h)jpidp; (4.29)

where E = p2=2m. Hence, at time t the probability of measuring a value x for position is
given by jhxjx1itj2 where

hxjx1it = (2¼¹h)¡1=2
Z
exp(¡ipx1=¹h) exp(¡iEt=¹h)hxjpidp: (4.30)

Using equation 3.20 and E = p2=2m this gives

hxjx1it = (2¼¹h)¡1
Z
exp

"
¡i
¹h

Ã
p(x1 ¡ x) + p2t

2m

!#
dp: (4.31)

This integral has meaning only in a limiting sense. If

u(x1 ¡ x; t) =
Z
exp

"
¡ap2 ¡ i

¹h

Ã
p(x1 ¡ x) + p2t

2m

!#
dp; (4.32)

4Expanding in known eigenstates of a conserved quantity is convenient because its time dependence is
simple. In particular, the time dependence of the energy eigenstates is already known
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with a > 0, then
hxjx1it = (2¼¹h)¡1 lim

a!0u(x1 ¡ x; t): (4.33)

Computing the integral in equation 4.32 gives

u(x1 ¡ x; t) =
∙
¡2¼im¹h(t+ ib)

t2 + b2

¸1=2
exp

"
im(x1 ¡ x)2t
2¹h(t2 + b2)

#
exp

"
¡mb(x1 ¡ x)

2

2¹h(t2 + b2)

#
; (4.34)

where b = 2m¹ha. Hence, the probability of ¯nding the particle at x after time t is

jhxjx1itj2 = lim
b!0
(2¼¹h)¡1m(t2 + b2)¡1=2 exp

"
¡mb(x1 ¡ x)

2

¹h(t2 + b2)

#
: (4.35)

To understand this physically we ¯rst consider a nonzero value for b. In that case we notice
that the probability decreases with time if

jx1 ¡ xj <
"
¹h(t2 + b2)

2mb

#1=2
; (4.36)

and increases at points farther out from x1. We shall call the right hand side in the above
inequality the inversion point. With time, the inversion point moves outwards from x1.
This is sometimes interpretted as probability \°owing" outwards from the initial point x1
somewhat like in di®usion.

If b = 0, equation 4.35 gives unusual results. At t = 0 the probability is still zero
everywhere other than x = x1. But even an in¯nitesimal time later, the probabilty becomes
a nonzero value constant over all space and decreases with time as 1=t! This happens
because with b = 0 the initial delta function wavefunction has in¯nite momentum (and
hence, in¯nite velocity) components in ¯nite amounts. Therefore, parts of the probability
can go to in¯nity instantaneously and then get lost giving a decreasing overall probability.
In the light of special relativity in¯nite velocity is not possible. This issue can be resolved
only by introducing a relativistic quantum mechanics as will be done later.

4.3 The harmonic oscillator

In both classical and quantummechanics a common practical problem is that of the behavior
of a system around an equilibrium point. A classical example of this is a bridge. It is in an
equilibrium state but for the small oscillations caused by tra±c, strong winds or sometimes
even an earthquake.

Classically the standard method for analyzing this is to expand the potential energy
in a Taylor series about the position of equilibrium in terms of all degrees of freedom [2].
This is not as complex as it may sound because such an expansion need not have a zeroth
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order (i.e. a constant) term as the potential is known only upto an arbitrary constant. The
¯rst order term also vanishes as it has the derivative of the potential (i.e. the force) at the
equilibrium point as a coe±cient. This means that the lowest nonzero term for the potential
is the second order term which is quadratic in displacement coordinates. Considering only
small oscillations, one can now ignore all higher order terms. This approximation simpli¯es
the problem and still gives useful solutions in many situations.

A similar problem at the atomic level is that of atoms in a molecule that have equilib-
rium distances between each other. These atoms also can oscillate about their equilibrium
position. Once again, a small oscillations approximation leads to a quadratic form for the
potential. However, in the atomic case classical mechanics will be inadequate and quantum
analysis is required. The results obtained can be veri¯ed experimentally.

As in the classical case, a suitable choice of coordinates can separate the problem into
several one dimensional problems each with a potential energy given by [2]

V =
1

2
kX2; (4.37)

where k is a constant and X the linear displacement from equilibrium. We shall now
proceed to solve this one dimensional problem. This system is usually called the harmonic
oscillator. Using equation 4.37, we write the hamiltonian to be

H =
P 2

2m
+ V =

P 2

2m
+
1

2
kX2; (4.38)

where m is a parameter that is determined by the fact that P is the momentum conjugate
to X. The determination of m is no di®erent from the classical problem as the hamiltonian,
in both classical and quantum, is of the same form. For example, for a diatomic molecule
m = m1m2=(m1 + m2) with m1 and m2 being the masses of the two atoms. This m is
called the reduced mass. As P is the momentum conjugate to X, postulate 2 gives

[X;P ] = i¹h: (4.39)

Now it is easy to see from theorem 4.2 that neither P nor X is conserved. The only
conserved quantity is H. Direct position measurements, like in scattering experiments, are
not possible as that would mean directly measuring interatomic distances in molecules.
This makes the measurement of P or X experimentally uninteresting. Hence, we shall
discuss the measurement of H alone. These measurements are actually made indirectly
in molecular spectra. Unlike the free particle, this system has a discrete set of energy
eigenvalues. These eigenvalues, being the only possible results of energy measurements,
need to be found.

So the problem at hand is to ¯nd all possible values of E such that

HjEi = EjEi; (4.40)
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where H is given by equation 4.38 and jEi is the corresponding eigenstate. There happens
to be no simple recipe for solving such a problem directly. So we shall draw from vector
algebra where, very often, problem solving is more straightforward in a suitably chosen
coordinate system. The analog of a coordinate system, in this case, is a representation
of state vectors. The two representations discussed in chapter 3 are both suitable for our
purposes. We shall choose the position representation in the following only because of
historical popularity (see problem 4).

4.3.1 Solution in position representation

The position representation reduces equation 4.40 to a di®erential equation that can be
solved by standard methods. Using the results of chapter 3, equations 4.38 and 4.40 would
give Ã

¡ ¹h
2

2m

d2

dx2
+
1

2
kx2

!
uE(x) = EuE(x); (4.41)

where uE(x) = hxjEi will be called the energy eigenfunction. As uE(x) is related to the
probability of ¯nding the particle at position x, it is reasonable to believe that it cannot
be in¯nity at in¯nite x that is:

lim
jxj!1

uE(x) <1: (4.42)

This can also be seen from the result of problem 5 in chapter 3 which says that if the
above condition is not satis¯ed, the momentum representation is meaningless and hence,
jEi would not be a state belonging to the set V. Besides, the position representation of
the momentum operator, used in equation 4.41, was derived in chapter 3 under the same
condition. So, this boundary condition given by equation 4.42 will have to be imposed on
the solutions of equation 4.41.

It is convenient to write equation 4.41 in terms of a dimensionless independent variable

y = ®x; (4.43)

where a choice of
®4 = mk=¹h2; (4.44)

is seen to simplify equation 4.41 to the following.

d2uE
dy2

+ (e¡ y2)uE = 0; (4.45)

where

e =
2®2E

k
=
2E

¹h

µ
m

k

¶1=2
=
2E

¹h!
; (4.46)

and ! is the classical angular frequency of natural oscillation.
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To solve equation 4.45 we ¯rst obtain a solution at large jyj to make it easier to impose
the boundary condition of equation 4.42. For large jyj, e ¿ y2 and hence, equation 4.45
would give

d2v

dy2
¼ y2v; (4.47)

where v is the large jyj limit of uE. For large jyj, an approximate solution of v is seen to be

v ¼ exp(§y2=2): (4.48)

The positive exponent is not possible due to the boundary condition in equation 4.42.
Hence, using the negative exponent solution in equation 4.48, we could write a solution of
uE to be

uE = HE(y) exp(¡y2=2): (4.49)

Replacing this in equation 4.45 would give the equation for HE(y) to be

d2HE
dy2

¡ 2ydHE
dy

+ (e¡ 1)HE = 0: (4.50)

The solution of equation 4.50 can be obtained by the standard series method i.e. HE is
written as a power series in y.

HE(y) = y
s
1X
i=0

aiy
i; with a06= 0: (4.51)

Replacing this in equation 4.50 would give the following conditions on the coe±cients ai.

s(s¡ 1)a0 = 0; (4.52)

s(s+ 1)a1 = 0; (4.53)

(i+ s+ 2)(i+ s+ 1)ai+2 ¡ (2i+ 2s+ 1¡ e)ai = 0; i = 0; 1; 2; : : : : (4.54)

As a06= 0, from the ¯rst equation above, we see that

s = 0 or 1: (4.55)

We must now analyze the behavior of HE for large jyj to make sure the boundary condition
of equation 4.42 is satis¯ed. The large jyj behavior, obviously, is governed by the large
powers of y in the series. So, from the above we notice that for large values of i,

ai+2 ¼ 2ai=i: (4.56)

A Taylor series expansion of the function exp(y2) shows that its coe±cients also satisfy the
above relation for large powers. Hence, for large jyj, HE behaves like exp(y2). But, from
equation 4.49, we see this to violate the boundary condition of equation 4.42. However, if
the series were to terminate beyond a certain power of y, equation 4.56 would be irrelevant



CHAPTER 4. SOME SIMPLE EXAMPLES 38

and the boundary condition would be satis¯ed due to the exponential in equation 4.49.
From equation 4.54 we notice that if

e = 2j + 2s+ 1; (4.57)

for some integer j, then aj+2 vanishes and all subsequent coe±cients related to it (like aj+4,
aj+6 etc.) also vanish. This implies that if j is odd, all a's with odd indices higher than j
vanish and if j is even, all a's with even indices higher than j vanish. Hence, if j is odd the
series will still have large powers from the even indexed terms that will not vanish as they
are all related to a0 (from equation 4.54) and a0 is chosen to be nonzero in equation 4.51.
So, for the complete termination of the series, j must be even to ensure the termination
of the even indexed terms and a1 must be chosen to be zero to ensure the termination of
the odd indexed terms. This shows that HE must be an even polynomial if s = 0 and an
odd polynomial if s = 1. Now, from equations 4.46 and 4.57, we ¯nd that HE is a suitable
solution only if

E = ¹h!(j + s+ 1=2): (4.58)

If n = j + s, then n is odd if s = 1 and it is even if s = 0. This is because j is always
even. Hence, HE is an odd or even polynomial depending on whether n is odd or even.
The corresponding energy eigenvalues are

E = (n+ 1=2)¹h!; n = 0; 1; 2; : : : (4.59)

This is seen to be a discrete set. It is this kind of discontinuity of possible observed values
that attracted attention in early investigations and inspired the name \quantum". It is to
be noted that zero energy is not possible. The lowest, or the so called ground state, energy is
¹h!=2. However, this energy is in no way measurable. In actual spectroscopic measurements
only the di®erences in energy of pairs of states are measured when the system jumps from
a higher to a lower energy state releasing a photon (particle or quantum of electromagnetic
radiation) carrying the energy di®erence.

The solutions for HE are very often labelled by the integer n of equation 4.59 rather
than by E i.e. HE ´ Hn. The Hn are called the Hermite polynomials in mathematics.
Properties of the Hn are to be found in standard texts [3]. The property which is most
useful comes from the orthonormality of eigenstates i.e. if we label the states jEi also by
the integer n and call them jni and correspondingly, uE is called un then

±nl = hnjli =
Z
hnjxihxjlidx =

Z
u¤nuldx

or

±nl = ®
¡1
Z
H¤
nHl exp(¡y2)dy: (4.60)

Here we have used equations 4.43 and 4.49. The orthonormality condition is used to ¯nd
the a0 coe±cient for each Hn.
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4.3.2 A representation free solution

The previous section illustrated a \brute force" method of solving a problem. Such a
method is very useful when one has no guidelines for approaching a problem. However,
sometimes (and only sometimes) long periods of re°ection can reveal more elegant solutions.
This happens to be true for the harmonic oscillator case. In the following, I shall present
this elegant, representation free, solution.

For convenience, let us ¯rst de¯ne the following dimensionless quantities proportional
to position and momentum respectively.

Q = (m!=¹h)1=2X (4.61)

K = (m¹h!)¡1=2P (4.62)

From equation 4.39 one sees that
[Q;K] = i; (4.63)

and from equation 4.38
H = ¹h!(K2 +Q2)=2 = ¹h!G; (4.64)

where
G = (K2 +Q2)=2; (4.65)

is a dimensionless operator proportional to H. As G is the sum of two squared hermitian
operators, one might expect that all its eigenvalues g are positive. This of course needs to
be proved. The following theorem will lead to the result.

Theorem 4.4 For any arbitrary state jsi, the following is true.
hsjGjsi > 0

Proof: Let
a = 2¡1=2(K ¡ iQ): (4.66)

Its hermitian adjoint is
ay = 2¡1=2(K + iQ): (4.67)

Then, using equations 4.63 and 4.65

aya = G+ i[Q;K]=2 = G¡ 1=2: (4.68)

Now, if jri = ajsi, then from rule 5 of state vectors

0 ∙ hrjri = hsjayajsi = hsjGjsi ¡ hsjsi=2
Hence,

hsjGjsi > 0
This completes the proof.
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In the above theorem, if jsi were replaced by one of the eigenstates of G, it would follow
that the corresponding eigenvalue

g > 0:

The eigenstates jni of the operator
N = aya; (4.69)

are the same as those of G, as G and N di®er by a constant number. They are labelled by
the eigenvalues n of N . Also, theorem 4.4 can be seen to show that

n ¸ 0: (4.70)

From equation 4.63, the operators a and ay can be seen to have the following commutator

[a; ay] = 1: (4.71)

Now consider the state ajni where jni is the energy eigenstate corresponding to the eigen-
value n of N . Using equation 4.71 we get

Najni = ayaajni = (aay ¡ 1)ajni
= (aN ¡ a)jni = (an¡ a)jni = (n¡ 1)ajni:

This shows that ajni is also an eigenstate of N with eigenvalue n ¡ 1. Consequently, a is
called the lowering operator as it lowers an eigenstate to another with eigenvalue less by
one that is

ajni = cnjn¡ 1i; (4.72)

where cn is a complex number. Similarly, a
y can be seen to be the raising operator.

Nayjni = ayaayjni = ay(aya+ 1)jni
= ay(n+ 1)jni = (n+ 1)ayjni:

Hence,
ayjni = dnjn+ 1i; (4.73)

where dn is a complex number. Now, due to equations 4.70 and 4.72, if any eigenstate is
repeatedly operated on by the operator a, then after a ¯nite number of steps one obtains
the state with the lowest n (say n0). n0 must be less than 1 as otherwise it would be
possible to lower it further. Hence, from equation 4.70

0 ∙ n0 < 1: (4.74)

As jn0i is the lowest eigenstate, further lowering by a should lead to zero.
ajn0i = 0: (4.75)

Hence, using the de¯nition of eigenstates,

n0jn0i = N jn0i = ayajn0i = 0: (4.76)



CHAPTER 4. SOME SIMPLE EXAMPLES 41

Consequently, n0 = 0 and as all higher values of n di®er by positive integer values, they must
all be positive integers. This gives the complete set of eigenstates to be jni (n = 0; 1; 2; : : :)
(see problem 6). Using equations 4.68 and 4.69, one can ¯nd the eigenvalues of G.

Gjni = (N + 1=2)jni = (n+ 1=2)jni; (4.77)

and hence, from equation 4.64, the energy eigenvalues are found to be

E = (n+ 1=2)¹h!; (4.78)

which is the same result as found by the earlier method.

It is to be noticed that here the eigenstates are not given in any functional form as
they have no direct observational consequence. However, for future use the constants cn
and dn need to be found. Finding the norm of both sides in equation 4.72 we get

jcnj2hn¡ 1jn¡ 1i = hnjayajni = hnjN jni = nhnjni: (4.79)

As all eigenstates are normalized, this would mean cn =
p
n and

ajni = pnjn¡ 1i: (4.80)

Similarly, from equations 4.73 and 4.71

jdnj2hn+ 1jn+ 1i = hnjaayjni = hnj(aya+ 1)jni
= hnj(N + 1)jni = (n+ 1)hnjni: (4.81)

This gives dn =
p
n+ 1 and

ayjni = pn+ 1jn+ 1i (4.82)

It is also possible to relate the states jni to their position representations by using equa-
tion 4.80. As un = hxjni,

hxjajni = pnhxjn¡ 1i = pnun¡1: (4.83)

Then, using equations 4.61, 4.62 and 4.66

hxj(2m!¹h)¡1=2[P ¡ im!X]jni = pnun¡1: (4.84)

Using the position representations of X and P , this givesµ
¹h

2m!

¶1=2 dun
dx

+

µ
m!

2¹h

¶1=2
xun = i

p
nun¡1: (4.85)

This equation can be used to ¯nd all the un as we know that u¡1 = 0. Here the boundary
condition of equation 4.42 is seen to be automatically satis¯ed.



CHAPTER 4. SOME SIMPLE EXAMPLES 42

4.4 Landau levels

An electron in a uniform magnetic ¯eld is another simple system which is of considerable
practical interest. In particular, in some solid state materials the electron is restricted to a
surface and the magnetic ¯eld is applied perpendicular to it. In such a system the quantum
nature is re°ected in Hall e®ect measurements at low temperatures and high magnetic
¯elds. The electron in this two dimensional system has discrete energy eigenvalues just like
those of the harmonic oscillator. These energies are known as the Landau levels.

To ¯nd the Landau levels we ¯rst write down the hamiltonian of the system in SI
units.

H =
1

2m
(P+ eA)2; (4.86)

where P is the two dimensional momentum, m the electron mass, e the magnitude of the
electron charge and A the vector potential due to the uniform magnetic ¯eld. We shall
choose the x-y plane to be the surface to which the electron is restricted. So the uniform
magnetic ¯eld will be in the z direction. In a simple gauge choice the vector potential for
this ¯eld would be given by

Ax = 0; Ay = BX; Az = 0: (4.87)

where B is the magnitude of the magnetic induction and X is the x component of the
position operator. Hence, equation 4.86 gives

H =
1

2m
[P 2x + (Py + eBX)

2]: (4.88)

At this stage we take a second look at the representation free solution of the harmonic
oscillator problem. It can be seen that the problem is completely speci¯ed by the hamil-
tonian in equation 4.64 and the commutator in equation 4.63. If the operators K and Q
were replaced by any two operators with the same commutator, the solutions would remain
the same. From inspection it can be seen that the present problem can be transformed to
look exactly like equations 4.63 and 4.64 and hence, the solutions would be the same. The
necessary transformation to dimensionless variables is

Qx = (eB¹h)¡1=2Py + (eB=¹h)1=2X; (4.89)

Kx = (eB¹h)¡1=2Px; (4.90)

Qy = (eB¹h)¡1=2Px + (eB=¹h)1=2Y; (4.91)

Ky = (eB¹h)¡1=2Py; (4.92)

where Y is the y component of the position operator. So

[Qx; Kx] = [Qy;Ky] = i; (4.93)
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and all other possible commutators vanish. The hamiltonian would then be

H =
eB¹h

2m
[K2

x +Q
2
x]: (4.94)

By putting
K = Kx; Q = Qx; ! = eB=m (4.95)

in equations 4.63 and 4.64 we see them to be the same as given in equations 4.93 and 4.94.
Hence, the corresponding energy eigenvalues (i.e. the Landau levels) must be

E = (n+ 1=2)¹heB=m; n = 0; 1; 2; : : : : (4.96)

Here eB=m is seen to be the classical cyclotron frequency. These energy levels have been
indirectly observed in quantum Hall e®ect measurements [4].

Problems

1. Derive equation 4.4 from equation 4.3.

2. Show that the time development operator is

Ut(t) ´ exp(¡iHt=¹h)
i.e. a state jsi at zero time develops to jsit at time t where

jsit = Ut(t)jsi:
Hint: An analytical function of an operator is de¯ned by its Taylor series i.e.

f(H) =
1X
n=0

Hn

n!

dnf(x)

dxn

¯̄̄̄
x=0

3. Prove that two observables Q and P can have simultaneous eigenstates if and only if
[Q;P ] = 0. [Hint: Part of the proof can be found in the proof of theorem 4.2.]

4. Find the energy eigenstates and eigenvalues for the harmonic oscillator in the mo-
mentum representation.

5. Find the Hermite polynomials, Hn, for n = 0; 1; 2; and 3. For the same values of n,
show by direct integration that the un are mutually orthogonal. Find a0 in each of
the four cases by normalizing according to equation 4.60.

6. Show that noninteger eigenvalues are not possible for the number operator N . [Hint:
Assume such an eigenstate to exist and see what happens on repeatedly lowering it
by using a.]
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7. For n = 0; 1; 2; and 3, ¯nd un using equation 4.85.

8. For the Landau level problem ¯nd the raising and lowering operators in terms of
momentum and position operators. Then ¯nd the equivalent of equation 4.85 in this
case and solve for wavefunctions of the four lowest levels.



Chapter 5

More One Dimensional Examples

The examples of quantum systems presented in chapter 4 gave some hint as to what to
expect in quantum mechanics. The next step will be to understand general properties of
solutions of some physically interesting classes of problems. Then we shall go through some
oversimpli¯ed examples to illustrate these general properties. In this chapter we shall work
with only a single particle in one space dimension. Extension to three dimensions will
be later seen to be quite straightforward (chapter 8). However, extension to multiparticle
systems, in general, is more tricky and will not be discussed in this text.

5.1 General characteristics of solutions

In chapter 4 we saw that energy as an observable has some special importance. In particular,
being conserved in closed systems, it can be used to describe the states of such systems.
Hence, we would want to identify the energy eigenstates and the corresponding eigenvalues
of any conservative system. The relevant equation would be

HjEi = EjEi; (5.1)

where H is the hamiltonian, jEi an eigenstate of H and E the corresponding eigenvalue.
Equation 5.1 is often referred to as the time independent SchrÄodinger equation due to its
similarity to equation 2.1 (the time dependent SchrÄodinger equation). The total energy
operator i.e. the hamiltonian of a single particle is derived from its classical form to be

H =
P 2

2m
+ V (X); (5.2)

where P and X are the momentum and position operators respectively and m is the mass
of the particle. V , the potential energy, is assumed to be a function of position alone.
However, a more general form of V is not di±cult to handle.

45
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It is to be noted that the kinetic energy term (P 2=2m) in H is the same for all single
particle one dimensional problems and hence, it is V , the potential energy, that characterizes
a speci¯c problem. In most practical problems, V is found to be a function of position.
This makes the position representation a natural choice1. Hence, we write equation 5.1 in
the position representation as follows.

HuE(x) = EuE(x); (5.3)

where uE(x) = hxjEi is the position representation of jEi and the position representation
of H can be seen to be

H = ¡ ¹h
2

2m

d2

dx2
+ V (x) (5.4)

As in equations 5.3 and 5.4, in the future we shall use the same symbol for both an operator
and its representation. This does not cause any confusion as long as the representations of
the state vectors are suitably labelled (as in equation 5.3).

Equation 5.3 is seen to be a di®erential equation and should not, in general, be di±cult
to solve if V (x) is given to be some physically plausible potential energy function. But before
solving speci¯c problems we shall study the general characteristics of solutions for certain
classes of V (x).

5.1.1 E < V (x) for all x

In classical physics we know that E < V has no meaning as it would give a negative
kinetic energy and hence, an imaginary velocity. However, in quantum mechanics we have
already seen nonzero values of the wavefunction uE(x) in regions of space where E < V (the
harmonic oscillator as discussed in chapter 4). This would result in nonzero probabilities
of ¯nding the particle in such a region. Such an unexpected result prompts us to be more
cautious in dealing with quantum mechanics. Consequently, we shall ¯rst consider the
extreme case of E < V for all x. Fig. 5.1a shows such a potential energy and ¯g. 5.1b
shows the possible wavefunctions. Consider an arbitrary point x0. As the overall sign of
uE(x) can be chosen arbitrarily, we can choose uE(x0) to be positive. From equations 5.3
and 5.4 we get

d2

dx2
uE(x) =

2m

¹h2
[V (x)¡E]uE(x): (5.5)

As the second derivative is related to the curvature, we notice from equation 5.5 that at
x0 the curvature is positive. Consequently, it could not decrease in both directions. In a
direction that it increases it will stay positive and hence, from equation 5.5, continue to
have a positive curvature. This would make it increase to in¯nity. But such a solution is
not allowed (problem 5 of chapter 3). So the conclusion is that E < V for all x is not
possible for any system.

1Later we shall see that the description of internal degrees of freedom of a particle (e.g. spin) needs a
di®erent representation.
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Figure 5.1: Potential energy and wavefunction for E < V (x) case.

5.1.2 Bound states

This is the case where E > V (x) only in some regions of ¯nite x and E < V (x) for jxj ! 1.
States satisfying these conditions are called bound states because the corresponding classical
case is that of a particle restricted to a certain region of space. The harmonic oscillator is
an example where these conditions are satis¯ed for all ¯nite values of E. Fig. 5.2a shows
a somewhat arbitrary example of such a potential. Given the nature of the potential, one
can locate two points, x1 and x2, such that E < V (x) for x < x1 and x > x2.

We shall now consider the behavior of uE(x) for this potential (¯g. 5.2b). As in the
last section one can choose the function to be positive at x2. Then from equation 5.5 one
concludes that for all x > x2 the curvature is positive if the function remains positive.
This allows three possibilities for the value of the function at in¯nity. First, it could curve
upwards and go to in¯nity. Second, it could continue to curve upwards but have a negative
slope all the way upto in¯nity without changing sign. This would require the function to
go to zero at in¯nity. Third, the function could change sign even while it curves upwards.
But once it changes sign equation 5.5 would require it to have a negative curvature. This
would force it to go to negative in¯nity. Only the second possibility is allowed due to
reasons given earlier. Equation 5.5, being a second order di®erential equation, allows two
initial conditions. One can choose these conditions to be the values of the function and its
derivative at x2 (uE(x2) and u

0
E(x2)). The choice can be made to ensure that the second

of the above three possibilities is true.

Next we consider the behavior of the function to the left of x2. In the regions where
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Figure 5.2: Potential energy and wavefunction for bound state case.

E > V , using equation 5.5 once again, one ¯nds the curvature to be negative (as long as the
function is positive). However, if it is not su±ciently negative, it might still go to in¯nity
at negative in¯nity as the curvature would be positive again for x < x1. The values of E
that will yield such a result are not allowed. If E is increased to some critical value (say
E0) the curvature of the function would be su±ciently negative between x1 and x2 to make
it go to zero at negative in¯nity. However, if E is increased beyond E0 the curvature is so
highly negative that it makes the function drop below zero. Once, the function is less than
zero equation 5.5 would give it a negative curvature for x < x1 which would make it go to
negative in¯nity at negative in¯nity. This is not allowed. This shows that E0 is an allowed
energy but energies in its immediate nieghborhood are not. E0 is seen to be the lowest
allowed energy and hence, it is called the ground state energy and the corresponding state
is called the ground state. If one continues to increase E beyond E0, the function will drop
below zero between x1 and x2 and hence produce a positive curvature between these points.
If the curvature is su±ciently positive it can pull up the function from negative in¯nity to
zero for x! ¡1. The critical energy E1 at which this happens is the next allowed energy
(the ¯rst excited state). Energies immediately beyond E1 will once again be disallowed as
they would send the function to positive in¯nity at x = ¡1. A repetition of this argument
shows that the allowed energies are a discrete sequence of energies (E0; E1; E2; : : :). The
subscript of the allowed energy can be seen to correspond to the number of times the
corresponding wavefunction (eigenfunction) changes sign. This discrete nature of the set of
eigenvalues (which are the observed values) is unique to the quantum mechanics of bound
states and has no parallel in classical mechanics.

Experimental observation of these eigenvalues is a little indirect. A general approach
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Figure 5.3: Potential energy and wavefunction for scattering state case.

is to give an ensemble of the system under study (e.g. a large collection of identical atoms),
a random amount of energy (maybe heat). This would make di®erent members of the
ensemble (atoms) rise to di®erent energy levels (eigenvalues). Then, by mechanisms that
will be discussed later, each member \jumps" to lower energy levels by emitting the balance
of energy in some form (usually electromagnetic particles called photons). Hence, the
emitted energy gives the di®erence between initial and ¯nal energies. Di®erent members of
the ensemble will have di®erent initial and ¯nal energies and would emit di®erent amounts
of energy. An analysis of these emitted energies (photons) can then verify the eigenvalues
of the system. Speci¯c examples will be discussed later.

5.1.3 Scattering states

This is the case where E > V (x) at x = ¡1, or x = +1 or both. In addition, one
may use the fact that for most physical cases E and V are known to be ¯nite at in¯nity.
The corresponding states are called scattering states as classical scattering problems have
E > V at large distances from the scatterer. For bound states one noticed that the function
had to go to zero at large distances in both directions to prevent it from going to in¯nity.
In the present case we shall see that at least in the direction that has E > V at in¯nity, no
such condition is necessary.

Consider, for example, that E > V for all x > x2 (¯g. 5.3a). Then, from equation 5.5,
one concludes that for positive values of the function the curvature is negative and vice
versa. This forces the function to curve down when it is positive and curve up when it is
negative (¯g. 5.3b). As a result, the function becomes oscillatory and does not go to in¯nity
for any value of E as long as E > V at in¯nity. Hence, there are no disallowed states as
long as E > V at in¯nity. If E > V for all x < x1, the solution becomes oscillatory in
that region too. It can be seen that there are no disallowed energies even if the solution is
oscillatory only at one of the in¯nities. This is because the function can be held at ¯nite



CHAPTER 5. MORE ONE DIMENSIONAL EXAMPLES 50

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

.................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. ..............

V (x)

x

E

x0
.............................................................................

..............................................
.....................................
.................................
..............................
............................
..........................
.........................
........................
........................
.........................
..............................
..............................

(a)

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

.................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. ..............

uE(x)

xx0
.............
.............
..............
................
..........................
.............................................................................................................................................

..............
...........
..............
..........................
........................................................................................................................

...............
.............
.............
..............
..............
...........
............
............
.............
...............
...................
..............................................................................................................................................................................................................................................

(b)

Figure 5.4: Potential energy and wavefunction for E < V (x) at x = +1 and E > V (x) at
x = ¡1.

values in one direction simply by an appropriate choice of initial conditions (¯g. 5.4).

The scattering states are often said to have a \continuous spectrum" (see de¯nition 17
on page 8) of energies and the bound states are said to have a \discontinuous spectrum" or
a \discrete spectrum" (see de¯nition 16 on page 8) of energies. These terms are due to their
relation to the electromagnetic emission or absorption spectra of materials (chapter 8). A
system can often have both bound and scattering states in di®erent ranges of E (e.g. the
hydrogen atom).

For scattering states theoretical prediction of possible energies is trivialized by the
continuous nature of the spectrum. However, computations of probabilities of scattering of
a particle in di®erent directions is meaningful and nontrivial. For bound states theoretical
prediction of possible energies is nontrivial due to the discrete nature of the spectrum but
scattering probabilities have no meaning as no particle can escape to in¯nity (i.e. scatter).

Consequently, for scattering states we need to study the meaning of scattering exper-
iments as pertaining to quantum mechanics. A standard experimental situation is that of
a beam of particles impinging on a target and then scattering in all directions (¯g. 5.5).
Although at present we are discussing only one dimensional problems, for future use, the
following general analysis of such scattering processes will be in three dimensions.

It is intuitive to conclude that the information on scattering probabilities in di®erent
directions must be contained in the wavefunction as it gives the probability of ¯nding the
particle at some given position. However, it must be noted that the wavefunction, as
discussed till now, describes a single particle and not a whole beam of particles. Hence,
it can provide information about the scattering of the beam only if all particles of the
beam are in the same state and the beam is not dense enough to require the consideration
of interparticle forces. All forces (or potential energies) are due to the target. Under
these conditions we need to ¯nd a relation between the single particle wavefunction and
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Figure 5.5: A particle scattering experiment.

the measured scattetering probabilities for a beam of particles. The measure of scattering
probabilities is called the scattering cross section and it is de¯ned as follows.

De¯nition 27 The (DIFFERENTIAL) SCATTERING CROSS SECTION is de¯ned as

¾ =
1

Np

dnp
d!
; (5.6)

where dnp is the number of particles scattered per unit time into the in¯nitesimal solid angle
d! (measured with the target as center) and Np is the number of incident particles per unit
time per unit cross sectional area of the incident beam.

¾ would of course be a function of the direction (often conveniently given by the 3-
dimensional polar angles (µ; Á)) in which the measurement is made. dnp would have to
be measured with some particle detector placed in that direction for a known Np. The
target is usually small enough compared to its distance from the detector to be considered
a single point. Let Sp denote the particle current density at any point in space. Then for
the incident beam

jSpj = Np; (5.7)

and for scattered particles (in 3-dimensions) near the detector

dnp = jSpjr2d!; (5.8)

where r is the distance from the target to the detector and hence r2d! must be the surface
area of the particle detector. As particle number is conserved, the particle current density
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must obey the following conservation equation (see problem 1).

r ¢ Sp + @½p
@t

= 0; (5.9)

where ½p is the particle density. We can also show that a similar relation holds for the
single particle probabilty density ½ = ª¤ª where ª is the single particle wavefunction (i.e.
the position representation of the state vector).

@½

@t
=
@

@t
(ª¤ª) = ª¤

@ª

@t
+ª

@ª¤

@t
: (5.10)

The position representation of equation 2.1 is

i¹h
@ª

@t
= ¡ ¹h

2

2m
r2ª+ Vª; (5.11)

where the three dimensional hamiltonian H has been replaced by its position representation

H =
P 2

2m
+ V = ¡ ¹h

2

2m
r2 + V: (5.12)

The complex conjugate of equation 5.11 is

¡i¹h@ª
¤

@t
= ¡ ¹h

2

2m
r2ª¤ + Vª¤: (5.13)

Now multiplying equation 5.11 by ª¤ and equation 5.13 by ª and then subtracting the
two, one obtains from equation 5.10

@½

@t
= ¡ i¹h

2m
(ªr2ª¤ ¡ª¤r2ª)

= ¡ i¹h
2m
r ¢ (ªrª¤ ¡ª¤rª): (5.14)

Hence,

r ¢ S + @½
@t
= 0; (5.15)

where

S =
i¹h

2m
(ªrª¤ ¡ª¤rª): (5.16)

Equation 5.15 can be seen to look exactly like equation 5.9. Moreover, under the present
assumption of all particles of the beam being in the same state and there being no interaction
among them, it can be seen that the particle density of the beam must be proportional to
the single particle probability density i.e.

½p = ®½; (5.17)
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for some constant ®. Hence, from equations 5.9 and 5.15 it can be concluded that

Sp = ®S; (5.18)

and from equations 5.7 and 5.8 this would give

Np = ®N; dnp = ®dn; (5.19)

where
N = jSj; dn = jSjr2d!; (5.20)

near the source and the detector respectively. Now from equations 5.6 and 5.19, we can
rewrite ¾ in terms of quantities depending only on the single particle wavefunction.

¾ =
1

N

dn

d!
: (5.21)

For the one dimensional case, there are only two directions of scattering (forward and
backward). dn=d! in the forward direction would simply be the forward scattered (or
transmitted) current nt and in the backward direction it would be the re°ected current nr.
N , the incident current density, will be replaced by the incident current, because in one
dimension the cross sectional area of the beam has no meaning. Hence, ¾ would have the
meaning of a transmission and a re°ection coe±cient (T and R) given by

T = nt=N; R = nr=N: (5.22)

5.2 Some oversimpli¯ed examples

Before working out some standard examples, I shall state and prove two useful theorems.
Theorem 5.1 will not be directly useful in working out problems, but it will explain why
most energy eigenfunctions are seen to be real.

Theorem 5.1 Any eigenfunction of energy (i.e. a solution uE(x) of equation 5.3) can be
written as a linear combination of real eigenfunctions of energy.

Proof: Consider an eigenfunction i.e. a solution f(x) of equation 5.3 that is

Hf(x) = Ef(x): (5.23)

As the di®erential operator H and the eigenvalue E are both real, the complex con-
jugate of equation 5.23 would be

Hf¤(x) = Ef¤(x): (5.24)
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Hence, f¤(x) is also an eigenfunction. Consequently, the two real functions

u1(x) = f(x) + f
¤(x); u2(x) = i[f(x)¡ f¤(x)]; (5.25)

are also eigenfunctions. Now f(x) can be written as a linear combination of these
real eigenfunctions:

f(x) = [u1(x)¡ iu2(x)]=2: (5.26)

This proves the theorem.

Theorem 5.2 An energy eigenfunction and its ¯rst derivative are continuous if the poten-
tial energy V is ¯nite.

Proof: Let us integrate equation 5.5 as follows (for positive ²).Z x+²

x¡²
d2u(x)

dx2
dx = ¡2m

¹h2

Z x+²

x¡²
[E ¡ V (x)]u(x)dx; (5.27)

where the subscript E of the eigenfunction is omitted. E and V are given to be
¯nite and u can be shown to be ¯nite (see problem 2). Hence, the right hand side of
equation 5.27 goes to zero in the limit ²! 0. This gives

lim
²!0

du

dx

¯̄̄̄
x+²

¡ du

dx

¯̄̄̄
x¡²

= 0: (5.28)

This proves the continuity of the derivative of u. Next consider the double integral
of equation 5.5 with the following limits.Z x00+²

x00¡²

"Z x0

0

d2u(x)

dx2
dx

#
dx0 = ¡2m

¹h2

Z x00+²

x00¡²

"Z x0

0
[E ¡ V (x)]u(x)dx

#
dx0: (5.29)

Performing the x integral on the left side givesZ x00+²

x00¡²

∙
du(x0)
dx0

¡K
¸
dx0 = ¡2m

¹h2

Z x00+²

x00¡²

"Z x0

0
[E ¡ V (x)]u(x)dx

#
dx0; (5.30)

where K is the constant value of the derivative of u at x = 0. Once again, as E, V
and u are ¯nite, the right hand side of equation 5.30 has a limit of zero when ²! 0.
Similarly, K (on the left hand side) can be seen to be ¯nite and hence its integral
goes to zero in the limit of ²! 0. This leaves us with the following.

lim
²!0[u(x

00 + ²)¡ u(x00 ¡ ²)] = 0: (5.31)

Hence, u is found to be continuous. This completes the proof.

Now we are ready to solve some illustrative examples. The potentials used in these examples
will be oversimpli¯ed to bring out the qualitative aspects with very little mathematical
manipulations.
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Figure 5.6: Rectangular potential well.

5.2.1 Rectangular potential well (bound states)

The one dimensional rectangular potential well is given as follows (¯g. 5.6).

V (x) =

(
0 for jxj < a
V0 for jxj > a (5.32)

where V0 is a constant. Here we shall study only the bound states of such a potential (see
problem 5). Hence, we need 0 < E < V0. In the region jxj < a, the time independent
Schroedinger equation (equation 5.5) gives

d2u

dx2
= ¡2mE

¹h2
u; (5.33)

where the subscript E of u is suppressed. A general solution of equation 5.33 is

u = A sin(kx) +B cos(kx); (5.34)

where A and B are arbitrary constants and

k = +(2mE=¹h2)1=2: (5.35)

In the regions where jxj > a, equations 5.5 and 5.32 give
d2u

dx2
=
2m

¹h2
(V0 ¡ E)u: (5.36)
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A general solution of this equation is

u = C exp(¡Kx) +D exp(Kx); (5.37)

where C and D are arbitrary constants and

K = +[2m(V0 ¡ E)=¹h2]1=2: (5.38)

As u cannot be allowed to go to in¯nity for jxj ! 1,
u = C exp(¡Kx); for x > a; (5.39)

and
u = D exp(Kx); for x < ¡a: (5.40)

To determine the four unknown constants A, B, C, and D of equations 5.34, 5.39, and 5.40
we use the continuity conditions of u and du=dx (theorem 5.2) at the two boundaries x = a
and x = ¡a. This gives

A sin(ka) +B cos(ka) = C exp(¡Ka); (5.41)

Ak cos(ka)¡Bk sin(ka) = ¡CK exp(¡Ka); (5.42)

¡A sin(ka) +B cos(ka) = D exp(¡Ka); (5.43)

Ak cos(ka) +Bk sin(ka) = DK exp(¡Ka); (5.44)

These are four homogeneous linear algebraic equations for the four constants A, B, C, and
D. Hence, a nonzero solution will exist only if the following determinant vanishes.¯̄̄̄

¯̄̄̄
¯
sin(ka) cos(ka) ¡ exp(¡Ka) 0
k cos(ka) ¡k sin(ka) K exp(¡Ka) 0
¡ sin(ka) cos(ka) 0 ¡ exp(¡Ka)
k cos(ka) k sin(ka) 0 ¡K exp(¡Ka)

¯̄̄̄
¯̄̄̄
¯ = 0: (5.45)

A direct solution of equation 5.45 is a little tedious. However, a slight manipulation of
equations 5.41 through 5.44 can produce the same results more readily i.e.

2A sin(ka) = (C ¡D) exp(¡Ka); (5.46)

2Ak cos(ka) = ¡(C ¡D)K exp(¡Ka); (5.47)

2B cos(ka) = (C +D) exp(¡Ka); (5.48)

2Bk sin(ka) = (C +D)K exp(¡Ka): (5.49)

One kind of solution of these four equations is given by

A = 0; C = D; B=C = exp(¡Ka)= cos(ka); (5.50)

and
k tan(ka) = K: (5.51)



CHAPTER 5. MORE ONE DIMENSIONAL EXAMPLES 57

The other kind of solution is given by

B = 0; C = ¡D; A=C = exp(¡Ka)= sin(ka); (5.52)

and
k cot(ka) = ¡K: (5.53)

It is easily seen that the ¯rst kind of solution is symmetric in x and the second antisymmet-
ric. The conditions in equations 5.51 and 5.53 can be seen to be solutions of equation 5.45.
These conditions are responsible for the discreteness of the set of eigenvalues as discussed
in subsection 5.1.2. Solving these equations to ¯nd the allowed values of E is not possible
in a closed form. However, numerical solutions can be readily obtained. To this end it is
convenient to write the equations in terms of the dimensionless parameter » = ka. Then
equations 5.51 and 5.53 would become (using equations 5.35 and 5.38)

» tan » = (°2 ¡ »2)1=2; (5.54)

and
» cot » = ¡(°2 ¡ »2)1=2; (5.55)

where
° = (2mV0a

2=¹h2)1=2: (5.56)

Once a solution for » is found, equation 5.35 will give

E =
¹h2»2

2ma2
: (5.57)

Consider equation 5.54 ¯rst. The tan(») function being periodic there is a possibility of
multiple solutions. By de¯nition » is positive. In each interval of » given by (n+1=2)¼ < » <
(n+1)¼ (n a non-negative integer) there are no solutions as tan(») is negative and the right
hand side of equation 5.54 is positive. In each interval of » given by n¼ < » < (n + 1=2)¼
(n a non-negative integer) there can be at most one solution as in these intervals the left
hand side increases and the right hand side decreases (¯g. 5.7). This fact can be used to
numerically approximate the solution by the two point bisection method.

The bisection method involves choosing an interval in which one and only one solution
exists. Let [»b; »t] be such an interval and let », the solution, belong to this interval. In
the present case such an interval would be [n¼; (n + 1=2)¼] where ° > n¼ and n is a non-
negative integer. The midpoint »1 = (»b + »t)=2 is chosen as the ¯rst trial solution. Using
equation 5.54, if one ¯nds that »1 < » then »1 is taken to be the new lower bound »b and
if »1 > » then it is taken to be the new upper bound »t. This process shrinks the size of
the interval while ensuring that the solution is still within it. Repeating the process can
reduce the size of the interval to that of tolerable error and then »b (or »t) could be accepted
as the solution ». A listing of a computer program implementing this process is given in
appendix A.
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Figure 5.7: Rectangular potential well { graphical solution.

Solutions of equation 5.55 can be abtained in a similar fashion. Once the energy
eigenvalues are known, equations 5.50 and 5.52 would give the corresponding eigenfunctions
to be in agreement with the qualitative discussions of subsection 5.1.2 (see problem 3).

The solutions of equations 5.54 and 5.55 become much simpler in the limit of V0 ! 0.
The corresponding eigenfunctions are also simpler (see problem 4).

5.2.2 Rectangular potential barrier (scattering states)

The one dimensional rectangular potential barrier is given by the following potential (¯g. 5.8).

V (x) =

(
V0 for 0 < x < a
0 otherwise

(5.58)

From the discussion in subsection 5.1.2 we conclude that this potential does not allow any
bound states. Hence, all possible states are scattering states. This requires that the form of
the incident beam (i.e. its wavefunction) be known from the experimental setup. In most
scattering experiments the incident beam has a well-de¯ned momentum i.e. each particle
in the beam is in a momentum eigenstate. If the beam is assumed to be incident from the
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Figure 5.8: Rectangular potential barrier.

left, the corresponding eigenvalue, p, is positive and the energy is

E =
p2

2m
: (5.59)

The position representation of the momentum eigenstate (equation 3.18) would then be

ui = A exp(ipx=¹h): (5.60)

However, the hamiltonian of the system can be seen not to commute with the momentum
operator and hence this initial momentum eigenstate will change. The state that it will
change into must still be an energy eigenstate of eigenvalue E (equation 5.59) as energy is
conserved. Hence, the position representation, u, of this solution must still satisfy the time
independent SchrÄodinger equation

Hu = Eu

or

¡ ¹h
2

2m

d2u

dx2
+ V u = Eu: (5.61)

In the region where x < 0, this would become

d2u

dx2
= ¡2mE

¹h2
u: (5.62)

A general solution of equation 5.62 is

u = A exp(ikx) +B exp(¡ikx); (5.63)
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where A and B are arbitrary constants yet to be determined and

k = (2mE=¹h2)1=2 = p=¹h: (5.64)

Hence, we see that the ¯rst term in the solution is exactly the incident beam given by
equation 5.60. The additional term is by itself also a momentum eigenfunction, but with a
momentum equal and opposite to that of the incident beam. Hence, it must be interpretted
as the beam re°ected by the potential barrier.

ur = B exp(¡ikx) = B exp(¡ipx=¹h): (5.65)

In the region where x > a, the potential is again zero and hence the SchrÄodinger equation
still has the form given by equation 5.62 and consequently its solution is

u = C exp(ikx) +D exp(¡ikx): (5.66)

The ¯rst term of this solution is a momentum eigenstate with positive momentum and
hence must be the transmitted beam. The second term is a momentum eigenstate with
negative momentum. But that would mean a beam coming in from the far right. As there
is no such beam, we must set D=0. This leaves us with only the transmitted beam on the
right side of the barrier i.e.

u = ut = C exp(ikx): (5.67)

The one dimensional probability current would be the x component of S as given in equa-
tion 5.16.

S =
i¹h

2m

µ
ª
dª¤

dx
¡ª¤dª

dx

¶
: (5.68)

Hence, from equation 5.60, the magnitude of the incident current is found to be

N =
i¹h

2m

µ
ui
du¤i
dx

¡ u¤i
dui
dx

¶
=
¹hk

m
jAj2; (5.69)

and similarly from ur of equation 5.65 and ut of equation 5.67 we ¯nd

nr =
¹hk

m
jBj2; nt =

¹hk

m
jCj2: (5.70)

Now, from the de¯nitions of the re°ection and the transmission coe±cients given in equa-
tion 5.22, we get

R =
jBj2
jAj2 ; T =

jCj2
jAj2 : (5.71)

To ¯nd these coe±cients we need to ¯nd the solution to equation 5.61 in the region where
0 < x < a. The general solution in this region can be seen to be

u = F exp(¡Kx) +G exp(Kx); (5.72)
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where F and G are arbitrary constants and

K = [2m(V0 ¡ E)=¹h2]1=2: (5.73)

K is real if E < V0 and imaginary if E > V0. The boundary conditions of theorem 5.2
applied to the solutions in equations 5.63, 5.67 and 5.72 at the two boundaries x = 0 and
x = a will give

A+B = F +G; (5.74)

ikA¡ ikB = ¡KF +KG; (5.75)

F exp(¡Ka) +G exp(Ka) = C exp(ika); (5.76)

¡KF exp(¡Ka) +KG exp(Ka) = ikC exp(ika): (5.77)

These are four equations for the ¯ve unknown constants. Hence, all ¯ve constants cannot
be determined. However, as seen from equation 5.71, for the observable quantities all we
need are some ratios of the constants. So we divide the equations 5.74 through 5.77 by A.
This gives us four equations for the four unknowns B=A, C=A, F=A and G=A. After some
straightforward but tedious algebraic manipulations we ¯nd the two relevant solutions to
be

B

A
= ¡ (K2 + k2)[1¡ exp(2Ka)]

(K + ik)2 ¡ (K ¡ ik)2 exp(2Ka) ; (5.78)

C

A
=

4iKk exp[(K ¡ ik)a]
(K + ik)2 ¡ (K ¡ ik)2 exp(2Ka) : (5.79)

If V0 > E then K is real. Then from equation 5.71 and some more tedious algebraic
manipulations we get

R =

"
1 +

4E(V0 ¡ E)
V 20 sinh

2(Ka)

#¡1
; (5.80)

T =

"
1 +

V 20 sinh
2(Ka)

4E(V0 ¡ E)

#¡1
: (5.81)

For V0 < E, K is imaginary such that j = iK is real. Then R and T would have the forms

R =

"
1 +

4E(E ¡ V0)
V 20 sin

2(ja)

#¡1
; (5.82)

T =

"
1 +

V 20 sin
2(ja)

4E(E ¡ V0)

#¡1
: (5.83)

For all energies it can be veri¯ed that

R+ T = 1: (5.84)
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This is due to the conservation of probability.

The above results are in direct contradiction with classical results. Classically, for
E < V0, there can be no transmission at all. But here we see that T is nonzero. This e®ect
has been called \quantum mechanical tunnelling" for want of a better name2. It has been
observed experimentally in a variety of systems and has also been used in the design of
electronic devices. Also, classical physics would not allow any re°ection if E > V0. Once
again the above quantum results show otherwise.

Problems

1. Show that equation 5.9 holds for any system with a ¯xed number of particles if ½p is
the particle density and Sp is the particle current density.

2. Show that for a solution, u, of equation 5.5 to be allowed, it must be ¯nite at all
points. [Hint: Use results of section 5.1 showing that a solution can go to in¯nity
only in a region where E < V and in that case it is disallowed.]

3. Sketch the energy eigenfunctions for the four lowest eigenvalues of the rectangular
potential well problem. Assume V0 to be large enough to allow four bound states.

4. Find the energy eigenvalues and eigenfunctions for an in¯nitely deep rectangular
potential well i.e. V0 !1.

5. Find the re°ection and transmission coe±cients for the scattering states (E > V0) of
the rectangular potential well.

6. Find the re°ection and transmission coe±cients for the step potential given by

V (x) =

(
0 for x < 0
V0 for x > 0

where V0 is a positive constant.

7. Consider the following one dimensional potential

V (x) =

8><>:
V1 for x < 0
0 for 0 < x < a
V2 for x > a

where V1 and V2 are positive and constant and V2 > V1. For this potential ¯nd

2Here our classical mindset is seen to hinder the understanding of quantum phenomena. Classically,
particles must have continuous trajectories. Hence, we understand that if a particle travels from one side of
a barrier to the other, it must have \tunnelled" through. In other words, for some period of time, it must
have moved through the barrier. But this is energetically impossible! On the other hand, in a quantum
theory the concept of a trajectory is nonexistent. So the particle does not actually have to go through the
barrier to be on the other side. In fact, the probability current inside the barrier can be seen to be zero.
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(a) the conditions for energy eigenstates to be bound or scattering,

(b) the bound state energy eigenvalues,

(c) and the re°ection and transmission coe±cients for the scattering states.



Chapter 6

Numerical Techniques in One
Space Dimension

For our purposes we shall assume that for any well-de¯ned problem in quantum mechanics
it is possible to obtain a solution of acceptable accuracy using some computing machine. Of
course, for some problems the required computing machine might not be available presently.
Hence, the greatest challenge for the numerical analyst is to ¯nd methods that can solve
practical problems in reasonable amounts of time using present day computers. This has
resulted in some rather involved numerical techniques. A complete discussion of these
techniques would divert our attention away from quantum mechanics. Hence, we shall not
attempt such a task here, hoping to delegate it to trained numerical analysts. However,
even for the physicist that is going to delegate the task, it is important to be familiar with
the principles. It helps in two ways. First, it allows physicists to solve simple numerical
problems on their own. Second, it lets them communicate better with numerical analysts
while solving physics problems.

In the following, some simple and intuitive numerical methods will be discussed to
build the groundwork for future development. Some sample programs written in the C
language are provided to illustrate the methods (see appendix A). The language C is
chosen rather than the more popular FORTRAN to provide greater °exibility. Conversions
to other languages should be straightforward once the material in this chapter is understood.
Although FORTRAN or BASIC could do the job, structured languages like PASCAL or C
should be preferred. Some later versions of FORTRAN allow structured programming. But
they still require programming discipline to avoid unstructured programs. If BASIC is used,
it should be noted that some of the programs may take several hours on a microcomputer.

64
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Figure 6.1: Discretization of a function.

6.1 Finite di®erences

In solving di®erential equations numerically, it must be noted that the basic concept of
limits as de¯ned in calculus, needs to be approximated. In¯nitesimal quantities need to be
replaced by small but ¯nite quantities. This would, of course, introduce errors. However,
such errors can be made inde¯nitely small by running the computer for a long enough time.
A little re°ection on the nature of the so called analytical solutions shows that even they
cannot provide exact numerical results for real life applications. For example, the value of a
trigonometric function of an arbitrary angle can be evaluated only upto a certain accuracy
in a ¯nite amount of time!

Approximate forms of derivatives that are needed for numerical computations are
called FINITE DIFFERENCES. The resulting equivalents of di®erential equations are
called DIFFERENCE EQUATIONS. To determine the form of ¯nite di®erences, we shall
consider the function f(x) which depends only on x. The values of f(x) are expected to
be known or computed only at a discrete set of values of x. For simplicity, this set of
values of x will be assumed to be equally spaced and members of the set will be denoted
by xi (i = 0; 1; 2; : : :) (see ¯g. 6.1). The corresponding values of f(x) will be denoted by fi
(i = 0; 1; 2; : : :). The interval between two consequtive values of xi will be given by

xi ¡ xi¡1 = w: (6.1)

The value of w, in principle, can be reduced inde¯nitely to obtain more accurate results.
However, as w is reduced, computation time increases. Also, a reduction in w must be
matched with a suitable increase in the number of signi¯cant ¯gures to make sure that
roundo® errors do not spoil the accuracy.

It can be intuitively seen that the value of the ¯rst derivative (the slope) of f(x) at a
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point xi can be approximated by the expression

¢fi =
fi+1 ¡ fi¡1
xi+1 ¡ xi¡1 =

fi+1 ¡ fi¡1
2w

: (6.2)

We shall call this the ¯rst di®erence. To con¯rm this intuitive result we shall expand fi+1
and fi¡1 each in a Taylor series as follows.

fi+1 = fi + wf
0
i +

w2

2
f 00i +

w3

6
f 000i + : : : ; (6.3)

fi¡1 = fi ¡ wf 0i +
w2

2
f 00i ¡

w3

6
f 000i + : : : ; (6.4)

where f 0i , f
00
i and f

000
i denote the ¯rst three derivatives of f(x) at xi. Subtracting fi¡1 from

fi+1 and then dividing by 2w gives

f 0i =
fi+1 ¡ fi¡1

2w
+O(w2) = ¢fi +O(w

2) (6.5)

where O(w2) has terms of order two or higher in w. For small enough w, O(w2) can be
ignored.

To obtain an intuitive expression for the second di®erence (an approximation of the
second derivative), we notice that the ¯rst di®erence at the point halfway between xi and
xi¡1 is

fi¡1=2 = (fi ¡ fi¡1)=w; (6.6)

and at the point halfway between xi+1 and xi it is

fi+1=2 = (fi+1 ¡ fi)=w: (6.7)

The second di®erence at xi should then be

¢2fi = (fi+1=2 ¡ fi¡1=2)=w = (fi+1 ¡ 2fi + fi¡1)=w2: (6.8)

To verify that equation 6.8 is an approximate form of the second derivative of f(x), we add
the two expressions in equations 6.3 and 6.4. Then solving for f 00i would give

f 00i = (fi+1 ¡ 2fi + fi¡1)=w2 +O(w2) = ¢2fi +O(w2): (6.9)

In the following, only second order di®erential equations will be discussed. Hence, equa-
tions 6.2 and 6.8 will be the only ¯nite di®erences we will need.

6.2 One dimensional scattering

In chapter 5 we discussed one dimensional scattering from simple barriers (rectangular).
Analytical solutions were possible in these cases. In a general case the form of the wave-
function is still the same very far to the left and right of the barrier as all physical forces
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Figure 6.2: General one dimensional scattering potential.

are expected to die out at large distances. Also, in physical problems measurements of
scattered and re°ected waves are made at large distances where the wave is virtually free
of forces. Hence, in the following, one dimensional space will be broken into three regions
as follows (¯g. 6.2).

I. Region of incident (and re°ected) beam (V = 0).

II. Region of scattering (V 6= 0).
III. Region of transmitted beam (V = Vt).

Region I is force free and hence, has a constant potential. With a suitable choice of reference,
this potential can be taken to be zero. Region III is also force free. However, as the choice
of reference has already been made in keeping the potential in region I as zero, the potential
in region III cannot, in general, be zero. But it will still be a constant Vt. The region of
nonzero force (region II) has been chosen to be between x = ¡a and x = 0. This choice of
coordinate origin is made for future convenience. For numerical solutions of problems the
position representation is usually preferred as it leads to di®erential equations and standard
numerical techniques for di®erential equations are well known. Hence, we shall use the same
method as given in chapter 5 with appropriate changes made for the more general potential.
The equation to be solved in the three regions is still the time independent SchrÄodinger
equation as given in equation 5.61.

¡ ¹h
2

2m

d2u

dx2
+ V u = Eu: (6.10)

From equation 5.63, we already know the solution in region I to be

u = A exp(ikx) +B exp(¡ikx); for x < ¡a: (6.11)
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In region III V (= Vt) is a constant and hence equation 6.10 can be written as

d2u

dx2
= ¡k2t u; (6.12)

where kt is a constant given by

kt = [2m(E ¡ Vt)=¹h2]1=2: (6.13)

Hence, the solution of equation 6.12 would be

u = C exp(iktx) +D exp(¡iktx); for x > 0: (6.14)

If E < Vt, then kt is imaginary. This would make the second term in equation 6.14 go
to in¯nity at x = +1. As this is not allowed, D must be zero. Such a solution can be
seen to lead to a zero transmission probability irrespective of the potential in region II (see
problem 6 of chapter 5). Hence, for a numerical solution we need to consider only the case
E > Vt. So kt must be real and can be chosen to be positive. In chapter 5 it was shown
that the second term in equation 6.14 would be due to a particle moving backwards in
region III. Such a particle is not possible as there is no source or re°ecting force in region
III. Hence, D = 0 and

u = C exp(iktx); for x > 0: (6.15)

The solution in region II is to be found numerically for arbitrary potentials. Numerical solu-
tions cannot be written in a general form as an arbitrary linear combination of two linearly
independent solutions. The freedom of the two arbitrary constants needs to be removed
through boundary or initial conditions before solving the equation. These conditions must
come from the known solutions in regions I and III and the continuity conditions at the
boundaries of the three regions (theorem 5.2). For the computation of the only measurable
quantities, (the re°ection and transmission coe±cients) we have seen that only the ratios
of the constants A, B and C are needed. Hence, without loss of generality, one can set any
one of these constants to be equal to 1. Depending on which of the constants is chosen
to be unity, we need di®erent numerical methods. At present we are going to discuss the
method in which C = 1. This will be later seen to be the simplest.

As a computing machine, in general, cannot handle complex numbers, one must write
equation 6.10 as two separate equations for the real and imaginary parts. Separating u in
its real and imaginary parts one writes

u = g + ih; (6.16)

where g and h are real. From equation 6.10 one now obtains the two real equations for g
and h.

d2g

dx2
+
2m(E ¡ V )g

¹h2
= 0; (6.17)

d2h

dx2
+
2m(E ¡ V )h

¹h2
= 0: (6.18)
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For a numerical solution of these equations it is convenient to choose a dimensionless vari-
able for the independent parameter. Let y be such a variable such that

x = cy: (6.19)

A choice of c that will simplify equations 6.17 and 6.18 would be

c = ¹h=(2mE)1=2 = 1=k: (6.20)

Then equations 6.17 and 6.18 become

d2g

dy2
+ (1¡ V=E)g = 0; (6.21)

d2h

dy2
+ (1¡ V=E)h = 0: (6.22)

To obtain numerical solutions of the above equations, we use the ¯nite di®erence approxi-
mation for the second derivative as given in equation 6.8 with the xi replaced by the yi so
that w = yi ¡ yi¡1. It leads to the following di®erence equations.

gi+1 ¡ 2gi + gi¡1 +w2(1¡ Vi=E)gi = 0; (6.23)

hi+1 ¡ 2hi + hi¡1 +w2(1¡ Vi=E)hi = 0; (6.24)

where Vi is the value of the potential V at yi. These equations are recursion relations for
g and h. If gi, hi, gi¡1 and hi¡1 are given, these equations can be solved to ¯nd gi+1 and
hi+1 that is

gi+1 = [w2(Vi=E ¡ 1) + 2]gi ¡ gi¡1; (6.25)

hi+1 = [w2(Vi=E ¡ 1) + 2]hi ¡ hi¡1: (6.26)

Hence, if g0, h0, g1 and h1 are known, g and h can be found at all points. These initial
values can be found from initial conditions of the di®erential equations. g0 and h0 are the
initial values of the functions. To determine g1 and h1 we notice that approximate forms
for the derivatives at the initial point are (see problem 1)

(¢g)0 = (g1 ¡ g0)=w; (6.27)

(¢h)0 = (h1 ¡ h0)=w: (6.28)

Then

g1 = w(¢g)0 + g0; (6.29)

h1 = w(¢h)0 + h0: (6.30)

If the initial values of the functions and their derivatives are known, equations 6.29 and 6.30
would give the approximations for g1 and h1. Hence, in this formulation of the problem,
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initial conditions are easier to handle than boundary conditions. A set of boundary condi-
tions would give values of the functions at both ends of region II, but not their derivatives.
So values for g1 and h1 cannot be found directly.

Initial conditions in region II can be determined from the results of the analytical
solutions in either region I or region III if we use the conditions of theorem 5.2. However,
the solution in region I has two unknowns (A and B). One of them can be set to unity, but
the other still remains unknown. The solution in region III, on the other hand, has only
one unknown (viz. C). This can be set equal to 1 as mentioned earlier.

C = 1: (6.31)

Now equation 6.15 can be written as

u = exp(iktx); for x > 0: (6.32)

Then the values of u and its derivative at x = 0 (or y = 0) would be

u0 = 1; (6.33)

du

dy

¯̄̄̄
y=0

=
1

k

du

dx

¯̄̄̄
x=0

=
ikt
k

= i(1¡ Vt=E)1=2: (6.34)

Using equation 6.16 this gives

g0 = 1; h0 = 0; (6.35)

dg
dy

¯̄̄
y=0

= 0;
dh

dy

¯̄̄̄
y=0

= (1¡ Vt=E)1=2: (6.36)

As the region of computation (region II) is to the left of this initial point (y = 0), we
number the indices of y, g and h in increasing order from right to left such that

y0 = 0; yi = yi¡1 ¡ w: (6.37)

This makes (¢g)0 and (¢h)0, the approximate forms of the derivatives (equations 6.27
and 6.28), change in sign. Hence, replacing approximate derivatives by the negatives of
actual derivatives (equation 6.36), equations 6.29 and 6.30 will give

g1 = 1; h1 = ¡w(1¡ Vt=E)1=2: (6.38)

Now, equations 6.35 and 6.38 will provide all the initial values needed to solve the recursion
relations in equations 6.25 and 6.26. If, in region II, there are n intervals of width w each,
then the last computed value of gi and hi will be gn and hn respectively. This will complete
the numerical solution of the di®erential equation.

To determine the re°ection and transmission coe±cients we need to compute the
constants A and B. Once the numerical solution for u is known in region II, A and B
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can be found by matching the values of u and its derivative (with respect to y) uy at the
boundary of region I and region II. In doing this we use equations 6.11, 6.19 and 6.20 to
get

u = A exp(iy) +B exp(¡iy) (6.39)

uy = iA exp(iy)¡ iB exp(¡iy): (6.40)

This leads to

jAj2 =
juy + iuj2

4
(6.41)

jBj2 =
juy ¡ iuj2

4
: (6.42)

Then using equation 6.16 we get

jAj2 =
(gy ¡ h)2 + (hy + g)2

4
(6.43)

jBj2 =
(gy + h)

2 + (hy ¡ g)2
4

; (6.44)

where gy and hy are the derivatives of g and h with respect to y. Due to theorem 5.2, the
values of g, gy, h and hy must be the same at x = ¡a (y = ¡ka) using either the solution in
region I or the numerical solution in region II. Hence, the approximate values from region
II can be introduced in equations 6.43 and 6.44 to abtain

jAj2 ' (gyn ¡ hn)2 + (hyn + gn)2
4

(6.45)

jBj2 ' (gyn + hn)
2 + (hyn ¡ gn)2
4

; (6.46)

where gn and hn are the last computed values from the recursion relations of equations 6.25
and 6.26 i.e. they are the values of g and h at x = ¡a (y = ¡ka) which also means nw = ka.
gyn and hyn are the approximations of the derivatives of g and h at y = ¡ka.

gyn = (gn¡1 ¡ gn)=w; hyn = (hn¡1 ¡ hn)=w: (6.47)

Now, the transmission coe±cient T and the re°ection coe±cient R can be found from the
de¯nitions in equation 5.22. The currents N and nr are the same as in equations 5.69
and 5.70. However, as kt is no longer the same as k, nt is given by

nt =
¹hkt
m
jCj2: (6.48)

Hence, we obtain

T = ktjCj2
kjAj2 =

4(1¡ Vt=E)1=2
(gyn ¡ hn)2 + (hyn + gn)2 (6.49)

R = jBj2
jAj2 =

(gyn + hn)
2 + (hyn ¡ gn)2

(gyn ¡ hn)2 + (hyn + gn)2 : (6.50)
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Thus an algorithm for the computation of transmission and re°ection coe±cients will con-
tain the following parts.

² Determine desired values of E, Vt and w. For better results, the function should not
change much in any interval w. Hence, the wavelength of the wavefunction must be
large compared to w i.e. w¿ 1=k.

² Set the initial values g0, h0, g1 and h1 using equations 6.35 and 6.38.
² Use the recursion relations in equations 6.25 and 6.26 in a loop to compute all values
of gi and hi upto gn and hn. In each step of the loop, y is to be decreased by w and
the value of the potential is to be computed at that value of y. The loop is to be
terminated when y ∙ ¡ka.

² Re°ection and transmission coe±cients are to be computed using equations 6.47, 6.49
and 6.50.

6.3 One dimensional bound state problems

In bound state problems the energy eigenvalues and eigenfunctions need to be found. A
rather simple method is possible for potentials that have a re°ection symmetry. As will be
seen in chapter 7, wavefunctions for such potentials are either symmetric or antisymmetric.
Hence, solving the equation for positive x is su±cient. The antisymmetric wavefunctions
vanish at the origin and the symmetric wavefunctions have zero slope at the origin. This
initial condition, along with an arbitrary choice of normalization constant, is su±cient for
the numerical solution of the equation. As the energy eigenvalue is not known a priori, one
needs to solve the equation for a series of energy values and observe the behavior of the
function at some large distance (viz. the \tail") for each case. If the magnitude of the tail
increases rapidly with distance, one concludes that the energy is not an energy eigenvalue.
In the neighborhood of an energy eigenvalue a slow change in the chosen energy will show
a rapid change in the tail. In fact the tail can be seen to change sign precisely at energies
that are eigenvalues. This change in sign is so rapid that the solution for the wavefunction
is extremely unstable and inaccurate at large distances. However, the rapid change in sign
for small changes in energy can be used to locate the energy eigenvalue very precisely. To
illustrate this method, we shall use it for the harmonic oscillator problem that has already
been solved analytically. Hence, it will be a good test for the method.

As in the scattering case, the numerical solution of bound state problems is also fa-
cilitated by choosing an appropriate dimensionless independent variable. For the harmonic
oscillator problem, this has already been done in chapter 4. The choice of the indepen-
dent variable y, is given in equations 4.43 and 4.44. The resulting equation to be solved is
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equation 4.45 which we write here without the subscript E of the function u.

d2u

dy2
+ (e¡ y2)u = 0: (6.51)

The eigenvalue e will now be computed numerically and then the energy eigenvalue E will
be found using the relation in equation 4.46. Due to theorem 5.1 we know that only real
eigenfunctions need be found and hence, we choose u to be real. By using the ¯nite di®erence
form of equation 6.8, we can write the di®erence equation corresponding to equation 6.51
to be

ui+1 = [(y
2
i ¡ e)w2 + 2]ui ¡ ui¡1: (6.52)

For even solutions, one knows that u is nonzero at the origin. This initial value can be
arbitrarily chosen to be 1, as the function need be known only upto an undetermined
multiplicative constant (see rule 2). For the initial condition on the derivative, one can
write an equation similar to equation 6.29:

u1 = w(¢u)0 + u0: (6.53)

For even solutions, u must have a derivative of zero at the origin. Hence, the approximation
of the derivative in equation 6.53 can be set to zero. Thus we get the following initial
conditions.

u1 = u0 = 1 (even): (6.54)

For odd solutions the value at the origin must be zero. But the value of the slope at the
origin can be chosen arbitrarily due to rule 2. We shall choose the approximate value of
the initial slope to be 1. Hence, the initial conditions are

u0 = 0; u1 = w (odd): (6.55)

Using the conditions of equation 6.54 or 6.55, one can solve the recursion relation of equa-
tion 6.52 using e = 0. The computation should be stopped at some value i = n such that
un is very large (say 100). The sign of un should be noted. Next, the process should be
repeated several times for values of e incremented by a small amount (say ed) each time.
If the sign of un changes between two consequtive value of e (say e0 and e0 + ed), then, for
some energy between these two values, the wavefunction must go to zero at large distances
{ This energy would be the lowest eigenvalue. If ed is chosen to be smaller than tolerable
error in eigenvalue computation, then e0 itself can be accepted as an approximation of the
lowest eigenvalue. If the above process is continued for higher energies, higher eigenvalues
can be obtained.

Very often the ed that is needed for the desired accuracy is so small that computation
time becomes unacceptably large. Hence, the search for eigenvalues needs to be done in a
more sophisticated manner. A binary search would be faster. However, to conduct such a
search, one would need to know intervals in e that have one and only one eigenvalue each.
Thus a practical approach would be to conduct a rough linear search as before with an ed
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just small enough such that the interval [e; e+ ed] can have at most one eigenvalue. Once
the interval in which an eigenvalue is located is found, a binary search within the interval
can be conducted. This search technique is similar to the bisection method outlined in
chapter 5 for the solution of equations 5.54 and 5.55 (see problem 2).

As one knows that only the eigenvalue is the observed quantity, the above numerical
technique is usually quite su±cient. However, very often, to estimate the changes in an
eigenvalue due to small changes in the potential energy function, one needs the wavefunc-
tion. The above method gives the correct wavefunction except for the unstable tail. The
tail region of the solution is easily identi¯ed by a catastrophic increase (or decrease) in the
computed function. Setting this part of the solution to be identically zero gives a reason-
ably good approximation for the wavefunction. However, for better results one may use a
matrix method (see problem 3) to compute the function in the tail region. To do this one
may assign the boundary condition of the function at a large distance to be zero. The other
condition is that of continuity with the solution already obtained before the tail region (see
problem 5). The matrix method could, of course, have been used for the complete solution
rather than just the tail. But that would require a larger computer memory.

If the potential function V (x) is not symmetric, ¯nding bound state energy eigenvalues
can become more tricky. In such a situation the matrix method might be easier to use.
The value u(0) (= u0) of the function at the origin can be chosen to be 1 at the origin.
Then for some energy E, a matrix solution can be found from x = ¡1 to x = 0 using the
boundary conditions u(¡1) = 0 and u(0) = 1. Here in¯nity is understood to be a large
enough value for computer usage. Next, for the same energy E, another matrix solution
can be found from x = 0 to x = +1. The derivatives of the two solutions must match
at x = 0. This matching condition can be used to search for the eigenvalues of energy. If
by accident the origin is chosen at a point where the wavefunction vanishes, a shift in the
coordinate system would be necessary.

6.4 Other techniques

The numerical methods discussed in this chapter are some of the more intuitive and theoret-
ically straightforward ones that are known. They are to be considered as only a beginning.
In many situations the physicist needs to develop more specialized and sometimes more
involved methods to suit the needs. Numerical tricks, that improve accuracy and speed in
special cases, are continually being developed by numerical analysts. Hence, the reader is
also encouraged to develop his (or her) own methods whenever the need arises.
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6.5 Accuracy

In any numerical technique it is crucial to know the degree of accuracy. Without an
error estimate the numerical results are quite worthless. One of the simplest and practical
methods of error estimation involves computing the change in the ¯nal results due to a
change in the interval w used in the solution of the di®erential equation. The number
of signi¯cant ¯gures of the solution that do not change due to a decrease in w, give the
accuracy of the solution.

The approximation methods used in this chapter are based on expanding a function
in a Taylor series and selecting a suitable number of terms from it. The error introduced
by ignoring higher order terms in the Taylor series is called a truncation error. Truncation
errors can usually be reduced by choosing a small enough interval w. However, very small
intervals can increase what are called roundo® errors. The source of roundo® errors is the
following.

A machine computation is usually done with a certain ¯xed number of signi¯cant
¯gures. When the interval w is chosen to be small, it very often requires the computation
of the small di®erence between two large numbers (e.g. a ¯rst di®erence). The number
of signi¯cant ¯gures of the di®erence can be seen to be much smaller than that of the
original numbers even though the computer will arbitrarily ¯ll in the missing signi¯cant
¯gures. For example, the two numbers, 4.02395 and 4.02392, have six signi¯cant ¯gures
each. However, their di®erence, 3£10¡5, has only one signi¯cant ¯gure. The computer will
¯ll in signi¯cant ¯gures and might consider this di®erence to be 3:00000£ 10¡5. The error
introduced by arbitrarily assigning these extra signi¯cant ¯gures is called a roundo® error.
Roundo® errors can be reduced by choosing a larger number of signi¯cant ¯gures for all
computations and thus paying the price through longer computation times. Most computer
languages provide at least two di®erent choices of signi¯cant ¯gures (viz. single or double
precision). Higher precision computation can be obtained by some custom programming
for the underlying arithmetic operations.

Truncation errors can also be reduced by using higher order algorithms that use a
larger number of terms of the Taylor series expansion. Such methods are beyond the scope
of this book.

6.6 Speed

Computation speeds can of course be improved by better computer hardware. Such im-
provements are limited only by technology and the ¯nancial status of the physicist. On the
other hand improving speed through e±cient software is an art that is often learnt from
experience. In any e®ort in machine computation one needs to strike the right balance in
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accuracy, computation speed, and time (or money) spent on software. While discussing the
accuracy of computations we have already shown that, in general, an increase in accuracy
is accompanied by a decrease in speed.

Problems

1. Show that equations 6.27 and 6.28 give approximate forms of the derivatives of g and
h at the origin.

2. Based on the bisection method outlined in chapter 5 for the solution of equation 5.54,
describe a method for the binary search of an eigenvalue (for a bound state) when an
interval containing one and only one eigenvalue has already been located.

3. Show that recursion relations like those of equations 6.25, 6.26 and 6.52 can be written
as n ¡ 1 linear algebraic equations for n + 1 unknowns. This set of equations can
be solved using numerical matrix methods if two more independent equations are
included. Show the following:

(a) Initial conditions can provide these two equations.

(b) Boundary conditions on both ends can also provide these two equations.

4. Show that the one dimensional scattering problem can be solved by the matrix method
of problem 3, if in equation 6.11 A is chosen to be 1 while B and C (of equation 6.15)
are computed from the solution. For such a choice, ¯nd the four extra equations (two
for the g recursion relation and two for the h recursion relation) needed to solve the
matrix equations.

5. Find a numerical method based on the matrix method of problem 3 for the computa-
tion of the tail part of a bound state eigenfunction. Use the boundary condition that
the function goes to zero at large distances.

6. Develop a computer algorithm to compute the re°ection and transmission coe±cients
for the junction potential of a semiconductor p-n junction. Such a potential is given
by the following.

V = 0 x < ¡dp
= Kp(x+ dp)

2 ¡ dp < x < 0
= Vt ¡Kn(x¡ dn)2 0 < x < dn

= Vt x > dn:

where dp, dn, Kp and Kn are given constants characterizing the potential and Vt =
Kpd

2
p +Knd

2
n.
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7. Develop a computer algorithm to compute the eigenvalues for a quartic potential:

V = Kx4:

where K is a given constant.



Chapter 7

Symmetries and Conserved
Quantities

7.1 Symmetry groups and their representation

A general transformation of a system can be visualized as a coordinate transformation in
some arbitrary coordinate system. A symmetry transformation is a transformation that
keeps the physical characteristics of the system unchanged (for example, a rotation of a
spherical object). In classical mechanics a symmetry transformation is de¯ned as follows.

De¯nition 28 A CLASSICAL SYMMETRY TRANSFORMATION of a system keeps the
form of the hamiltonian unchanged.

A quantum symmetry transformation can be de¯ned to be the same. However, one knows
that the quantum hamiltonian (H), like any operator, is speci¯ed completely by its oper-
ations on all possible states. As the set of eigenstates of the hamiltonian form a complete
set, it would then su±ce to specify the operation of H on all its eigenstates. This would
of course amount to specifying all eigenvalues of H. Hence, for convenience, the following
alternative de¯nition will be used for quantum mechanics.

De¯nition 29 A QUANTUM SYMMETRY TRANSFORMATION keeps the set of all
eigenvalues and eigenstates of the hamiltonian unchanged. (Note: degenerate states with
the same eigenvalue can exchange places in such a transformation.)

In both classical and quantum mechanics, it can be seen that symmetry transformations
become important due to their relation to conserved quantities. However, in quantum

78
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mechanics the imporatance of symmetries is further enhanced by the fact that observation
of conserved quantities can be exactly predictable in spite of the probabilistic nature of
quantum predictions (see chapter 4). Hence, in this chapter, we shall study the nature of
symmetry transformations in quantum mechanics.

Let us consider an arbitrary transformation of an arbitrary state jsi to be given by
the operator U such that the transformation gives

jsi ! U jsi: (7.1)

If U were to produce a symmetry transformation, the following theorem can be proved.

Theorem 7.1 If the operator U produces a symmetry transformation on all ket vectors,
then it must commute with the hamiltonian.

Proof: By de¯nition of a symmetry transformation, the operator U could transform an
energy eigenstate either to itself or another eigenstate degenerate to it. Hence, if jEii
is an eigenstate of H with eigenvalue Ei then

HU jEii = HjE0ii = EijE 0ii
= EiU jEii = UEijEii = UHjEii (7.2)

where jEii and jE 0ii are either degenerate or the same. This gives the result
[H;U ]jEii = 0: (7.3)

The above equation is true for all energy eigenstates jEii. From the completeness
theorem one knows that any arbitrary state jsi can be written as a linear combination
of the eigenstates jEii. Hence, it follows that

[H;U ]jsi = 0: (7.4)

As jsi is an arbitrary ket vector, one concludes
[H;U ] = 0: (7.5)

This proves the theorem.

The following de¯nitions are going to be useful in the future.

De¯nition 30 An operator U is called UNITARY if

U yU = I

where I is the identity operator de¯ned in chapter 1.
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De¯nition 31 An operator Q is called ANTILINEAR if

Q(ajri+ bjsi) = a¤Qjri+ b¤Qjsi
where a; b 2 C.

De¯nition 32 An operator U is called ANTIUNITARY if it is antilinear and

hrjU yU jsi = hrjsi¤ = hsjri

Now the following theorem can also be proved for symmetry transformations.

Theorem 7.2 If a linear operator U produces a symmetry transformation then it is uni-
tary.

Proof: Let the set of eigenstates of the hamiltonian H be fjEiig and let the operation of
U on this set be given by

U jEii = jE0ii: (7.6)

By the de¯nition of a symmetry transformation the set fjE0iig is also that of eigen-
states of the hamiltonian. They can also be chosen to be normalized. Consider two
arbitrary states jri and jsi. They can be written as linear combinations of the energy
eigenstates jEii.

jri =
X
i

aijEii (7.7)

jsi =
X
i

bijEii: (7.8)

Then, as U is linear, equation 7.6 gives

U jri =
P
i aiU jEii =

X
i

aijE0ii (7.9)

U jsi =
P
j bjU jEji =

X
j

bjjE 0ji: (7.10)

Hence,
hrjU yU jsi =

X
ij

a¤i bjhE0ijE0ji =
X
i

a¤i bi = hrjsi: (7.11)

Here the orthonormality of energy eigenstates is used. As equation 7.11 is true for
any two states jri and jsi, it follows that U yU is the identity operator I.

U yU = I: (7.12)

This completes the proof.
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A more general form of theorem 7.2 can also be proved. However, here we shall state it
without proof as follows.

Theorem 7.3 An operator U that produces a symmetry transformation must be either
unitary or antiunitary.

We shall later see that the time reversal symmetry operator is an example of an antiunitary
operator.

The set of all symmetry transformations of a system is called its symmetry group as
it satis¯es the mathematical properties of a special type of set called a group. A group is
de¯ned as follows:

De¯nition 33 If G is a GROUP and A;B;C 2 G, then the following are true:

1. The product AB 2 G if the product is de¯ned as two successive operations.

2. The identity transformation I 2 G where I is de¯ned by AI = IA = A.

3. Every A (2 G) has a unique inverse A¡1 (2 G) such that AA¡1 = A¡1A = I.
4. The product is associative i.e. A(BC) = (AB)C.

De¯nition 34 A CONTINUOUS GROUP (e.g. rotation group) is one whose elements
have a one-to-one correspondence with the values of a set of continuous variables called the
GROUP PARAMETERS (e.g. angle of rotation).

De¯nition 35 If the algebra of a group can be realized by a set of operators, then this set
is called its REPRESENTATION.

De¯nition 36 The operators on the quantum states of a system, that generate transfor-
mations of these states according to the group elements of the symmetry of the system,
must form a representation of that group. This will be called the QUANTUM STATES
REPRESENTATION of the group.

If µ is a group parameter, a group element (in its quantum state representation) in¯nitesi-
mally di®erent from the identity can be written as

U(dµ) = I +Qdµ; (7.13)

where Q is an operator. From theorem 7.3 we know that U(dµ) could be either unitary or
antiunitary. If it were antiunitary, it would have to be so even in the limit of dµ going to zero.
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But from equation 7.13, we see that for dµ = 0, U(dµ) = I which is not antiunitary. Hence,
we conclude that U(dµ) must be unitary and in general the quantum states representation
of any continuous group must be unitary as a continuous variation of the group parameters
cannot bring about the discontinuous change from unitary to antiunitary. Unitarity of
U(dµ) gives

I = U y(dµ)U(dµ) = (I +Qydµ)(I +Qdµ) = I + (Qy +Q)dµ; (7.14)

where second order terms in the in¯nitesimal dµ are dropped. Hence,

Qy = ¡Q: (7.15)

If Q = iJ then equation 7.15 would give J to be hermitian, and

U(dµ) = I + iJdµ: (7.16)

To obtain a ¯nite group operation one may operate on a state n times with U(dµ) and then
let n!1, such that ndµ = µ is ¯nite. This gives

U(µ) = lim
n!1(I + iJµ=n)

n = exp(iJµ); (7.17)

where J , the hermitian operator, is called a GENERATOR of the group. Very often J can
be found to be an observable.

Corollary 7.1 From theorem 7.1 and theorem 4.2, it follows that a generator of a symme-
try group must be a conserved quantity (see problem 1).

In chapter 4 we had shown that conserved quantities are particularly important for quan-
tum mechanics because they are the only quantities whose measurements can be predicted
precisely in the absence of experimental error. Corollary 7.1 gives a way of identifying these
conserved quantities through the symmetries of the system. Hence, it becomes important
to study the symmetries of a system. In the following sections we shall investigate some
common symmetries and the corresponding conserved quantities.

7.2 Space translation symmetry

A system that appears the same from di®erent points in space is said to have space trans-
lation symmetry or just TRANSLATION SYMMETRY. Let Us(q) denote the quantum
states representation of the translation group for a translation in space by the displacement
vector q. The operation of this symmetry operator on an arbitrary state jsi can be best
understood in its position representation Ãs(r). First, considering a one dimensional system
we give an in¯nitesimal translation of dq to the one dimensional wavefunction Ãs(x) = hxjsi.
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The result of the translation should make the new function at x be equal in value to the
old function at x¡ dq i.e.

hxjUs(dq)jsi = hx¡ dqjsi = Ãs(x¡ dq)
= Ãs(x)¡ dq @Ãs(x)@x =

µ
1¡ dq @

@x

¶
Ãs(x): (7.18)

Comparing with equation 7.16 we see the generator for translation in one dimension to be
proportional to the momentum operator P (= ¡i¹h@=@x in the position representation) i.e.

hxjUs(dq)jsi = (1¡ iPdq=¹h)Ãs(x): (7.19)

For a ¯nite translation of q we use equation 7.17 to obtain

hxjUs(q)jsi = exp(¡iPq=¹h)Ãs(x): (7.20)

Hence, in general, the translation operation in one dimension is represented by

Us(q) = exp(¡iPq=¹h): (7.21)

This result can be generalized for the three dimensional case to give

Us(q) = exp(¡iP ¢ q=¹h); (7.22)

where P is the momentum vector operator. Now, from corollary 7.1 we can at once conclude
that in a translationally symmetric system the momentum is conserved. The free particle
is an example of such a system.

7.3 Time translation symmetry

The SchrÄodinger equation is postulated to generate time translation. Hence, the quantum
states representation of the time translation operator must be directly derivable from the
SchrÄodinger equation. This has been done in problem 2 of chapter 4. Thus we ¯nd the
time translation operator to be

Ut(t) = exp(¡iHt=¹h): (7.23)

This can be seen to be a symmetry operation for all conservative systems as in chapter 4
we showed that, for such systems, energy eigenstates do not change with time.
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7.4 Rotation symmetry

Under a rotation the transformation of the rectangular coordinates (x1; x2; x3) = (x; y; z)
is given by a matrix with elements aij(i; j = 1; 2; 3) such that the transformed coordinates
(x01; x02; x03) = (x0; y0; z0) are given by [2]

x0i =
X
j

aijxj ; i = 1; 2; 3: (7.24)

The scalar product of two vectors is unchanged by this transformation. This leads to the
condition X

j

aija
T
jk =

X
j

aijakj = ±ik: (7.25)

where ±ik is the Kronecker delta. The set of all 3 £ 3 matrices that satisfy equation 7.25
form the rotation group. This group is also known as the orthogonal group in 3 dimensions
or O(3). From equation 7.25 it follows that the matrices aij have the determinant +1 or
¡1. The subset of these matrices that have the determinant +1 is also a group and it
is called the SO(3) group. SO(3) contains all elements of O(3) that can be continuously
transformed to the identity i.e. it does not include coordinate inversions. At present we are
going to discuss only SO(3) as it has no discrete transformation elements and hence, can
be represented in the form of equation 7.17.

A rotation about the z direction by an angle µ can be seen to be given by the following
element of the rotation group.

az(µ) =

0B@ cos µ ¡ sin µ 0
sin µ cos µ 0
0 0 1

1CA : (7.26)

Hence, an in¯nitesimal rotation about the z direction by an angle dµ is given by

az(dµ) =

0B@ 1 ¡dµ 0
dµ 1 0
0 0 1

1CA : (7.27)

Now we can derive the quantum states representation UR of SO(3). Under an in¯nitesimal
rotation of dµ, about the z axis, the position representation Ãs(r) of the state jsi becomes

hrjUR(dµ)jsi = Ãs(r0); (7.28)

where r0 = a¡1z (dµ)r. Hence,

Ãs(r
0) = Ãs(x+ ydµ; y ¡ xdµ; z): (7.29)
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A Taylor series expansion up to ¯rst order terms in dµ would give

Ãs(r
0) = Ãs(r) + ydµ

@Ãs(r)

@x
¡ xdµ@Ãs(r)

@y

=

∙
1 +

µ
y
@

@x
¡ x @

@y

¶
dµ

¸
Ãs(r): (7.30)

In the position representation the quantity in parenthesis can be seen to beµ
y
@

@x
¡ x @

@y

¶
= i(yPx ¡ xPy)=¹h
= ¡iLz=¹h; (7.31)

where Px and Py are the respective x and y components of momentum and Lz is the z
component of angular momentum (in its operator form in the position representation).
Hence, we conclude that the operator form of UR(dµ) in any representation is

UR(dµ) = I ¡ iLzdµ=¹h: (7.32)

The corresponding ¯nite rotation by an angle µ about the z axis is

UR(µ) = exp(¡iLzµ=¹h): (7.33)

This can be generalized, as follows, for any rotation µ about some direction given by the
unit vector n̂.

UR(µ) = exp(¡iL ¢ n̂µ=¹h): (7.34)

Thus we see that angular momentum is the generator of rotation i.e. SO(3). Hence, it must
be conserved in a system that is rotationally symmetric.

7.4.1 Eigenvalues of angular momentum

As Lz is conserved in a spherically symmetric system it will have simultaneous eigenstates
with the hamiltonian (see problem 3 in chapter 4). Similarly, Lx, or Ly could also individ-
ually share eigenstates with the hamiltonian. However, di®erent components of L cannot
share eigenstates as they do not commute. For example, if the position and momentum
operators are R = (X;Y;Z) and P = (Px; Py; Pz) then

[Lx; Ly] = [Y Pz ¡ ZPy; ZPx ¡XPz]
= Y [Pz; Z]Px +X[Z;Pz]Py

= i¹h(XPy ¡ Y Px)
= i¹hLz: (7.35)
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Similarly,

[Ly; Lz] = i¹hLx; (7.36)

[Lz; Lx] = i¹hLy: (7.37)

The magnitude squared of the total angular momentum, L2 (= L2x + L
2
y + L

2
z) commutes

with each component. Hence, we can ¯nd simultaneous eigenstates for any one of the
following three sets of operators: fH;L2; Lxg; fH;L2; Lyg; fH;L2; Lzg. In the following,
without loss of generality, we shall choose the simultaneous eigenstates of fH;L2; Lzg.
These eigenstates, jc; di, are labelled by c, the eigenvalue of L2, and d, the eigenvalue of Lz.
The energy eigenvalue is suppressed as it will have a ¯xed value for the following discussion.
Hence,

L2jc; di = cjc; di; Lzjc; di = djc; di (7.38)

We can now ¯nd the possible values of the eigenvalues c and d. To this end we ¯rst de¯ne
the operators

L+ = Lx + iLy; (7.39)

L¡ = Lx ¡ iLy: (7.40)

The commutators of L+ and L¡ can be obtained from equations 7.35, 7.36 and 7.37 to be

[L+; L¡] = 2¹hLz; (7.41)

[L+; Lz] = ¡¹hL+; (7.42)

[L¡; Lz] = ¹hL¡: (7.43)

Then,

LzL+jc; di = L+Lzjc; di+ ¹hL+jc; di
= L+djc; di+ ¹hL+jc; di
= (d+ ¹h)L+jc; di: (7.44)

As L2 commutes with all angular momentum components we can also see that

L2L+jc; di = cL+jc; di: (7.45)

Hence, it is seen that the operator L+ \raises" the eigenstate jc; di to another eigenstate
with the Lz eigenvalue greater by ¹h while the L

2 eigenvalue remains the same. Thus one
can write

L+jc; di = Ndjc; d+ ¹hi; (7.46)

where Nd is chosen to maintain normalization of the eigenstates. Similarly, it can be shown
that

L¡jc; di =Mdjc; d¡ ¹hi: (7.47)
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For a given eigenvalue of L2, the eigenvalue of Lz is expected to have both an upper limit
and a lower limit. This can be seen from the fact that

L¡L+jc; di = (L2x + L2y + i[Lx; Ly])jc; di: (7.48)

From equations 7.35, 7.46 and 7.47 this gives

Md+¹hNdjc; di = (L2x + L
2
y ¡ ¹hLz)jc; di

= (L2 ¡ L2z ¡ ¹hLz)jc; di
= (c¡ d2 ¡ ¹hd)jc; di: (7.49)

We also know that hc; djL¡ is the adjoint of L+jc; di. Hence,
jNdj2 = hc; djL¡L+jc; di =Md+¹hNd; (7.50)

and thus
Md+¹h = N

¤
d : (7.51)

Then from equation 7.49 we see that

c¡ d2 ¡ ¹hd = jNdj2 > 0; (7.52)

or
d2 + ¹hd < c: (7.53)

This shows that for a given c, d has a maximum and a minimum value. Let the maximum
value for d be l¹h where l is dimensionless. Then

L+jc; l¹hi = 0; (7.54)

and from equation 7.49 we get

0 = L¡L+jc; l¹hi = (c¡ l2¹h2 ¡ l¹h2)jc; l¹hi; (7.55)

or
c = l(l + 1)¹h2: (7.56)

As the eigenvalue of Lz has a minimum value for a given c, it is evident that a ¯nite number
of operations on jc; l¹hi by L¡ should bring it down to the eigenstate of that minimum
eigenvalue. If this ¯nite number is n (a non-negative integer) then

L¡jc; l¹h¡ n¹hi = 0: (7.57)

Hence,

0 = L+L¡jc; (l ¡ n)¹hi = (L2x + L
2
y ¡ i[Lx; Ly])jc; (l ¡ n)¹hi

= (L2 ¡ L2z + ¹hLz)jc; (l ¡ n)¹hi
= [c¡ (l ¡ n)2¹h2 + (l ¡ n)¹h2]jc; (l ¡ n)¹hi: (7.58)
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It then follows that
c¡ (l ¡ n)(l ¡ n¡ 1)¹h2 = 0: (7.59)

Using equations 7.56 and 7.59 we obtain

l(l + 1)¡ (l ¡ n)(l ¡ n¡ 1) = 0; (7.60)

or (as n is non-negative)
l = n=2: (7.61)

Hence, l can take either integer or half integer values and the eigenvalue of L2 corresponding
to it is l(l + 1)¹h2. If the eigenvalue of Lz is written as m¹h, m can take a maximum value
of l. All other value of m di®er from l by some integer. The minimum value of m is l ¡ n
which, from equation 7.61, can be seen to be ¡l. Now we can label the angular momentum
eigenstates by the numbers l and m (instead of c and d) i.e jl;mi such that

L2jl;mi = l(l + 1)¹h2jl;mi; (7.62)

and
Lzjl;mi = m¹hjl;mi; (7.63)

where l is either an integer or a half integer and m takes the values l; l ¡ 1; l ¡ 2; : : : ;¡l.
Hence, the total number of m values for a given l is 2l + 1.

Thus we have shown that angular momentum eigenvalues are discrete. However, these
results are obtained only from the commutators of the generators and further restrictions
may apply on the allowed eigenvalues when ¯nite rotations are considered. From equa-
tion 7.33 a rotation of 2¼ on a state jl;mi would give

exp(¡2¼iLz=¹h)jl;mi = exp(¡2¼im)jl;mi: (7.64)

If l (and consequently m) is a half integer this does not produce the expected identity
transformation. Hence, half integer l is not allowed for the kind of state vectors we have
discussed so far. It will later be seen that state vectors that include spin will allow half
integer l values.

Two relations that will be seen to be useful later are as follows.

L+jl;mi = [l(l + 1)¡m(m+ 1)]1=2¹hjl;m+ 1i (7.65)

L¡jl;mi = [l(l + 1)¡m(m¡ 1)]1=2¹hjl;m¡ 1i (7.66)

These can be obtained from equations 7.49, 7.50, 7.56 and 7.63 (see problem 3).
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7.4.2 Addition of angular momenta

If a system has two di®erent components (e.g. a two particle system), each of which
has a measurable angular momentum, the relation between individual component angular
momenta and total angular momentum is nontrivial in quantum mechanics. Hence, we
shall discuss it here. Let the individual component angular momenta be L1 and L2 and
the total angular momentum be L such that

L = L1 + L2: (7.67)

This means

L+ = L1+ + L2+; (7.68)

L¡ = L1¡ + L2¡; (7.69)

Lz = L1z + L2z; (7.70)

L2 = L21 + L
2
2 + 2L1 ¢ L2; (7.71)

where the subscripts +, ¡, and z mean the same for the vectors L1 and L2 as they do for L.
If the eigenstates of L21 and L1z are labelled as jl1;m1i and that of L22 and L2z as jl2;m2i,
then the combined system can be represented by the direct product jl1;m1i ­ jl2;m2i of
these states. A more compact notation for these direct products would be

jl1;m1i­ jl2;m2i ´ jl1; l2;m1;m2i ´ jm1;m2i: (7.72)

In the last form l1 and l2 are suppressed. This is convenient when the values of l1 and l2
are ¯xed for some computation. It is possible to choose l1, m1, l2, and m2 as labels as the
corresponding operators L21, L1z, L

2
2, and L2z commute with each other and hence have

simultaneous eigenstates. Another set of commuting operators is fL21; L22; L2; Lzg. Hence,
a set of simultaneous eigenstates for these operators can be found. These eigenstates would
be labelled as jl1; l2; l;mi such that

L21jl1l2lmi = l1(l1 + 1)¹h
2jl1l2lmi; (7.73)

L22jl1l2lmi = l2(l2 + 1)¹h
2jl1l2lmi; (7.74)

L2jl1l2lmi = l(l + 1)¹h2jl1l2lmi; (7.75)

Lzjl1l2lmi = m¹hjl1l2lmi; (7.76)

where the commas within the ket are omitted. We shall call the jl1l2m1m2i states of
equation 7.72, the individual angular momenta states and the jl1l2lmi states the total
angular momentum states. As these two di®erent sets of eigenstates describe the same
system, they must be related as linear combinations of each other. The coe±cients for such
linear combinations are called the CLEBSCH-GORDAN COEFFICIENTS. If the common
labels (l1 and l2) of the two sets are suppressed, then one may write

jlmi =
X
m1m2

jm1m2ihm1m2jlmi (7.77)
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as
P
m1m2

jm1m2ihm1m2j would be the identity in the subspace where l1 and l2 are ¯xed.
From equation 7.77 we see that the coe±cients hm1m2jlmi are the Clebsch-Gordan coe±-
cients.

We shall discuss some useful general results before computing these coe±cients. Op-
erating equation 7.77 by Lz (= L1z + L2z) and then multiplying from the left by hm1m2j
one obtains

mhm1m2jlmi = (m1 +m2)hm1m2jlmi: (7.78)

Hence, the coe±cient hm1m2jlmi can be nonzero only if
m = m1 +m2: (7.79)

So for ¯xed values of l1 and l2, the largest value of m can be l1+ l2. Also, as l is the largest
value of m, the largest value of l is l1 + l2. Hence, for l = m = l1 + l2, equation 7.77 would
become

jl1 + l2; l1 + l2i = jl1l2ihl1l2jl1 + l2; l1 + l2i: (7.80)

As all eigenstates are normalized, one could choose hl1l2jl1 + l2; l1 + l2i = 1. This would
give

jl1 + l2; l1 + l2i = jl1l2i: (7.81)

In the last two equations, one notices a possibility of confusion in notation of the individual
angular momenta states and the total angular momentum states. To avoid such confusion,
we shall always have the individual angular momenta kets on the right side of an equation
unless they are part of an inner product. Similarly, the total angular momentum kets will
always be placed on the left side of an equation. From equation 7.71 it can be seen that l
can take di®erent values for ¯xed values of l1 and l2. However, as l is the maximum value of
m (which is m1 +m2), it can be less than l1 + l2 only by a positive integer. The minimum
value of l is jl1 ¡ l2j. This can be seen from the fact that the number of eigenstates for the
individual angular momenta must be the same as that for the total angular momentum (for
¯xed l1 and l2) as both sets of eigenstates form a complete set spanning the same space
(see problem 5). We can now illustrate a general method of computing Clebsch-Gordan
coe±cients through an example. If l1 = 1, and l2 = 1=2, then from equation 7.81 we get

j3=2; 3=2i = j1; 1=2i: (7.82)

Multiplying this by L¡ (= L1¡ + L2¡) gives

L¡j3=2; 3=2i = L1¡j1; 1=2i+ L2¡j1; 1=2i: (7.83)

Using equation 7.66, for both individual angular momenta and total angular momentum,
one obtains p

3j3=2; 1=2i =
p
2j0; 1=2i+ j1;¡1=2i; (7.84)

or
j3=2; 1=2i =

q
2=3j0; 1=2i+

q
1=3j1;¡1=2i: (7.85)
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This gives the following Clebsch-Gordan coe±cients.

h0; 1=2j3=2; 1=2i =
q
2=3; (7.86)

h1;¡1=2j3=2; 1=2i =
q
1=3: (7.87)

Operating on equation 7.85 by L¡ once again would give

2j3=2;¡1=2i =
q
2=3

p
2j ¡ 1; 1=2i+

q
2=3j0;¡1=2i

+
q
1=3
p
2j0;¡1=2i+ 0; (7.88)

or
j3=2;¡1=2i =

q
1=3j ¡ 1; 1=2i+

q
2=3j0;¡1=2i: (7.89)

Operating again by L¡ gives

j3=2;¡3=2i = j ¡ 1;¡1=2i: (7.90)

The next possible value for l is (3=2 ¡ 1) = 1=2. In this case the state of highest possible
m is j1=2; 1=2i. Due to equation 7.79, this state could be written as the linear combination

j1=2; 1=2i = aj0; 1=2i+ bj1;¡1=2i: (7.91)

This state must be orthonormal to all other total angular momentum states and in partic-
ular to j3=2; 1=2i as given by equation 7.85. Hence, we obtain

j1=2; 1=2i =
q
1=3j0; 1=2i ¡

q
2=3j1;¡1=2i: (7.92)

Operating this by L¡ gives

j1=2;¡1=2i =
q
2=3j ¡ 1; 1=2i ¡

q
1=3j0;¡1=2i: (7.93)

This completes the computation. The Clebsch-Gordan coe±cients for l1 = 1 and l2 = 1=2
as obtained in the equations 7.82, 7.85, 7.89, 7.90, 7.92 and 7.93, can now be summarized
in the following chart.

l 3=2 3=2 1=2 3=2 1=2 3=2
m 3=2 1=2 1=2 ¡1=2 ¡1=2 ¡3=2

m1 m2

1 1=2 1

1 ¡1=2 p
1=3 ¡p2=3

0 1=2
p
2=3

p
1=3

0 ¡1=2 p
2=3 ¡p1=3

¡1 1=2
p
1=3

p
2=3

¡1 ¡1=2 1

(7.94)
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7.5 Discrete symmetries

A discrete subgroup of a continuous symmetry group can always be de¯ned by choosing
the group parameter at periodic intervals (see problem 7). However, here we are going
to discuss some discrete symmetries that are not subgroups of continuous groups. Such
symmetries are not associated to any conserved quantities, as they have no generators.
The following two discrete symmetries are of general importance in physics.

7.5.1 Space inversion

The space inversion operator, Is, has the following operation on the position vector r.

Isr = ¡r: (7.95)

The quantum states representation of Is will be called UI and for an arbitrary state jsi
hrjUI jsi = jh¡rjsi = jÃs(¡r): (7.96)

The extra factor j is needed due to the discreteness of the symmetry. In continuous sym-
metry operations the value of j is unity as in the limit of all symmetry parameters going to
zero the wavefunction must stay unchanged. For a discrete symmetry such a limit cannot
be de¯ned. For the spinless particles that we have discussed till now, two space inversions
should produce the original wavefunction i.e.

U2I jsi = jsi; for any jsi: (7.97)

Hence, from equation 7.96 we get

j2 = 1; j = §1: (7.98)

The value of j is called the INTRINSIC PARITY of the system.

Theorem 7.4 The energy eigenstates of an inversion symmetric system can be chosen
such that they change at most by a sign under the inversion operation.

Proof: If jEi is an eigenstate of energy with eigenvalue E, then from the de¯nition of a
quantum symmetry UI jEi is also an eigenstate with the same eigenvalue. Hence, the
following are also eigenstates of energy with the same eigenvalue.

jE1i = jEi+ UI jEi; jE2i = jEi ¡ UI jEi: (7.99)

From equations 7.97 and 7.99 it can be seen that

UI jE1i = +jE1i; UI jE2i = ¡jE2i: (7.100)

This proves the theorem.
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De¯nition 37 The energy eigenstates of the type jE1i in equation 7.100 are called SYM-
METRIC and they are also said to have POSITIVE (TOTAL) PARITY. The eigenstates
of the type jE2i in equation 7.100 are called ANTISYMMETRIC and they are also said to
have NEGATIVE (TOTAL) PARITY.

It should be noted that the intrinsic parity is included in the total parity. However, the
intrinsic parity of particles cannot be absolutely determined. The intrinsic parities of some
particles have to be assumed and then those of others can be determined if the system is
inversion symmetric (i.e. total parity is conserved).

From equation 7.97 we see that U yI = UI and hence, in the position representation
(using equations 7.96 and 7.98)

U yI rUIÃs(r) = U
y
I rjÃs(¡r) = ¡rÃs(r): (7.101)

As this is true for any state Ãs(r), the following must be true for the position operator R.

U yIRUI = ¡R: (7.102)

Similarly, for the momentum operator P

U yIPUI = ¡P: (7.103)

Hence, for the angular momentum operator, L = R£P, one obtains
U yILUI = L: (7.104)

7.5.2 Time reversal

The time reversal operator is expected to be di®erent in nature from all other symmetry
operators discussed upto now. This is due to the fact that the SchrÄodinger equation is ¯rst
order in time and hence, a time reversal would change the sign of only the time derivative
term. To be precise it can be seen that the time reversal operator, T , is antiunitary. We
have seen this to be possible from theorem 7.3. However, we have also seen that continuous
group transformations cannot be antiunitary. So, due to its discrete nature, it is possible for
T to be antiunitary. To demonstrate the antiunitary nature of T , let us consider the energy
eigenstate jEi at time t = 0 that has the eigenvalue E. The result of a time translation of
t followed by a time reversal must be the same as that of a time reversal followed by a time
translation of ¡t. Hence, from equation 7.23

TUt(t)jEi = Ut(¡t)T jEi;
T exp(¡iHt=¹h)jEi = exp(iHt=¹h)T jEi;
T exp(¡iEt=¹h)jEi = exp(iEt=¹h)T jEi;
T exp(¡iEt=¹h)jEi = [exp(¡iEt=¹h)]¤T jEi: (7.105)
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As the above equation is true for any t and E, an arbitrary state jsi that can be written
as the linear combination

jsi =
X
E

aE jEi; (7.106)

would be time reversed as
T jsi =

X
E

a¤ET jEi: (7.107)

Also the arbitrary state
jri =

X
E

bE jEi; (7.108)

is time reversed as
T jri =

X
E

b¤ET jEi (7.109)

Hence,
hrjT yT jsi =

X
E0E

bE0a
¤
EhE 0jT yT jEi: (7.110)

Due to time reversal symmetry the set of states fT jEig for all E would be the same as the
set of states fjEig for all E. Hence,

hE0jT yT jEi = ±E0E (7.111)

and then from equation 7.110 it follows that

hrjT yT jsi =
X
E

bEa
¤
E = hsjri: (7.112)

This demonstrates, from de¯nition, that T is an antiunitary operator.

Under a time reversal, one expects the position operator to stay unchanged and the
momentum operator to change in sign. Thus

TR = RT TP = ¡PT: (7.113)

Hence, the angular momentum L = R£P has the property

TL = ¡LT: (7.114)

Problems

1. Prove corollary 7.1.

2. Show that the momentum eigenstates of a particle stay physically unchanged by a
space translation.
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3. Derive the equations 7.65 and 7.66.

4. For a system of two angular momenta with given magnitudes of individual angular
momenta (l1 and l2 ¯xed) show that the number of angular momentum eigenstates
is (2l1 + 1)(2l2 + 1).

5. Show the minimum value of l for the total angular momentum states is jl1¡ l2j. [Hint:
For ¯xed values of l1 and l2, the number of eigenstates of both the individual angular
momenta and total angular momentum are the same.]

6. Find the Clebsch-Gordan coe±cients for l1 = 1 and l2 = 1.

7. A periodic potential V (r) has a three dimensional periodicity given by the vector
a = (n1a1; n2a2; n3a3) where a1, a2 and a3 are ¯xed lengths and n1, n2 and n3 can
take any integer values such that

V (r+ a) = V (r):

(a) Show that the discrete translation symmetry operators

Ud(a) = exp(¡iP ¢ a=¹h)

commute with the hamiltonian.

(b) Show that the set fUd(a)g for all possible integers (n1; n2; n3) in a form a group.
(c) The Bloch states are de¯ned by their position representation

uB = u(r) exp(ip ¢ r=¹h);

where u(r+ a) = u(r) and p gives three labels for such states. Show that these
states are physically unchanged by Ud(a).



Chapter 8

Three Dimensional Systems

The generalization of problem solving methods to three dimensions is conceptually simple.
However, the mathematical details can be quite nontrivial. In this chapter we shall discuss
some analytical methods in three dimensions. Quite obviously, such methods can have
only limited applicability. However, the analytical solution of the hydrogen atom problem
provides a better understanding of more complex atoms and molecules. Numerical methods
in three dimensions can either be based on the analytical hydrogen atom solution or be
independent of it, according to the nature of the system.

8.1 General characteristics of bound states

The characteristics of bound states in one dimension can be generalized to three dimensions.
If E < V at large distances in all directions, then the energy eigenvalues must be discrete.
However, in three dimensions, there must be two other quantities, besides energy, that must
also have discrete values. This is because in each dimension the condition of ¯niteness of
the wavefunction will lead to some parameter being allowed only discrete values (using
similar arguments as for energy in the one dimensional case discussed in chapter 5). For
spherically symmetric potentials, it will be seen that the two extra discrete parameters are
the eigenvalues of one angular momentum component (say Lz) and the magnitude of the
total angular momentum (L2). A study of numerical methods (chapter 9) will clarify the
nature of these discrete parameters for more general cases.

96
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8.2 Spherically symmetric potentials

A spherically symmetric potential is de¯ned to be invariant under any rotation about one
¯xed center of rotation. The center of rotation de¯nes the origin of a convenient coordinate
system. Spherical polar coordinates (r; µ; Á) can be de¯ned using this origin such that the
corresponding rectangular coordinates are given by

x = r sin µ cosÁ

y = r sin µ sinÁ

z = r cos µ: (8.1)

In three dimensions the time independent SchrÄodinger equation has the following form.

¡ ¹h
2

2m
r2u+ V u = Eu: (8.2)

For a spherically symmetric potential, V is a function of r alone. Hence, in spherical polar
coordinates equation 8.2 would have the form:

¡ ¹h
2

2m

"
1

r2
@

@r

µ
r2
@

@r

¶
+

1

r2 sin µ

@

@µ

µ
sin µ

@

@µ

¶
+

1

r2 sin2 µ

@2

@Á2

#
u+ V (r)u = Eu: (8.3)

As V depends only on r, the following separation of variables for the function u is useful.

u(r; µ; Á) = R(r)Y (µ; Á): (8.4)

Inserting equation 8.4 in equation 8.3 and dividing by u gives

1

R

d

dr

µ
r2
dR

dr

¶
+
2mr2

¹h2
[E ¡ V (r)] =

¡ 1
Y

"
1

sin µ

@

@µ

µ
sin µ

@Y

@µ

¶
+

1

sin2 µ

@2Y

@Á2

#
: (8.5)

As the left side of equation 8.5 depends only on r and the right side only on µ and Á, it
is evident that both sides of the equation must be equal to a constant (say K). Then we
have the following two equations.

1

r2
d

dr

µ
r2
dR

dr

¶
+
2m

¹h2
[E ¡ V (r)]R¡ K

r2
R = 0; (8.6)

1

sin µ

@

@µ

µ
sin µ

@Y

@µ

¶
+

1

sin2 µ

@2Y

@Á2
+KY = 0: (8.7)

Equation 8.7 is independent of the potential. Hence, we shall solve it ¯rst. The variables
of Y (µ; Á) can be further separated as follows.

Y (µ; Á) = £(µ)©(Á): (8.8)
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This would lead to the following two separated equations.

d2©

dÁ2
+m2© = 0; (8.9)

1

sin µ

d

dµ

µ
sin µ

d£

dµ

¶
+

Ã
K ¡ m2

sin2 µ

!
£ = 0: (8.10)

The separation constant m2 is like the K of the previous separation of the variable r. This
m is not to be confused with the mass of the particle. The same symbol is used to maintain
standard notation and the context of usage is seen to remove ambiguity. Equation 8.9 can
be readily solved to give

© = A exp(imÁ) +B exp(¡imÁ) for m6= 0;
© = A+BÁ for m = 0: (8.11)

To maintain the continuity of the function, it is necessary to require that the value of the
function be the same at Á = 0 and Á = 2¼. This gives the only possible solutions to be

© = exp(imÁ); (8.12)

where m is an integer. A constant coe±cient is omitted here as it can be included in an
overall normalization constant for Y .

The solution of equation 8.10 is more involved. The following change of variables
makes it easier to handle.

w = cos µ: (8.13)

The resulting form of equation 8.10 is

d

dw

∙
(1¡w2)dP

dw

¸
+

Ã
K ¡ m2

1¡ w2
!
P = 0; (8.14)

where P (w) = £(µ). As µ belongs to the interval [0; ¼], w must belong to the interval
[¡1;+1]. A standard series solution of equation 8.14 shows that P (w) is ¯nite in this
interval only if

K = l(l + 1); (8.15)

where l is a non-negative integer. As the wavefunction is necessarily ¯nite, equation 8.15 is
a required condition for allowed solutions. The allowed solutions of equation 8.14 for m = 0
are the well known Legendre polynomials Pl(w), where l, the order of the polynomial, is
given by equation 8.15. For non-zero m, the allowed solutions of equation 8.14 are the
associated Legendre functions Pml that are de¯ned as follows.

Pml = (1¡ w2)jmj=2 d
jmj

dwjmj
Pl(w): (8.16)
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The Pml can be seen to be non-zero only if

jmj < l: (8.17)

Now, the possible solutions of equation 8.7 can be written as

Ylm(µ; Á) = NlmP
m
l (cos µ) exp(imÁ); (8.18)

where Nlm are the normalization constants. If the Nlm are chosen to be

Nlm =

s
(2l + 1)(l ¡ jmj)!
4¼(l + jmj)! ; (8.19)

then the Ylm are seen to be mutually orthonormal in the following sense.Z 2¼

0

Z ¼

0
YlmYl0m0 sin µdµdÁ = ±ll0±mm0 : (8.20)

The functions Ylm are called the spherical harmonics. Some of the lower order spherical
harmonics are as follows.

Y0;0 = 1=
p
4¼

Y1;0 =

r
3

4¼
cos µ;

Y1;§1 =

r
3

8¼
sin µ exp(§iÁ);

Y2;0 =

r
5

16¼
(3 cos2 µ ¡ 1);

Y2;§1 =

r
15

8¼
sin µ cos µ exp(§iÁ);

Y2;§2 =

r
15

32¼
sin2 µ exp(§2iÁ): (8.21)

8.3 Angular momentum

In chapter 7, we found that a spherically symmetric system must have the three components
of angular momentum as conserved quantities. Also, the operators Lz and L

2 commute
and hence have simultaneous eigenstates. In the position representation, the Ylm can be
seen to be these eigenstates. By de¯nition,

L = R£P; (8.22)
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and hence, in the position representation

Lx = ¡i¹h
µ
y
@

@z
¡ z @

@y

¶
;

Ly = ¡i¹h
µ
z
@

@x
¡ x @

@z

¶
;

Lz = ¡i¹h
µ
x
@

@y
¡ y @

@x

¶
: (8.23)

A transformation to spherical polar coordinates gives

Lx = i¹h

µ
sinÁ

@

@µ
+ cot µ cosÁ

@

@Á

¶
;

Ly = i¹h

µ
¡ cosÁ @

@µ
+ cot µ sinÁ

@

@Á

¶
;

Lz = ¡i¹h @
@Á
: (8.24)

This also leads to the following expression for L2.

L2 = L2x + L
2
y + L

2
z

= ¡¹h2
"
1

sin µ

@

@µ

µ
sin µ

@

@µ

¶
+

1

sin2 µ

@2

@Á2

#
: (8.25)

From equations 8.7 and 8.15, it can now be seen that

L2Ylm = l(l + 1)¹h
2Ylm; (8.26)

and from equation 8.18 one obtains

LzYlm = m¹hYlm: (8.27)

Hence, the eigenvalues of Lz and L
2 are in accordance with the general results of chapter 7.

Half-integer values of l are not allowed here. Later, it will be seen that half-integer values
of l are possible only when the position eigenstates are degenerate (see chapter 12).

8.4 The two body problem

In realistic situations a spherically symmetric potential does not appear as a background
potential for a single particle system. What is commonly encountered is a two (point)
particle system with the force acting along the line joining the two particles. Such a system
can be shown to be mathematically equivalent to a combination of two independent systems
{ a free particle system and a spherically symmetric one particle system.
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The hamiltonian for such a two particle system would be

Ht =
P 21
2m1

+
P 22
2m2

+ V (r); (8.28)

where P1 and P2 are the momenta of the two particles (with magnitudes P1 and P2), r1
and r2 are their positions and r is the magnitude of

r = r1 ¡ r2: (8.29)

In the position representation, equation 8.28 gives

Ht = ¡ ¹h2

2m1
r21 ¡

¹h2

2m2
r22 + V (r); (8.30)

where r21 and r22 have the meaning of the Laplacians for the position vectors r1 and r2.
The center of mass coordinates are de¯ned by

rc =
m1r1 +m2r2
m1 +m2

(8.31)

It can then be shown that the hamiltonian in terms of the center of mass coordinates rc
and the relative coordinates r can be written as

Ht = ¡ ¹h2

2M
r2c ¡

¹h2

2m
r2 + V (r); (8.32)

where r2c is the Laplacian in rc and r2 is the Laplacian in r. Also,

M = m1 +m2; m =
m1m2

m1 +m2
: (8.33)

Now Ht can be written as
Ht = Hc +H; (8.34)

where

Hc = ¡ ¹h2

2M
r2c ; H = ¡ ¹h

2

2m
r2 + V (r): (8.35)

As Hc depends only on rc and H depends only on r, one can ¯nd their eigenvalues Ec and
E, independently. Then the eigenvalues Et of Ht would be

Et = Ec + E: (8.36)

Hc is the three dimensional free particle hamiltonian. Hence, its eigenvalues are continuous
(from a generalization of the one dimensional case). The eigenvalues E of H can be found
by solving the di®erential eigenvalue problem

Hu = Eu: (8.37)
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This can be seen to be equivalent to a one particle spherically symmetric problem in the
relative coordinate r if the equivalent mass is taken to be m (the so-called reduced mass).

If H has a discrete spectrum, it can be \washed out" by the continuous spectrum of
Hc if the energies Ec are large. This is observed in the case of the hydrogen atom. The
energies Ec are due to the random motion of the centers of mass of the atoms. Hence, at
high temperatures Ec is higher. So, to observe the discrete spectrum (of E) of the bound
states formed by the electron and the proton of the atom, one needs to make observations
at su±ciently low temperatures. Higher the temperature, broader will be the spectral lines
observed.

8.5 The hydrogen atom (bound states)

The hydrogen atom is a two particle system (one electron and one proton) as discussed
above. Its reduced mass can be seen to be almost equal to the electron mass as the proton
mass is much larger. The electrostatic potential energy is

V (r) = ¡kee
2

r
; (8.38)

where ke = 1=(4¼²0), ²0 is the permittivity of free space and e is the proton charge. Using
this potential one can ¯nd the bound state energies E from equation 8.37. The form
of the potential shows that bound states must have E < 0. With this condition one
can solve equation 8.37 using the general method of section 8.2. The angular part of
the eigenfunctions is already known. The radial part in the present case would be (from
equations 8.6, 8.15, 8.33 and 8.38)

1

r2
d

dr

µ
r2
dR

dr

¶
+
2mkee

2

¹h2r
R+

2mE

¹h2
R¡ l(l + 1)

r2
R = 0: (8.39)

This equation can be solved in a manner very similar to the one dimensional harmonic
oscillator problem. To simplify the form of the equation, the dimensionless parameter s is
de¯ned as

s = ®r; ®2 = ¡8mE=¹h2 (8.40)

With the de¯nition

¯ =
2mkee

2

®¹h2
=
kee

2

¹h

r¡m
2E

(8.41)

equation 8.39 becomes

1

s2
d

ds

µ
s2
dR

ds

¶
+

∙
¯

s
¡ 1
4
¡ l(l + 1)

s2

¸
R = 0: (8.42)

The large s behavior of R can be seen to be of the form exp(¡s=2). Hence, we choose
R(s) = F (s) exp(¡s=2): (8.43)
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From equations 8.42 and 8.43 one obtains the di®erential equation for F to be

d2F

ds2
+

µ
2

s
¡ 1

¶
dF

ds
+

∙
¯ ¡ 1
s

¡ l(l + 1)
s2

¸
F = 0: (8.44)

The following series form for F is chosen.

F = sp
1X
i=0

ais
i; a06= 0: (8.45)

On substituting this in equation 8.44 and equating the total coe±cient of the lowest power
of s to zero one obtains p = l or p = ¡(l+1). As p = ¡(l+1) would make the eigenfunction
at the origin in¯nite, we must choose p = l. In a manner similar to the harmonic oscillator
problem, the substitution of the series solution in equation 8.44 results in a recursion relation
for the ai's.

ai+1 =
(i+ l + 1¡ ¯)ai
(i+ 1)(i+ 2l + 2)

: (8.46)

Once again it can be shown that unless the series terminates, the function F rises fast
enough at in¯nity to make R go to in¯nity at in¯nity. Hence, for an eigenstate the series
must terminate. This will happen if for some non-negative integer n0

¯ = n0 + l + 1 ´ n: (8.47)

Hence, from equation 8.41 the corresponding condition on the energy is seen to be (a
subscript n is added to E to identify the energy level)

En = ¡mk
2
ee
4

2¹h2n2
; n = 1; 2; 3; : : : (8.48)

and n > l.

The di®erences of these energy eigenvalues are observed as the energies of photons
emitted by excited atoms. The resulting discrete line spectrum produced by hydrogen is of
great historical importance. The part of the spectrum caused by transitions to the n = 2
level, from higher levels, falls in the visible region and its distinct pattern was noticed early
on (the Balmer series). Its dramatic explanation was a triumph of quantum mechanics.
The extension of these quantum mechanical computations to multi-electron atoms turns
out to be too complex for an exact treatment. However, phenomenologically motivated
approximations are very useful in the study of atomic spectra[6]. Such spectra have been
used for a long time to identify elements in a mixture { in particular, when the mixture is
somewhat inaccessible for chemical analysis (as in stars!). The study of ¯ner structure in
atomic spectra has led to the understanding of other quantum phenomena like electron spin
(which produces the so-called \¯ne structure"), proton spin (which produces the \hyper¯ne
structure"), and also quantum ¯eld interactions (which produce the \Lamb shift").
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The functions, R, depend on both n and l and hence they are labelled as Rnl. They
can be found from the recursion relation of equation 8.46 and substitution in equations 8.43
and 8.45. Some of the Rnl are as follows.

R10(r) = 2a¡3=2 exp(¡r=a);
R20(r) = (2a)¡3=2(2¡ r=a) exp(¡r=(2a));
R21(r) = 3¡1=2(2a)¡3=2(r=a) exp(¡r=(2a)): (8.49)

where a = ¹h2=(mkee
2).

One notices that the energy eigenvalues given by equation 8.48 depend only on the
quantum number n and not on the other two quantum numbersm and l. The eigenfunctions
unlm (= RnlYlm), on the other hand, are di®erent for di®erent values of n, l, and m. This
means that there must be some degeneracy in eigenstates. For a given l the number of m
values is (2l+1). Also, for a given n, l takes values from 0 up to n¡ 1. This gives the total
number of states for a given n to be

d =
n¡1X
l=0

(2l + 1) = n2: (8.50)

Hence, the energy eigenvalue En (sometimes called the n-th energy level) is n
2-fold degen-

erate. The inclusion of spin (chapter 12) makes this degeneracy 2n2-fold.

8.6 Scattering in three dimensions

In chapter 5, we de¯ned scattering states as the ones for which E > V at in¯nity in
some direction. The same de¯nition can be used in three dimensional problems as well.
However, for the sake of simplicity, in this chapter, we shall consider only the scattering
states that have E > V in all directions at in¯nity. In chapter 5 it was also shown that,
for scattering states, the experimentally signi¯cant quantity is the scattering cross section
given by equation 5.6 or equation 5.21.

As discussed in section 8.4, realistic potentials are usually not static background po-
tentials. For two-particle systems, the potential is due to the interaction of one particle
with another. Such systems can be reduced (in the fashion of section 8.4) to two indepen-
dent systems { one a free particle and the other a particle in some e®ective background
potential. The free particle part of the energy is seen to be zero in the center of mass
frame. Hence, in a scattering problem it is easier to compute the cross section in the center
of mass (CM) frame. This makes it necessary to determine a conversion factor between the
CM frame cross section and the laboratory frame cross section.
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Figure 8.1: Two particle scattering in (a) laboratory frame (b) CM frame.
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8.6.1 Center of mass frame vs. laboratory frame

Fig. 8.1a shows a standard laboratory frame setup for a scattering experiment. The target
particle of mass m2 is initially at rest. The incident particle of mass m1 is moving along the
positive z direction (horizontal) at a velocity v (magnitude v) initially. After the collision,
the incident particle moves in a direction given by the spherical polar angles (µ0; Á0). Its
velocity is v1 (magnitude v1). The center of mass moves at the velocity v

0 (magnitude v0).
It can be shown that

v0 =
m1v

m1 +m2
: (8.51)

Fig. 8.1b shows the same experiment in the CM frame. In this frame, before the collision,
the target particle moves at a velocity of ¡v0 and the incident particle at m2v

0=m1. After
the collision, the incident particle moves at the velocity v00 (magnitude v00) which has a
direction given by the spherical polar angles (µ; Á).This is the scattering direction in the
CM frame. For an elastic collision, in the CM frame, it can be shown that the magnitude
of the velocity of each particle must be the same before and after collision. Hence,

v00 =
m2v

0

m1
=

m2v

m1 +m2
: (8.52)

From the de¯nition of the CM frame we note that

v1 = v
0 + v00: (8.53)

Writing equation 8.53 in component form gives us the relation between the laboratory frame
angles (µ0; Á0) and the CM frame angles (µ; Á).

v1 cos µ0 = v0 + v00 cos µ;
v1 sin µ0 = v00 sin µ;

Á0 = Á: (8.54)

Hence,

tan µ0 =
sin µ

° + cos µ
; (8.55)

where
° = v0=v00: (8.56)

For elastic collisions it can be seen that

° = m1=m2: (8.57)

If the collision is inelastic, it is not necessary that the number of particles be the same before
and after collision. Hence, the above analysis, would not work in general. At this point we
shall not digress into the analysis of general inelastic collisions. However, the case of the
inelastic collision with two product particles of masses m3 and m4 (m1 +m2 = m3 +m4),
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is not too di®erent from the elastic case. In such a situation one needs to use the following
expression for ° in equation 8.55.

° =

s
m1m3E

m2m4(E +Q)
; (8.58)

where Q is the amount of internal energy converted into additional kinetic energy for the
product particles. Q is negative for endothermic reactions.

It is clear that the number of particles scattered in the same element of solid angle
should not appear di®erent in di®erent frames of reference. Hence, we conclude

¾0(µ0; Á0) sin µ0dµ0dÁ0 = ¾(µ; Á) sin µdµdÁ: (8.59)

Now using equation 8.55 and the last of the set of equations 8.54, it can be shown that

¾0(µ0; Á0) =
(1 + °2 + 2° cos µ)3=2

j1 + ° cos µj ¾(µ; Á): (8.60)

8.6.2 Relation between asymptotic wavefunction and cross section

Now that we know the relation between the laboratory frame and the CM frame measure-
ments of cross section, all computations can be done in the CM frame. Equation 8.37 would
be the relevant equation i.e.

¡ ¹h
2

2m
r2u+ V u = Eu; (8.61)

where m = m1m2=(m1 +m2) and E (the energy in the CM frame) is related to E0 (the
energy in the laboratory frame) as follows.

E =
m2E0
m1 +m2

: (8.62)

In most scattering experiments, the region of space where a measuring instrument can be
placed is at large values of r where V is e®ectively zero. Hence, one is interested in the
solution of equation 8.61 in such \asymptotic" regions where r is very large. If the incident
beam is a plane wave of ¯xed momentum moving in the positive z direction, then the
expected form of the asymptotic solution is

u(r; µ; Á) = A[exp(ikz) + r¡1f(µ; Á) exp(ikr)]; (8.63)

where
z = r cos µ; k = p=¹h =

p
2mE=¹h: (8.64)

The ¯rst term in equation 8.63 is the incident beam which is a momentum eigenstate
(exp(ip ¢ r=¹h)) with p, the momentum, directed along the z direction. The second term is
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the scattered wave in the lowest order of r¡1. Higher order terms of r¡1 donot contribute,
as the particle current due to them tends to zero at large distances within a ¯xed solid
angle. Only inverse powers of r are expected in the scattered wave as it must die out at
large distances.

Normally, the incident beam is collimated to have a width large enough to maintain the
plane wave nature near the target particle, but not large enough to produce any signi¯cant
readings on the detectors that are placed at an angle away from the direct beam. Hence,
the detectors observe only the second term in equation 8.63 and the observed dn=d! of
equation 5.21 is seen to be (using equations 5.16 and 5.20)

dn

d!
=
¹hk

m
jAj2jf(µ; Á)j2: (8.65)

As the incident beam is only the ¯rst term in equation 8.63, the N of equation 5.21 is found
to be (using equations 5.16 and 5.20)

N = ¹hkjAj2=m: (8.66)

Hence, from equation 5.21, the scattering cross section evaluates to

¾ = jf(µ; Á)j2: (8.67)

Thus, f(µ; Á) is the quantity to be computed.

8.7 Scattering due to a spherically symmetric potential

For a spherically symmetric potential the solution for u(r; µ; Á) is expected to have a cylin-
drical symmetry about the z axis and hence it must be independent of Á. Thus, from the
analysis of section 8.2, one may write

u(r; µ) =
1X
l=0

(2l + 1)ilRl(r)Pl(cos µ); (8.68)

where the constant coe±cient of each term is chosen for later convenience and Rl(r) is a
general solution of equation 8.6 which can also be written as

1

r2
d

dr

µ
r2
dRl
dr

¶
+

∙
k2 ¡ 2mV (r)

¹h2
¡ l(l + 1)

r2

¸
Rl = 0: (8.69)

where k2 = 2mE=¹h2. Due to the scattering nature of the wavefunction, one knows that E
and hence k2 are positive and also V tends to zero at large r. One can usually consider V
to be e®ectively zero if r is greater than some constant a. In this interaction free region
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the solution for Rl can be found to be a linear combination of the spherical Bessel and the
spherical Neumann functions:

Rl(r) = Al[cos ±ljl(kr)¡ sin ±lnl(kr)]: (8.70)

The spherical Bessel functions jl can be written in terms of the Bessel functions Jl as
follows.

jl(kr) = (2kr=¼)
¡1=2Jl+1=2(kr): (8.71)

The spherical Neumann functions nl can be similarly written as

nl(kr) = (¡1)l+1(2kr=¼)¡1=2J¡l¡1=2(kr): (8.72)

The asymptotic forms of jl and nl are given by [7]

jl(kr) ! (kr)¡1 cos[kr ¡ (l + 1)¼=2]; (8.73)

nl(kr) ! (kr)¡1 sin[kr ¡ (l + 1)¼=2]: (8.74)

Thus the asymptotic form of equation 8.70 is

Rl(r)! (kr)¡1Al sin(kr ¡ l¼=2 + ±l): (8.75)

To compare the actual solution to the form chosen in equation 8.63, one needs the following
expansion of the incident wave in terms of the spherical Bessel functions.

exp(ikz) = exp(ikr cos µ)

=
1X
l=0

(2l + 1)iljl(kr)Pl(cos µ): (8.76)

As the asymptotic form of equation 8.68 must be the same as equation 8.63, one can write
(using equations 8.73, 8.75 and 8.76)

1X
l=0

(2l + 1)il(kr)¡1 sin(kr ¡ l¼=2)Pl(cos µ) + r¡1f(µ) exp(ikr)

=
1X
l=0

(2l + 1)ilAl(kr)
¡1 sin(kr ¡ l¼=2 + ±l)Pl(cos µ): (8.77)

Comparing the coe±cients of exp(ikr) and exp(¡ikr) one then obtains

2ikf(µ) +
1X
l=0

(2l + 1)il exp(¡il¼=2)Pl(cos µ)

=
1X
l=0

(2l + 1)ilAl exp(i±l ¡ il¼=2)Pl(cos µ); (8.78)

1X
l=0

(2l + 1)il exp(il¼=2)Pl(cos µ)

=
1X
l=0

(2l + 1)ilAl exp(¡i±l + il¼=2)Pl(cos µ): (8.79)
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As equation 8.79 is true for all µ, it can be true only if

Al = exp(i±l): (8.80)

Substituting equation 8.80 in equation 8.78 gives

f(µ) = (2ik)¡1
1X
l=0

(2l + 1)[exp(2i±l)¡ 1]Pl(cos µ): (8.81)

Hence, the cross section is

¾(µ) = jf(µ)j2

= k¡2
¯̄̄̄
¯
1X
l=0

(2l + 1) exp(i±l) sin ±lPl(cos µ)

¯̄̄̄
¯
2

: (8.82)

The total cross section, which is de¯ned as

¾t =

Z
¾(µ; Á)d! =

Z 2¼

0

Z ¼

0
¾(µ; Á) sin µdµdÁ; (8.83)

would then be

¾t = 2¼

Z ¼

0
¾(µ) sin µdµ = 4¼k¡2

1X
l=0

(2l + 1) sin2 ±l: (8.84)

The computation of the cross section in equations 8.82 and 8.84 would require the knowledge
of the phase shift angles ±l. These can be found from the continuity of Rl(r) and its
derivative at r = a. We have already de¯ned a as the distance beyond which the potential
V (r) is e®ectively zero. If the solution for r < a is found by some analytical or numerical
method and then the corresponding value of (1=Rl)(dRl=dr) at r = a is determined to be
°l, then equation 8.70 and the continuity condition would give

k[j0l(ka) cos ±l ¡ n0l(ka) sin ±l]
jl(ka) cos ±l ¡ nl(ka) sin ±l = °l; (8.85)

where j0l and n
0
l denote the derivatives (with respect to their arguments) of the spherical

Bessel and Neumann functions respectively. Solving for ±l gives

tan ±l =
kj0l(ka)¡ °ljl(ka)
kn0l(ka)¡ °lnl(ka)

: (8.86)

In summary, it should be noted that the computation of the scattering cross section by this
method can become rather tedious if the sum of the series in equation 8.82 converges slowly.
This and the fact that the solution of Rl for r < a cannot always be found analytically, tells
us that such a method is usually suitable for a computing machine. For speci¯c potentials,
it is sometimes possible to use other methods to directly obtain an analytical solution for
the cross section. An example is the scattering due to a repulsive 1=r type of potential [8].
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Problems

1. Derive equation 8.32 from equation 8.30.

2. From equation 8.42, show that, for large s, R has the form exp(¡s=2).
3. Show that if the series expansion for F (equation 8.45) does not terminate, the solution
is unacceptable.

4. Obtain the functions in equation 8.49 from the recursion relation of equation 8.46
and the condition of equation 8.47.

5. Derive equation 8.58.

6. Find the phase shifts ±0 and ±1 for scattering from a potential given as follows.

V = V0 for r < a

V = 0 for r > a

where V0 is a constant. Also determine the conditions under which these phase shifts
become in¯nite. Explain such conditions physically.

j0(s) = s¡1 sin s;
n0(s) = ¡s¡1 cos s;
j1(s) = s¡2 sin s¡ s¡1 cos s;
n1(s) = ¡s¡2 cos s¡ s¡1 sin s:



Chapter 9

Numerical Techniques in Three
Space Dimensions

For the numerical solution of three dimensional problems, one can very often draw from
the methods developed for one dimensional problems. However, the increase in the number
of space dimensions can just as often require qualitatively new numerical techniques. For
example, the three dimensional scattering problem is complicated by angular momentum,
which is not de¯ned in one space dimension. In the following, for each of the two cases of
bound states and scattering states, we shall ¯rst discuss the simpler spherically symmetric
problem and then the general problem.

9.1 Bound states (spherically symmetric potentials)

For spherically symmetric bound state problems the angular part of the solution is already
known analytically (chapter 8). The radial part of the wavefunction depends on the func-
tional form of V (r), the potential. For arbitrary V (r), a numerical solution of equation 8.6
can be obtained in a manner similar to one dimensional problems. The method will be
illustrated here using the hydrogen atom potential, so that results can be compared to
analytical results.

For the hydrogen atom, equation 8.6 takes the form of equation 8.42 with the appro-
priate transformation to the dimensionless independent variable s. Equation 8.42 can be
rewritten as

d2R

ds2
+
2

s

dR

ds
+

∙
¯

s
¡ 1
4
¡ l(l + 1)

s2

¸
R = 0: (9.1)

The initial conditions for this equation will be given at s = 0, and the solution need be
found only for s > 0. Hence, the method of solution will be similar to the one dimensional

112
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symmetric potential case. The potential still has re°ection symmetries along each axis.
But, as s is proportional to the magnitude of the displacement from the origin, it does not
change sign in a re°ection. Hence, the solution will not be exclusively odd or even in s.
Nonetheless, one of the two independent solutions can be discarded as follows.

It is possible to choose the form of R to be

R(s) = spG(s); G(0)6= 0; (9.2)

where G(0) is ¯nite. If equation 9.2 is substituted in equation 9.1, one obtains

G00 +
2(p+ 1)

s
G0 +

∙
¯

s
¡ 1
4
+
p(p+ 1)¡ l(l + 1)

s2

¸
G = 0; (9.3)

where G0 = dG=ds and G00 = d2G=ds2. For s ! 0, the above equation can be true only if
the coe±cient of each negative power of s tends to zero. For the s¡2 coe±cient, this gives

[p(p+ 1)¡ l(l + 1)]G(0) = 0: (9.4)

As G(0)6= 0, this gives
p = l or ¡ (l + 1): (9.5)

Similarly, for the s¡1 coe±cient in equation 9.3 one obtains

2(p+ 1)G0(0) + ¯G(0) = 0: (9.6)

The second choice in equation 9.5 would make R go to in¯nity at the origin. This is not
allowed and hence

p = l: (9.7)

Thus, one of the two independent solutions of R is discarded. Using equation 9.7 in equa-
tion 9.6 one obtains

G0(0) = ¡ ¯G(0)

2(l + 1)
: (9.8)

Using equation 9.7 in equation 9.3 gives

G00 +
2(l + 1)

s
G0 +

∙
¯

s
¡ 1
4

¸
G = 0: (9.9)

Using equations 6.2 and 6.8, the ¯nite di®erence form of equation 9.9 can be seen to be

Gi¡1 ¡ 2Gi +Gi+1
w2

+
2(l + 1)

si

∙
Gi+1 ¡Gi¡1

2w

¸
+ (¯=si ¡ 1=4)Gi = 0; (9.10)

where Gi and si are the values of G and s at the i-th point and w is the width of the
interval. This can be rewritten as the recursion relation

Gi+1 =
[2 + (1=4¡ ¯=si)w2]Gi + [(l + 1)w=si ¡ 1]Gi¡1

1 + (l + 1)w=si
: (9.11)
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As the normalization constant can be chosen arbitrarily without changing the eigenstates
and the eigenvalues, one can choose

G0 = G(0) = 1; (9.12)

for convenience. A ¯nite di®erence form of equation 9.8 would be

G1 ¡G0
w

= ¡ ¯G0
2(l + 1)

: (9.13)

Using equation 9.12, this gives

G1 = 1¡ ¯w

2(l + 1)
: (9.14)

With equations 9.12 and 9.14 as initial conditions, one can solve the recursion relation of
equation 9.11 for all Gi. In a fashion similar to the one outlined in chapter 6, one can
solve for G for a series of values of E, the energy (or equivalently ¯), to locate the energy
eigenvalues. The change in sign of the tail of the wavefunction identi¯es the location of the
eigenvalues.

9.2 Bound states (general potential)

Physically interesting potentials can, in general, be seen to have some symmetry properties.
This is due to two reasons. First, a system with symmetry attracts more attention. Second,
systems that are built by physicist and engineers are built with symmetry in mind so that
theoretical computations are easier. An example is the system of electrons in a uniform
magnetic ¯eld (see chapter 4). Hence, in solving an arbitrary problem, the ¯rst step is
to identify as many symmetries as possible. Next, a coordinate system that matches the
symmetry needs to be chosen (like the spherical polar coordinates were chosen for the spher-
ically symmetric potential). This allows the separation of the time independent SchrÄodinger
equation to a certain degree. The resulting simpli¯ed equations can then be solved either
analytically (if possible) or numerically. It is not practical to present numerical methods
for all possible symmetry situations. Hence, in this section a method will be outlined for
the problem with no identi¯able symmetry. Although such a complete lack of symmetry
is highly unlikely, this method can give useful hints for the construction of algorithms for
systems with some arbitrary symmetry (see problem 5).

For the general numerical algorithm, we need to write the complete SchrÄodinger equa-
tion in its di®erence equation form. Using equation 6.8 in each rectangular coordinate
direction, the Laplacian of u will have the following di®erence form.

r2du(i; j; k) = w¡2[u(i+ 1; j; k) + u(i¡ 1; j; k) + u(i; j + 1; k)
+ u(i; j ¡ 1; k) + u(i; j; k + 1) + u(i; j; k ¡ 1)¡ 6u(i; j; k)]; (9.15)
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where the discrete indices i, j, and k for the three directions are written in parenthesis to
avoid long subindices. These indices are assumed to take all integer values with an arbitrary
origin de¯ned by all zero indices. This will require some manipulations if the algorithm is
implemented in the C language as C does not allow negative array indices. The di®erence
form of the time independent SchrÄodinger equation would then be

r2du(i; j; k) +
2m

¹h2
[E ¡ V (i; j; k)]u(i; j; k) = 0: (9.16)

Due to the three di®erent indices, this will not reduce to any solvable recursion rela-
tion. However, it can be visualized as a set of linear algebraic equations for the unknown
u(i; j; k)'s. As an illustration of the method of solution [5], consider a cubic region of space
in which the solution is to be found. Let i, j, and k each run from 0 to a maximum of im,
jm and km respectively in this region. To ¯nd bound states, the boundaries of the region
must be chosen at a large enough distance where u goes to zero. Hence, in the present
case u(i; j; k) must be zero if at least one of the three indices is 0 or the corresponding
maximum value { im, jm or km. The values of u(i; j; k) at the interior (non-boundary)
points are the unknowns that need to be determined. They are (im ¡ 1)(jm ¡ 1)(km ¡ 1)
in number. Equation 9.16 provides the same number of equations if written for all interior
points. Thus, a solvable system is obtained. In order to write these equations in a matrix
form, the interior points must be suitably numbered such that the u(i; j; k)'s appear as a
one dimensional array. One possibility is illustrated by the following de¯nition of the array
U given for im = jm = km = 3.

U1 = u(1; 1; 1); U2 = u(1; 1; 2); U3 = u(1; 2; 1); U4 = u(1; 2; 2);

U5 = u(2; 1; 1); U6 = u(2; 1; 2); U7 = u(2; 2; 1); U8 = u(2; 2; 2): (9.17)

Of course, practical choices for im, jm and km must be much larger to achieve reasonable
accuracy.

The boundary values being zero, the linear equations for U turn out to be homoge-
noeus. Hence, for a non-zero solution, the related matrix must have a zero determinant. As
this matrix contains the energy eigenvalue E, the zero determinant condition will provide
the possible energy eigenvalues and the related eigenfunctions. This is a matrix eigenvalue
problem for which standard numerical methods are available [5]. In general, for a large
enough number of interior points, this will require signi¯cant amounts of computer time
and memory. However, some e±ciency is achieved by making use of the sparse nature of
the matrix. It is seen to be tridiagonal with fringes. Besides, one is usually interested in
the lower eigenvalues and some time can be saved by focussing only on them. It is to be
noted that this method can provide only the lowest (im ¡ 1)(jm ¡ 1)(km ¡ 1) eigenvalues
and higher the eigenvalue the greater is its inaccuracy. This is due to the rapid oscillations
of the higher energy eigenfunctions which require smaller values of w to maintain accuracy.

Another somewhat related method [9] is in some ways more intuitive. Instead of
considering only the homogeneous boundary at in¯nity, one may include an arbitrary point
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(normalization point) in the interior as part of the boundary. The value of the function
at this point can be chosen to be an arbitrary non-zero constant using the freedom of the
normalization constant. Now equation 9.16 can be written for all interior points other than
the normalization point. This would result in an inhomogeneous matrix equation which can
be solved for a given E. The search for the eigenvalues E requires solving the equation for
a series of ¯nely spaced values of E and then comparing them, in each case, to the value
En of E evaluated from equation 9.16 written for the normalization point. Every E that is
the same as the corresponding En, is an eigenvalue.

It is to be noted that the methods discussed here provide only one quantum number
{ E. For the spherically symmetric case, n was related to E. However, there were two
other quantum numbers (l and m) that were a direct result of the spherical symmetry.
The general methods discussed here cannot identify these quantum numbers because, in
general, there are no physically meaningful quantities that relate to these numbers. For
comparison to symmetric cases, one may consider the following quantities, evaluated at
some arbitrarily chosen position, to be the quantum numbers.

k2x =
1

u

@2u

@x2
; k2y =

1

u

@2u

@y2
; k2z =

1

u

@2u

@z2
; (9.18)

where x, y and z are the usual rectangular coordinates. For a free particle system these
quantum numbers are conserved quantities. The SchrÄodinger equation relates these quan-
tum numbers to the energy eigenvalue E. Hence, one still has a total of three quantum
numbers for a three dimensional problem.

9.3 Scattering states (spherically symmetric potentials)

It is to be noted that the computation method for scattering states described in section 8.7
is more suitable for numerical computation rather than analytical computation. The in¯nite
sum in equations 8.82 and 8.84 will, in general, require several terms in the series to be
computed to get signi¯cant accuracy. Also the computation of the °l of equation 8.86 would
require the solution of a di®erential equation that is seldom expected to have analytical
solutions for arbitrary potentials. Hence, here we shall discuss the numerical aspects of the
same method.

As an example, we shall consider the scattering of an electron due to a neutral atom of
atomic number Z. The scattering potential of such a system can very often be approximated
by

V (r) = ¡ Ze
2

4¼²0

exp(¡r=B)
r

; (9.19)

where e is the magnitude of the electron charge, ²0 the permittivity of free space, and B
a measure of the range of the potential which is the \radius" of the atom. The ¯rst step
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would be to solve equation 8.69 using this potential. The di®erential equation to be solved
would be

d2Rl
ds2

+
2

s

dRl
ds

+

∙
1 +A

exp(¡s=b)
s

¡ l(l + 1)
s2

¸
Rl = 0; (9.20)

where

s = kr; k2 =
2mE

¹h2
; A =

2mZe2

4¼²0¹h
2k
; b = kB: (9.21)

As in section 9.1, we can write

Rl(s) = s
pG(s); G(0)6= 0: (9.22)

The equation for G would then be

G00 +
2(p+ 1)

s
G0 +

∙
1 +A

exp(¡s=b)
s

+
p(p+ 1)¡ l(l + 1)

s2

¸
G = 0: (9.23)

Using arguments similar to section 9.1, one ¯nds

p = l; (9.24)

G0(0) = ¡ AG(0)

2(l + 1)
: (9.25)

Inserting equation 9.24 in equation 9.23 gives

G00 +
2(l + 1)

s
G0 +

∙
1 +A

exp(¡s=b)
s

¸
G = 0: (9.26)

From equations 6.2 and 6.8 one obtains the ¯nite di®erence form of equation 9.26 to be

Gi¡1 ¡ 2Gi +Gi+1
w2

+
2(l + 1)

si

∙
Gi+1 ¡Gi¡1

2w

¸
+

∙
1 +A

exp(¡si=b)
si

¸
Gi = 0: (9.27)

where Gi and si are the values of G and s at the i-th point and w is the width of the
interval. This leads to the recursion relation

Gi+1 =
[2¡ (1 +A exp(¡si=b)=si)w2]Gi + [(l + 1)w=si ¡ 1]Gi¡1

1 + (l + 1)w=si
: (9.28)

Using the freedom of choice of the normalization constant, one chooses

G0 = G(0) = 1: (9.29)

The ¯nite di®erence form of equation 9.25 is

G1 ¡G0
w

= ¡ AG0
2(l + 1)

: (9.30)
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From equations 9.29 and 9.30 one ¯nds

G1 = 1¡ wA

2(l + 1)
: (9.31)

The initial conditions in equations 9.29 and 9.31 allow us to compute Gi at all points using
equation 9.28. One needs to know this solution up to a point (r = a or s = ka) beyond
which the potential is e®ectively zero. The choice of a depends on the desired accuracy.
If this boundary point is reached at the n-th point in the numerical computation then
sn = ka. Now, the °l of equation 8.86 is de¯ned as

°l =
1

Rl

dRl
dr

¯̄̄̄
r=a

=
k

Rl

dRl
ds

¯̄̄̄
s=ka

=
l

a
+
kG0

G

¯̄̄̄
s=ka

: (9.32)

Hence, the di®erence form of °l would be

°l =
l

a
+
k

w

µ
1¡ Gn¡1

Gn

¶
: (9.33)

To ¯nd the phase shifts from equation 8.86 one needs equation 9.33, the spherical Bessel
and Neumann functions and their derivatives. Standard series solutions for the Bessel and
Neumann functions can be used for their numerical computation. Once the ±l are known,
equations 8.82 and 8.84 can be used to ¯nd the di®erential and the total cross sections.

9.4 Scattering states (general potential)

For arbitrary potentials, scattering cross sections are much more di±cult to compute even
numerically. Some approximate methods (see chapter 11) can handle such general potentials
as long as they are small compared to the energy of the incident particle. The reach of such
methods, which were originally designed for analytical computations, can be signi¯cantly
increased by the use of a computing machine.

On the other hand, a non-spherically symmetric scattering potential is very unlikely
in realistic situations. A scattering experiment with such a potential would require both
the target and scattered particles to approach each other at a ¯xed orientation for every
collision. Such an experimental setup is di±cult to come by. So, even for non-spherically
symmetric potentials, the actual scattering data will show a spherically symmetric character
as the random orientations of the particles in each collision will create the appearance
of an average potential over all angles which is spherically symmetric. In some realistic
experiments one may produce spin aligned target and scattered particles. In such a situation
the spherical symmetry is truly lost. A proper treatment of these systems requires quantum
¯eld theory which is beyond the scope of this book.

So, even though it is possible to come up with a numerical algorithm for scattering
computations for non-spherically symmetric potentials, we shall not do it here.
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Problems

1. A spherically symmetric linear potential is given by

V (r) = Ar

where A is a positive real number constant. For this potential do the following.

(a) Find the recursion relation for the numerical solution of the SchrÄodinger equation
and also the necessary initial conditions.

(b) Develop a computer algorithm to determine the eigenvalues and eigenfunctions
of such a system.

2. A spherically symmetric quadratic potential (3-dimensional isotropic harmonic oscil-
lator) is given by

V (r) = Ar2

where A is a positive real number constant. For this potential, repeat the steps
as in problem 1 and then compare the numerical results with analytical results (an
extension of the one dimensional harmonic oscillator problem to 3 dimensions).

3. Phenomenological models of mesons often have the potential between the quark and
the antiquark components to be a combination of a linear potential (as in problem 1)
and a Coulomb type of potential as follows.

V (r) = Ar ¡B=r
where A > 0 and B > 0. For this potential, repeat the steps as in problem 1.

4. Some other phenomenological models of mesons replace the linear part of the potential
in problem 3 by a quadratic potential (as in problem 2). Hence, the potential is given
by

V (r) = Ar2 ¡B=r
For this potential, repeat the steps as in problem 1.

5. A superlattice is fabricated by depositing several thin layers of two semiconductor
materials alternated in a periodic fashion. If the layers are thin and uniform enough,
quantum e®ects allow such structures to have electronic and optical properties that
are not found in the constituent materials. An electron trapped by a positive ion
impurity in a superlattice experiences the following potential.

V (r) = ¡ e2

4¼²r
+W (z)

where e is the electron charge, ² the permittivity of the material and r =
p
x2 + y2 + z2.

x, y and z are the usual rectangular coordinates with the z-axis oriented perpendicular
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to the layers of the superlattice. The function W (z) can sometimes be approximated
as

W (z) =

(
W0 for jzj > a
0 for jzj < a

where W0 and a are positive constants. For this cylindrically symmetric potential,
develop a computer algorithm to compute the eigenvalues and eigenfunctions of en-
ergy [9].

6. Develop a computer algorithm for the computation of the scattering cross section for
the following potential.

V (r) = A exp(¡ar2)
where A and a are positive real number constants.

7. For the scattering of neutrons o® an atomic nucleus the e®ective potential can be
approximated by the Woods-Saxon potential which is given as follows.

V (r) =
¡V0

1 + exp[(r ¡R)=a]
where V0, R and a are positive real number constants. Develop a computer algorithm
to compute the scattering cross section for this potential.



Chapter 10

Approximation Methods (Bound
States)

Given a speci¯c problem in quantum mechanics, one needs to ¯nd the quickest method
of solving it. An analytical solution is usually the most desirable. However, as we have
seen in the previous chapters, such solutions are not always possible. In such a situation,
numerical methods can often be used successfully. But we have seen in chapter 9 that
numerical methods can sometimes be very time consuming. Hence, one needs to look for
alternative methods that would be quicker. Sometimes approximation methods are very
handy. Some readers might ¯nd this last statement somewhat perplexing as numerical
methods are usually considered to be approximation methods. But here we shall use the
terms \numerical" and \approximate" with di®erent meanings. A numerical method can
produce results of inde¯nitely high accuracy provided enough computer time is spent. An
approximate method has its accuracy (and sometimes even its validity) limited by the
characteristics of the speci¯c problem being solved. For example, some series expansions
converge only under certain conditions.

Here, we shall discuss two of the most popular approximation methods { the pertur-
bation method and the variational method 1.

1The so-called WKB method [8] will not be discussed even though, historically, it has been very popular.
This is because, at present times, any problem that can be solved by the WKB method, can be solved with
far greater accuracy and speed by numerical methods. Besides, the original mathematical justi¯cation for
the WKB method was rather weak and later mathematical treatments that better justify it are too lengthy.

121
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10.1 Perturbation method (nondegenerate states)

Let Ht, the hamiltonian of a system, be written as

Ht = H +H 0; (10.1)

such that the eigenstates and eigenvalues of H are already known and written as jni and
En respectively. So,

Hjni = Enjni; (10.2)

where n is the label that identi¯es a speci¯c eigenstate. The corresponding eigenstates and
eigenvalues of Ht will be called jtni and Etn respectively such that

Htjtni = Etnjtni: (10.3)

The additional part, H 0, is de¯ned to be small if the di®erences (Etn ¡ En) are suitably
small compared to En. The present method is valid only if H

0 is small and hence it will be
assumed to be so in the following. The correction terms necessary to obtain the solution
of equation 10.3 from that of equation 10.2 can be written as a series of increasing order of
smallness. To keep track of the order, one uses a parameter ¸ that is later set to be equal
to 1. In terms of ¸ one can write

Ht = H + ¸H 0; (10.4)

jtni =
1X
s=0

¸sjnsi; (10.5)

Etn =
1X
s=0

¸sEns; (10.6)

where s is the order of the correction terms jnsi and Ens for jtni and Etn respectively.
Substituting this in equation 10.3 and equating terms of the same order on each side, one
obtains

(H ¡ En0)jn0i = 0; (10.7)

(H ¡ En0)jn1i = (En1 ¡H 0)jn0i; (10.8)

(H ¡ En0)jn2i = (En1 ¡H 0)jn1i+En2jn0i; (10.9)

(H ¡ En0)jn3i = (En1 ¡H 0)jn2i+En2jn1i+ En3jn0i; (10.10)

and so on. The ¯rst of the above set of equations shows that jn0i is an eigenstate of H.
As in the present case we are discussing only nondegenerate states, one can unambiguously
identify

jn0i = jni; En0 = En: (10.11)
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Using equations 10.2 and 10.11, one can see that multiplying each of the equations 10.7
through 10.10 from the left by hnj makes their left hand sides vanish. This leaves one with
the following equations.

En1 = hnjH 0jni; (10.12)

En2 = hnjH 0jn1i ¡ En1hnjn1i; (10.13)

En3 = hnjH 0jn2i ¡ En1hnjn2i ¡ En2hnjn1i; (10.14)

and so on. Here it is assumed that the eigenstates jni are normalized. As the eigenstates of
H form a complete set, the correction terms jnsi in each order s can be written as a linear
combination of the jni's as follows.

jnsi =
X
i

anisjii; for s = 1; 2; 3; : : :: (10.15)

Substituting these into the equations 10.7 through 10.10 and using equations 10.12 through
10.14, it is possible to ¯nd all the coe±cients anis except the anns. This is because all terms
containing anns vanish identically. This leads to the conclusion that the anns can be chosen
arbitrarily. The simplest choice, of course, would be zero. This choice can be written in
two equivalent forms:

anns = 0; hnjnsi = 0: (10.16)

Thus the equations 10.12 through 10.14 would simplify to

Ens = hnjH 0jn; s¡ 1i; for s = 1; 2; 3; : : :: (10.17)

Hence, the ¯rst order correction to the energy eigenvalues would be

En1 = hnjH 0jn0i = hnjH 0jni: (10.18)

The ¯rst order correction to energy eigenstates is given in the form of equation 10.15 to be

jn1i =
X
i

ani1jii: (10.19)

Substituting this in equation 10.8 and using equations 10.2 and 10.11, givesX
i

(Ei ¡ En)ani1jii = (En1 ¡H 0)jni: (10.20)

Multiplying this from the left by hjj and using the orthonormality of the jii states, one
obtains:

anj1 =
hjjH 0jni
En ¡ Ej ; for j6= n: (10.21)

It should be noted that the value for ann1 cannot be determined from equation 10.20.
However, it has already been chosen to be zero in equation 10.16. This completes the
computation of ¯rst order correction terms.
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The second order correction to energy eigenvalues is seen from equation 10.17 to be

En2 = hnjH 0jn1i: (10.22)

Using equations 10.19 and 10.21 one then obtains:

En2 =
X
i6=n

hnjH 0jiihijH 0jni
En ¡ Ei : (10.23)

As H 0 is hermitian this gives

En2 =
X
i6=n

jhnjH 0jiij2
En ¡ Ei : (10.24)

From equation 10.15, the second order correction to the eigenstate is seen to be

jn2i =
X
i

ani2jii: (10.25)

Substituting this and equation 10.19 in equation 10.9 and then using equations 10.2 and
10.11, one obtainsX

i

(Ei ¡ En)ani2jii = (En1 ¡H 0)
X
i

ani1jii+ En2jni: (10.26)

Multiplying this from the left by hjj (j6= n) and using orthonormality gives

anj2(Ej ¡ En) = anj1En1 ¡
X
i

ani1hjjH 0jii: (10.27)

Using equation 10.21 this gives

anj2 =
X
i6=n

hjjH 0jiihijH 0jni
(En ¡ Ej)(En ¡ Ei) ¡

hjjH 0jnihnjH 0jni
(En ¡ Ej)2 : (10.28)

Once again ann2 cannot be found from equation 10.27. It was assumed to be zero in
equation 10.16. This completes the computation of second order correction terms. Higher
order corrections can be computed in a similar fashion. One could summarize the results
upto second order as follows:

Etn = En + hnjH 0jni+
X
i6=n

jhnjH 0jiij2
En ¡ Ei + : : : (10.29)

jtni = jni+
X
i6=n

∙ hijH 0jni
En ¡ Ei

µ
1¡ hnjH

0jni
En ¡Ei

¶

+
X
j6=n

hijH 0jjihjjH 0jni
(En ¡ Ei)(En ¡ Ej)

35 jii+ : : : (10.30)
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It is to be noted that for higher order terms the computations get signi¯cantly more
involved and hence, writing a computer algorithm for the general s-th order correction term
might be useful. But we shall not do it here.

As an application of the above formalism one may compute the ¯rst order correction to
the solution of the harmonic oscillator problem (see chapter 4) when a quartic perturbation
is added. Then

Ht =
P 2

2m
+
kX2

2
+
KX4

6
; (10.31)

where K must be small enough for the perturbation analysis to work. As the solution to
the harmonic oscillator problem is already known, we identify

H =
P 2

2m
+
kX2

2
; H 0 =

KX4

6
: (10.32)

In terms of the raising and lowering operators one may write

H 0 = A(a¡ ay)4; A =
K¹h2

24m2!2
: (10.33)

The expanded form of H 0 would then be

H 0 = A(a4 ¡ aya3 ¡ aaya2 ¡ a2aya¡ a3ay + ay2a2 + ayaaya+ aya2ay
+ aay2a+ aayaay + a2ay2 ¡ ay3a¡ ay2aay ¡ ayaay2 ¡ aay3 + ay4): (10.34)

Now from equations 4.80, 4.82, 10.18 and 10.34 one computes the ¯rst order correction to
the ground state to be

E01 = 3A: (10.35)

For the perturbation analysis to be valid one must have 3A ¿ ¹h!=2. Then from equa-
tion 10.21 one ¯nds

a021 =
3
p
2A

¹h!
; a041 = ¡

p
3Ap
2¹h!

; (10.36)

and all other a0j1 vanish. Hence, from equation 10.19 we get the ¯rst order correction to
the ground eigenstate to be

j01i = Ap
2¹h!

(6j2i ¡
p
3j4i): (10.37)

These computations could also have been done in the position representation. However, it
would require the computation of several integrals.

It should be noted that, however small K might be, for some higher excited states the
correction terms will become too large for a perturbative computation to be valid. This is
because a quartic potential rises faster than a quadratic potential as the position coordinate
increases.
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10.2 Degenerate state perturbation analysis

If the eigenstates of H, the unperturbed hamiltonian, have some degeneracy then the iden-
ti¯cation of jn0i in equation 10.11 need not be unique. The general method of analysis in
such a situation can be understood by considering the particular case of a doubly degener-
ate energy level, say En, that corresponds to the two states jni and jmi. Hence, any linear
combination of jni and jmi will also be an eigenstate corresponding to En. As a result of
the perturbation, these states may not stay degenerate. The two resulting nondegenerate
eigenstates of Ht must tend to eigenstates of H corresponding to En as ¸ tends to zero.
However, in general, these limiting eigenstates of H are linear combinations of jni and jmi
and are to be identi¯ed as jn0i. Hence, one writes

jn0i = cnjni+ cmjmi; (10.38)

where the set of constants fcn; cmg will be di®erent for the limits of the two di®erent
eigenstates of Ht. cn and cm are yet to be determined. The choice of equation 10.16 must
now be extended to give

hnjnsi = 0; hmjnsi = 0; for s = 1; 2; 3; : : : (10.39)

Equation 10.8 can now be multiplied from the left by each of hmj and hnj to get two
equations. These equations are (using equations 10.2, 10.11 and 10.38)

(hmjH 0jmi ¡ En1)cm + hmjH 0jnicn = 0; (10.40)

hnjH 0jmicm + (hnjH 0jni ¡ En1)cn = 0: (10.41)

This is a set of linear homogeneous equations for cm and cn. A nonzero solution of this set
is possible only if the determinant of the corresponding matrix vanishes. This gives

(hmjH 0jmi ¡En1)(hnjH 0jni ¡ En1)¡ hmjH 0jnihnjH 0jmi = 0: (10.42)

The solution of this gives the two di®erent correction terms for the two corresponding states
of Ht:

En1 =
1

2
(hmjH 0jmi+ hnjH 0jni)

§
∙
1

4
(hmjH 0jmi ¡ hnjH 0jni)2 + jhmjH 0jnij2

¸1=2
: (10.43)

The two correction terms are seen to be identical if and only if

hmjH 0jmi = hnjH 0jni; and hmjH 0jni = 0: (10.44)

If the two correction terms are di®erent, the degeneracy is said to have been \lifted". The
values for cm and cn can now be found for each value of En1 by using equation 10.40 (or
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equation 10.41) and a suitable normalization. This would give the two possible choices of
jn0i. The correction jn1i to each of these can be found by the same method as for the
nondegenerate case using the two conditions in equation 10.39. Once the degeneracy is
lifted, higher order corrections can be found as for the nondegenerate case.

If the degeneracy is not lifted in ¯rst order computations, a similar method can be
employed in second order computations.

As an example of the method developed in this section, we shall study the e®ect of
a relatively weak uniform magnetic ¯eld on the bound states of a spherically symmetric
system (in particualar the hydrogen atom). This is known as the Zeeman e®ect. The vector
potential for a uniform magnetic ¯eld B can be written as

A =
1

2
(B£R); (10.45)

where R is the position vector operator. The hamiltonian, in the presence of such a vector
potential in addition to the scalar potential Á, would become [2]

Ht =
(P+ eA)2

2m
¡ eÁ; (10.46)

where m is the reduced mass, P the canonical momentum and e the magnitude of the elec-
tron charge. As A is the perturbing term, one can separate Ht in the form of equation 10.1
with

H =
P 2

2m
¡ eÁ; (10.47)

H 0 =
e

2m
(P ¢A+A ¢P+ eA2): (10.48)

For the present computations, the A2 term can be ignored as the magnitude ofB is assumed
to be relatively small. Using equation 10.45 and the commutators of the components of P
and R, one can show that P ¢A = A ¢P. Then we have

H 0 =
e

m
A ¢P = e

2m
B£R ¢P = e

2m
B ¢R£P = e

2m
B ¢ L; (10.49)

where L is the angular momentum. Now, let us compute the ¯rst order corrections to the
¯rst excited states (n = 2) of the hydrogen atom. The 4 degenerate states can be written
in the form jl;mi for the various possible angular momentum quantum numbers:

j0; 0i; j1;¡1i; j1; 0i; j1; 1i:

Without loss of generality, if the magnetic ¯eld is considered to be in the x-direction, then

H 0 =
eBLx
2m

: (10.50)
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Using equations 7.39 and 7.40, this would give

H 0 =
eB

4m
(L+ + L¡): (10.51)

Now, using equations 7.65, 7.66 and 10.51, the nonzero matrix elements of H 0 for the 4
degenerate states with n = 2 are found to be

h1;¡1jH 0j1; 0i = h1; 0jH 0j1; 1i = ¹heB

2
p
2m
: (10.52)

The method described earlier for a 2-fold degenerate level can be easily generalized for
the 4-fold degenerate level in this example. Then, using equation 10.52, the 4 ¯rst order
correction terms can be found to be

0; 0; +
¹heB

2m
; ¡¹heB

2m
:

Hence, we notice that two of the original degenerate states are still degenerate. If the
magnetic ¯eld were chosen to be in the z-direction, the computations would have been
somewhat simpler. The computation of the corrections to the eigenstates will be left as an
exercise (problem 2).

10.3 Time dependent perturbation analysis

All hamiltonians considered in this text have, until now, been time independent. Hence,
energy has been conserved and energy eigenvalues have been meaningful measured quanti-
ties. However, the only direct way of measuring the energy of something like a hydrogen
atom would be to measure its mass and use the relativistic mass energy equivalence. This
being a particularly inaccurate method of measurement, one needs to ¯nd indirect methods
of measuring the energy. The most common method would be to allow the system (for
example, the hydrogen atom) to transfer from one energy level to another and release the
di®erence in energy in the form of another particle (for example, a photon). If the released
particle is a photon, its frequency º can be measured spectroscopically and then the energy
computed to be 2¼¹hº. This is a result of the original Planck hypothesis. It will also become
evident from our later discussion of the relativistic SchrÄodinger equation for the photon.
Thus, by this method one can ¯nd the di®erences between energy levels. The energy levels
can very often be reconstructed from these di®erences.

However, to use the above method, it would become necessary to transfer the system
from one energy level to another. For a conservative system this is, by de¯nition, not
possible. Hence, a time dependent (thus nonconservative) perturbation, H 0(t), must be
added to the system to achieve the transfer between levels. This H 0(t) must be small in
order not to disturb the energy levels of the original system too much. If H 0(t) were too
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large, energy would not be conserved even approximately and hence, energy measurements
would be of no use. Very often H 0(t) is introduced through the sinusoidal variations of
electromagnetic radiation. Hence, we shall choose

H 0(t) = H0 sin(!t); (10.53)

where H0 is independent of time. The total hamiltonian would be

Ht = H +H 0(t); (10.54)

and the development of an arbitrary state jsi would be given by the SchrÄodinger equation
to be

i¹h
@jsi
@t

= Htjsi: (10.55)

As the eigenstates jii, of the original hamiltonian H, form a complete set, it must be
possible to expand jsi as follows.

jsi =
X
i

ai(t) exp(¡iEit=¹h)jii; (10.56)

where Ei is the eigenvalue of H corresponding to jii. The exponential time dependence
is written separately from the ai(t) as it is expected that for small H

0(t), ai(t) will vary
slowly with time. This is because in the absence of H 0(t), ai(t) would be constant. Now,
substituting equation 10.56 in equation 10.55 and then multiplying from the left by hjj
would give

i¹h exp(¡iEjt=¹h)daj
dt

=
X
i

ai exp(¡iEit=¹h)hjjH 0jii: (10.57)

If we choose
!ji = (Ej ¡ Ei)=¹h; (10.58)

then equation 10.57 could be written as

daj
dt

= (i¹h)¡1
X
i

ai exp(i!jit)hjjH 0jii: (10.59)

Once again, we can expand the solution in a perturbation series using the parameter ¸ to
identify the order of smallness of a term. Hence, we write

ai =
1X
s=0

¸sais: (10.60)

As before, the H 0 in equation 10.59 must also be multiplied by a ¸ to keep track of orders.
Then, substituting equation 10.60 in equation 10.59 and equating terms of the same order
would give

daj0
dt

= 0; (10.61)

daj(s+1)
dt

= (i¹h)¡1
X
i

ais exp(i!jit)hjjH 0jii: (10.62)
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Equation 10.61 reasserts the fact that aj is independent of time in the absence of the
perturbation H 0. In a typical physical situation, the system is initially (t = 0) in an
eigenstate of H. At t = 0 the perturbation H 0 is turned on and at a later time T it is
turned o®. If that initial eigenstate is jni, then for t < 0, an = 1 and all other aj's are zero.
As the aj0 do not change with time, this means

an0 = 1; (10.63)

aj0 = 0 for j6= n: (10.64)

Hence, from equation 10.62 the ¯rst order corrections for t > T are

aj1 = (i¹h)
¡1
Z T

0
hjjH 0(t)jni exp(i!jnt)dt: (10.65)

Then from equation 10.53 we obtain

aj1 =
hjjH0jni
2i¹h

"
exp[i(!jn ¡ !)T ]¡ 1

!jn ¡ ! ¡ exp[i(!jn + !)T ]¡ 1
!jn + !

#
: (10.66)

Hence, aj1 can be seen to have maximum values at !jn = §! that is

Ej = En ¡ ¹h!; or Ej = En + ¹h!: (10.67)

The ¯rst case is interpretted as a high probability for the system to emit the Planck en-
ergy ¹h! and transfer to a suitable lower energy state. The second case shows a similar
high probability for the system to absorb the energy ¹h! and transfer to a suitable higher
energy state. Of course, in each case, the corresponding lower or higher energy must be
an eigenvalue of H. The ¯rst case is often known as stimulated emission where external
electromagnetic radiation of frequency ! stimulates the system to radiate energy in the
form of photons of the same frequency. Emission can also take place in the absence of
external radiation (spontaneous emission). However, such a phenomenon can be explained
only by a quantum ¯eld theory which is beyond the scope of this book. The second case is
that of absorption of energy from the external radiation. Both the emission and absorption
of speci¯c frequencies of electromagnetic radiation can be observed spectroscopically. Thus
it is often possible to reconstruct the energy eigenvalues of H from spectroscopic data.

It is to be noted that the peaks of aj1, as a function of !, become narrower and higher if
T becomes larger. This is understood by considering the perturbation H 0 to be a sinusoidal
wave within a rectangular envelope ranging from t = 0 to t = T . The Fourier transform of
such a time function can be seen to have a larger range of frequencies for smaller T . This
means that, for smaller T , the perturbing external radiation provides photons of a larger
range of frequencies and hence, allows transitions of the system to a larger range of energy
states. This prompts one to write what is known as the time-energy uncertainty relation:

¢E¢t >» ¹h; (10.68)
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where ¢E is a measure of the range of energies around Ej that it is possible to transfer to
and ¢t is a measure of the duration of time for which the perturbation is on. The symbol
`>»' means `approximately greater than or equal to' In the present case ¢t = T . This
uncertainty relation can be written mathematically more precisely by de¯ning ¢E and ¢t
more precisely. But we shall not do it here.

Another item to be noted is that aj1 also depends on the time independent factor
hjjH0jni. An extreme example would be that of hjjH0jni = 0. In such a situation the
probability of transition from jni to jji will be zero even if !jn = §!. Such a condition
gives the so called selection rules.

In a process like the ionization of an atom, the ¯nal state jji is not a bound state and
hence Ej is not a discrete energy level. There is in fact a continuum of energy eigenvalues Ej.
This makes it more practical to compute a transition probability (or ionization probability)
per unit time for the whole range of energies Ej . Of course, in such a situation Ej > En
and hence, the part of aj1 in equation 10.66 that describes the emission process is small
enough to be ignored. This gives the transition probability to be

jaj1j2 = jhjjH0jnij2 sin2[(!jn ¡ !)T=2]
¹h2(!jn ¡ !)2

: (10.69)

The total transition probability to all states with energies around Ej = En+¹h! (the peak
of this probability function) can be obtained by integrating jaj1j2 over such states:

P =

Z
jaj1j2½(j)dEj; (10.70)

where ½(j) is de¯ned as the density of states at the energy eigenvalue Ej . This total
transition probability is expected to increase with the duration T of the perturbation.
Hence, one de¯nes a convenient measurable quantity called the transition probability per
unit time:

w = P=T = T¡1
Z
jaj1j2½(j)dEj: (10.71)

For a large enough T , jaj1j2 would peak so sharply that ½(j) and hjjH0jni would be e®ec-
tively independent of Ej in the range where jaj1j2 is not negligible. Hence, in the integral
of equation 10.71, one can pull the term ½(j)jhjjH0jnij2 outside the integral. This gives

w =
¼

2¹h
½(j)jhjjH0jnij2: (10.72)

The above integral was done by substituting x = (!jn ¡ !)T=2 and using the following
de¯nite integral. Z 1

¡1
x¡2 sin2 xdx = ¼: (10.73)

The in¯nite limits are justi¯ed by the fact that the integrand is sharply peaked for large T .
Equation 10.72 is sometimes called Fermi's golden rule.
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10.4 The variational method

A weakness of the perturbation method is that the total hamiltonian Ht must be a close
approximation of some H for which the eigenvalues and eigenstates are already known.
Hence, we shall now discuss a method (called the variational method) that can be used
to ¯nd eigenvalues and eigenstates for any bound state problem. However, this method
also has a shortcoming. It requires the knowledge of the eigenstate as a function of some
undetermined parameters prior to ¯nding the solution. Guessing such a functional form is
usually possible if one has some physical understanding of the problem. It will also be seen
that the variational method is most appropriate for the ground state. The computation of
higher excited states becomes progressively more involved.

To understand the variational method we shall prove the following theorem.

Theorem 10.1 For an arbitrary nonzero state jsi, the expectation value of H, the hamil-
tonian, satis¯es the following inequality.

hHis ´ hsjHjsi
hsjsi ¸ E0

where E0 is the lowest energy eigenvalue (ground state energy). On physical grounds, it is
assumed that E0 exists.

Proof: Let the set of eigenstates of H be fjiig (i = 0; 1; 2; : : :) with the corresponding set
of eigenvalues fEig. As fjiig must be a complete set, it is possible to expand jsi as
the following series.

jsi =
X
i

asijii: (10.74)

Hence, using the orthonormality and eigenstate property of fjiig
hsjHjsi
hsjsi =

P
i jasij2EiP
i jasij2

=

P
i jasij2(Ei ¡ E0)P

i jasij2
+ E0 ¸ E0; (10.75)

as E0 is the lowest energy and hence (Ei¡E0) ¸ 0 for all i. This completes the proof.

The following corollary of the above theorem can also be proved with little di±culty (see
problem 5).

Corollary 10.1 If the state jsi is orthogonal to the lowest n eigenstates of H, that is
asi = hijsi = 0 for i = 0; 1; : : : ; n;

then hsjHjsi
hsjsi ¸ En+1:
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The variational method involves the choice of a trial ground state j®; 0i that is a function
of some arbitrary parameters ®i (i = 1; 2; : : :). The expectation value of H for this state
is denoted by hHi®0. A minimum of hHi®0 with respect to all the parameters ®i can be
found. From theorem 10.1, we know that this minimum must be greater than or equal to
E0, and if the functional form of the trial ground state is chosen appropriately, it could be
a good approximation for E0. The ®i determined in the process of minimization, would
also give the corresponding approximation for the ground state j0i. To ¯nd the ¯rst excited
state, corollary 10.1 would be used. A trial ¯rst excited state is chosen to be orthogonal
to the already determined approximate ground state. This trial state can be used to ¯nd
the approximations of E1 and j1i by repeating the procedure used for the ground state. In
principle, this method can be used for the computation of any number of higher excited
state. However, in practice, it becomes progressively more di±cult to choose trial states
for higher energies that must be orthogonal to all lower eigenstates.

To illustrate the method outlined above, we shall ¯nd the ground state j0i and the cor-
responding energy E0 for a particle of mass m placed in the following spherically symmetric
potential.

V (r) = ¡k exp(¡r=a)
r

; (10.76)

where k and a are positive constants. For this potential, it can be shown that the position
representation u0, of the ground state j0i, behaves as exp(¡®r) at large r. Hence, for the
ground state we shall choose this functional form to be the trial eigenfunction.

u0 = exp(¡®r); (10.77)

where ® will be the only variational parameter used here for the minimizing of the expec-
tation value of H. The expectation value of H for this wavefunction is:

hHi0 =
R
u¤0Hu0dvR
u¤0u0dv

; (10.78)

where dv is the volume element and H is in its position representation. If H and dv
are written in spherical polar coordinates, the above integrals are quite straightforward to
compute. The result is:

hHi0 = ¹h2®2

2m
¡ 4k®3a2

(2®a+ 1)2
: (10.79)

For the value of ® that will minimize hHi0, one must have
dhHi0
d®

= 0; (10.80)

and
d2hHi0
d®2

> 0: (10.81)
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From equations 10.79 and 10.80, one ¯nds that the value of ® that will minimize hHi0 must
be a solution of the following cubic equation.

16(®a)2 ¡ 12®a(2®a+ 1) + b(2®a+ 1)3 = 0; (10.82)

where

b =
¹h2

mka
: (10.83)

Hence, ¯nding ® involves the solution of equation 10.82. This can be achieved numerically
by standard methods. For the speci¯c case of b = 20=27, the solution is possible without
resorting to numerical techniques. It is seen to be given by

®a = 1; 1=10; ¡5=4: (10.84)

The negative root is not possible as both ® and a are positive. Of the other two roots, the
¯rst one is seen to give a lower value of hHi0. It can also be seen that for ®a = 1, the
inequality 10.81 is satis¯ed. Hence, we conclude that the minimum in hHi0 is obtained by
®a = 1. This gives the estimate for the ground state energy to be

E0 = ¡ 2k
27a

; (10.85)

and the corresponding normalized eigenfunction is

u0 =
1p
¼a3

exp(¡r=a): (10.86)

One may test this method by taking the limit of a!1. In this limit the potential becomes
the same as that for the hydrogen atom. The corresponding hHi0 is seen to be

hHi0 = ¹h2®2

2m
¡ k®: (10.87)

Minimizing this gives the value of ® to be mk=¹h2. Hence, the estimated value for E0 is

E0 = ¡mk
2

2¹h2
: (10.88)

This and the corresponding eigenfunction u0 can be seen to be the same as the exact results
of chapter 8.

Problems

1. If the one dimensional harmonic oscillator is perturbed by a potential of the form

H 0 = A exp(¡aX2);

where A and a are positive constants, ¯nd the ¯rst order correction to the ground
state energy. (Hint: the position representation is convenient for this problem.)
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2. Find the ¯rst order corrections to the energy eigenstates for the Zeeman e®ect case
discussed in the text.

3. If the hydrogen atom hamiltonian is perturbed by the following:

H 0 = AL2;

where A is a constant and L2 is the magnitude squared of the angular momentum,
¯nd the ¯rst order perturbation corrections to the energies of the degenerate states
corresponding to n = 3.

4. For the time dependent perturbation given in equation 10.53, let

H0 = ik ¢R

where k is the wave vector of the perturbing electromagnetic wave and R the position
vector. If the unperturbed system given by H is the hydrogen atom, ¯nd the selection
rules for the di®erences in the angular momentum quantum numbers (l;m) between
the initial and ¯nal states of a transition.

5. Prove corollary 10.1.

6. For the perturbed harmonic oscillator of problem 1, ¯nd the ground state energy by
the variational method. Compare the results to that of the perturbation computation.
(Hint: One may consider the following as a trial wavefunction with ® as the variational
parameter: u0 = exp(¡®x2).)



Chapter 11

Approximation Methods
(Scattering States)

In general, the quantum mechanical scattering problem is di±cult to present in a well
de¯ned mathematical form. This, obviously, makes it more di±cult to solve. The cause of
this di±culty is in the inherent nature of the time independent SchrÄodinger equation. It is
an equation that needs boundary conditions. These boundaries are usually at in¯nity. For
a scattering problem one does not know these boundary conditions a priori. In fact, the
solution of the problem amounts to ¯nding the behavior of the wavefunction at in¯nity!
Hence, in the special cases discussed in chapters 5 and 8, we have had to guess the form of the
solution at in¯nity with some undetermined parameters. The solution of the problem had
then amounted to the determination of these parameters. However, in a general situation,
it is not always possible to guess the form of the solution at in¯nity. Hence, one sometimes
needs to approach the problem di®erently.

In the following we shall discuss such a di®erent approach. The problem will be
considered to be a limiting form of an initial value problem. The potential will be assumed
to be \turned on" at some initial time ¡T=2 (T !1) and \turned o®" at the later time
T=2. This does not change the problem physically, but allows one to assume the initial
state to be a free particle state with a ¯xed momentum (i.e. a momentum eigenstate)
corresponding to the incident beam. The ¯nal state is also a free particle state, but it is
expected to be a linear combination of di®erent momentum eigenstates. The probability
of the ¯nal state being in a momentum state in a certain direction will give the scattering
cross section in that direction. Hence, we need a formalism that will allow us to ¯nd the
state of the system at the time T=2, if it is known at the time ¡T=2. This is a standard
initial value problem and can be solved by using the following Green's function method.

136
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11.1 The Green's function method

Let the SchrÄodinger equation be written in the following form.

i¹h
@

@t
js; ti = [H0 + V ]js; ti; (11.1)

where js; ti is an arbitrary state for a system given by the hamiltonian

H = H0 + V; (11.2)

and

H0 =
P 2

2m
(11.3)

is the kinetic energy part of the hamiltonian. The state js; ti is labelled by s and, for
convenience in the present discussion, its dependence on time t is explicitly speci¯ed in
the notation. We shall now state without proof that the SchrÄodinger equation speci¯es a
well de¯ned initial value problem i.e. if js; ti is given at some time t, then the SchrÄodinger
equation will give a unique js; t0i at another time t0. Due to the linearity of the equation,
it is expected that js; ti and js; t0i are linearly related and hence the following convenient
form of the relation is chosen.

js; t0i = iG(t0; t)js; ti; (11.4)

where i =
p¡1 and G(t0; t) is an operator on the linear vector space V of quantum states

as de¯ned in chapter 1. The position representation of G(t0; t), given by the following, is
usually called the Green's function.

hr0jG(t0; t)jri ´ G(r0; t0; r; t); (11.5)

where jri and jr0i are eigenkets of the position operator. To avoid super°uous nomenclature,
we shall call G(t0; t) also the Green's function. From problem 2 of chapter 4, we notice that
G(t0; t) is related to the time translation operator:

G(t0; t) = ¡i exp[¡iH(t0 ¡ t)=¹h]: (11.6)

For our present application, it is convenient to separateG(t0; t) into two parts that propagate
a state either forward or backward in time. Hence, we de¯ne the retarded Green's function
or the propagator as

G+(t0; t) =
(
G(t0; t) for t0 > t
0 for t0 < t : (11.7)

This gives
µ(t0 ¡ t)js; t0i = iG+(t0; t)js; ti; (11.8)

where µ(t0 ¡ t) is the step function:

µ(t0 ¡ t) =
(
1 for t0 > t
0 for t0 < t : (11.9)



CHAPTER 11. APPROXIMATION METHODS (SCATTERING STATES) 138

Similarly, one de¯nes the advanced Green's function as

G¡(t0; t) =
(
¡G(t0; t) for t0 < t
0 for t0 > t : (11.10)

This gives
µ(t¡ t0)js; t0i = ¡iG¡(t0; t)js; ti: (11.11)

It can be shown that (see problem 3)

d

dt0
µ(t0 ¡ t) = ±(t0 ¡ t): (11.12)

Using equation 11.12, one can di®erentiate equation 11.8 to give

±(t0 ¡ t)js; t0i+ µ(t0 ¡ t) @
@t0
js; t0i = i @

@t0
G+(t0; t)js; ti: (11.13)

Using equations 11.1, 11.8 and the assumption that V , the potential, does not have a time
derivative operator term, one obtains

µ(t0 ¡ t) @
@t0
js; t0i = ¹h¡1HG+(t0; t)js; ti: (11.14)

Also, from a property of the delta function (see equation 1.72) it is seen that

±(t0 ¡ t)js; t0i = ±(t0 ¡ t)js; ti: (11.15)

Hence, from equations 11.13, 11.14 and 11.15 we get∙
i
@

@t0
¡ 1

¹h
H

¸
G+(t0; t)js; ti = ±(t0 ¡ t)js; ti: (11.16)

As js; ti is an arbitrary state, one concludes that the following operator relation is true in
general. ∙

i
@

@t0
¡ 1

¹h
H

¸
G+(t0; t) = ±(t0 ¡ t): (11.17)

It can be shown that G¡(t0; t) also satis¯es equation 11.17:∙
i
@

@t0
¡ 1

¹h
H

¸
G¡(t0; t) = ±(t0 ¡ t): (11.18)

For the special case of the free particle, the Green's functions will be called G+0 and G
¡
0 .

They satisfy the following equations.∙
i
@

@t0
¡ 1

¹h
H0

¸
G+0 (t

0; t) = ±(t0 ¡ t): (11.19)∙
i
@

@t0
¡ 1

¹h
H0

¸
G¡0 (t

0; t) = ±(t0 ¡ t): (11.20)

Now we shall write G§(t0; t) (the § superscript denotes both the retarded and the advanced
functions) in terms of G§0 (t

0; t) and the potential. In order to do this we need some formal
mathematical de¯nitions.
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De¯nition 38 A general TIME DOMAIN LINEAR OPERATION Q on a time dependent
state js; ti is de¯ned by an operator Q(t; t0) with the two time arguments t and t0 as follows:

js; ti Q! jr; ti

such that

jr; ti = Qjs; ti ´
Z
Q(t; t0)js; t0idt0;

where the integration over t0 is from ¡1 to +1. Note the compact notation chosen for the
time domain operation by Q. Q, without the time arguments, denotes an integration over
one of the time arguments as shown. This allows a natural matrix interpretation that will
be discussed in the following.

G§(t0; t) represent such time domain operators. The product of two time domain operators
P and Q is de¯ned through their successive operations:

js; ti Q! jr; ti P! ju; ti; (11.21)

such that

ju; ti = P jr; ti = PQjs; ti =
Z
P (t; t0)jr; t0idt0

=

Z
P (t; t0)

∙Z
Q(t0; t00)js; t00idt00

¸
dt0

=

Z ∙Z
P (t; t0)Q(t0; t00)dt0

¸
js; t00idt00: (11.22)

Hence, the product of two time domain operators P and Q is found to be also a time
domain operator that is de¯ned by the following operator:

[PQ](t; t00) =
Z
P (t; t0)Q(t0; t00)dt0: (11.23)

It is to be noted that these operators bear a strong resemblence to matrix operations. The
two time arguments are continuous equivalents of the two discrete indices of a matrix. This
matrix nature of time domain operators is over and above their matrix nature in the linear
vector space of kets (see chapter 1). In fact, if these operators and the corresponding kets
are written in the position representation, both the space and time coordinates behave as
continuous indices for matrices. This process of putting space and time on similar footing
is useful for the discussion of relativistic quantum mechanics (see chapter 13). For now, we
need to identify the identity operator for such time domain operations. It is clearly seen to
be the delta function:

It = ±(t¡ t0): (11.24)
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The operator in the square brackets in equation 11.17 is also a time domain operator. It
can be represented in the standard form with two time arguments as follows:∙

i
@

@t
¡ 1

¹h
H

¸
! i±0(t¡ t0)¡ ¹h¡1H±(t¡ t0); (11.25)

where ±0(t¡ t0) represents the derivative of the delta function as de¯ned in chapter 1. The
form of the operator shown in equation 11.25 can be shown to be correct by operating on
an arbitrary time dependent ket js; ti i.e. one can verify that∙

i
@

@t
¡ 1

¹h
H

¸
js; ti =

Z
[i±0(t¡ t0)¡ ¹h¡1H±(t¡ t0)]js; t0idt0: (11.26)

If the time domain operator of equation 11.25 is called K, then equations 11.17 and 11.18
can be written in the following compact form.

KG§ = It: (11.27)

Hence, if K¡1 is de¯ned to have the standard meaning of an inverse, then

G§ = K¡1: (11.28)

This gives the interesting result that the inverse of K is not unique! The free particle
version of equation 11.28 would be

G§0 = K
¡1
0 ; (11.29)

where the di®erential operator version of K0 is

K0 =

∙
i
@

@t
¡ 1

¹h
H0

¸
: (11.30)

Then, from equations 11.2 and 11.28, one may write

G§ = [K0 ¡ V=¹h]¡1: (11.31)

Now, for some small enough V , we may formally expand the right side of the above equation
as a binomial expression. Such an expansion for operators, is not always valid. We shall
justify it for the present case after considering the result as follows.

G§ = [K0(It ¡K¡1
0 V=¹h)]¡1 = [It ¡K¡1

0 V=¹h]¡1K¡1
0

= [It +K
¡1
0 V=¹h+ (K¡1

0 V=¹h)(K¡1
0 V=¹h) + : : :]K¡1

0

= G§0 + ¹h
¡1G§0 V G

§
0 + ¹h

¡2G§0 V G
§
0 V G

§
0 + : : : (11.32)

Here it is seen that the nonuniqueness of the inverse of K on the left hand side shows up
in the nonuniqueness of the inverse of K0 on the right hand side. G

§
0 has been used for

K¡1
0 with the understanding that the equation is correct for all `+' superscripts or all `¡'

superscripts. It can be seen that mixing `+' and `¡' superscripts will not give the correct
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limit for V ! 0. If we consider V to be time dependent, its time domain operator would
be represented as

V ! V (t)±(t¡ t0): (11.33)

Then it can be seen that each term in the in¯nite series of equation 11.32 has the meaning
of a time domain operator. For example:

[G§0 V G
§
0 V G

§
0 ](t1; t6)

=

Z Z Z Z
G§0 (t1; t2)V (t2)±(t2 ¡ t3)G§0 (t3; t4)£

£V (t4)±(t4 ¡ t5)G§0 (t5; t6)dt2dt3dt4dt5
=

Z Z
G§0 (t1; t2)V (t2)G

§
0 (t2; t4)V (t4)G

§
0 (t4; t6)dt2dt4: (11.34)

With some changes in the time parameters the above result is rewritten as

[G§0 V G
§
0 V G

§
0 ](t; t

0)

=

Z Z
G§0 (t; t1)V (t1)G

§
0 (t1; t2)V (t2)G

§
0 (t2; t

0)dt1dt2: (11.35)

Similarly,

[G§0 V G
§
0 ](t; t

0)

=

Z
G§0 (t; t1)V (t1)G

§
0 (t1; t

0)dt1: (11.36)

For some small enough V , if the in¯nite series of equation 11.32 converges1, it can be
shown to give solutions of equations 11.17 and 11.18. In doing this, we substitute the series
solutions from equation 11.32 into the left hand sides of equations 11.17 and 11.18:

KG§ = [K0 ¡ V=¹h]G§ = K0G§ ¡ ¹h¡1V G§
= [It + ¹h

¡1V G§0 + ¹h
¡2V G§0 V G

§
0 + : : :]

¡ [¹h¡1V G§0 + ¹h¡2V G§0 V G§0 + : : :]
= It; (11.37)

where equation 11.29 is used to see thatK0G
§
0 = It. This is the justi¯cation for the binomial

expansion procedure used in equation 11.32. It can be readily veri¯ed that equation 11.32
could also be written as

G§ = G§0 + ¹h
¡1G§0 V G

§: (11.38)

Although we have derived the above equations for both the retarded and the advanced
Green's functions, only the retarded function G+ will be needed for most applications here.
In the study of quantum ¯eld theories, an interesting linear combination of G+ and G¡

is used to represent the behavior of both particles and antiparticles. This combination is
called the Feynman propagator.

1Here convergence means the existence of a ¯nite limiting value of the quantity hrjG§jsi where hrj and
jsi are arbitrary.
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11.2 The scattering matrix

Equipped with the Green's function, we can now return to the scattering problem. As
stated earlier we visualize the scattering process to start with a beam of free particles that
have a su±ciently sharply de¯ned momentum such that each particle may be considered
to be in a momentum eigenstate corresponding to that momentum. As before, the density
of the beam is taken to be low enough to assume each particle to be a system by itself that
does not interact with the others. After this momentum eigenstate is in place, at some time
¡T=2, the scattering potential is turned on. Let the initial state at some time t (t < ¡T=2)
be denoted by jp; ti where p has the corresponding momentum eigenvalue components.
The potential is turned o® at a later time T=2. At a time t0 (t0 > T=2), the initial state
would have transformed to some scattered state js; t0i given by the Green's function to be

js; t0i = iG+(t0; t)jp; ti: (11.39)

The scattering cross section computation involves the probability of detecting a particle in
some given direction. This could be found from the probabilty of the ¯nal particle being in
a momentum eigenstate jp0; t0i where p0 is in the given direction. The probability of such
an event is given by postulate 4 of chapter 2 to be proportional to jhp0; t0js; t0ij2. Hence,
one must compute the following quantity which is known as the scattering matrix.

S(p0;p) = hp0; t0js; t0i = ihp0; t0jG+(t0; t)jp; ti: (11.40)

Using equation 11.38, one then gets

S(p0;p) = ihp0; t0jG+0 (t0; t)jp; ti
+ i¹h¡1

Z
hp0; t0jG+0 (t0; t1)V (t1)G+(t1; t)jp; tidt1: (11.41)

As the state jp; ti is a momentum eigenstate, it must be an energy eigenstate for the free
particle (see chapter 4). Hence, its time dependence is given by equation 4.4 to be

jp; ti = exp(¡iEt=¹h)jpi; (11.42)

where E = p2=(2m) and jpi = jp; 0i is the momentum eigenstate at time t = 0. Thus the
operation with the free particle propagator gives (from equation 11.8)

G+0 (t
0; t)jp; ti = ¡ijp; t0i; (11.43)

as it is known that t0 > t. It can also be shown from the relation of G¡ and the adjoint of
G+ (see problem 2) that in the integral in equation 11.41

hp0; t0jG+0 (t0; t1) = ¡ihp0; t1j; (11.44)

where it is noted that t0 > t1 as the potential is de¯ned to be zero for any time greater than
T=2. From equations 11.41, 11.42, 11.43 and 11.44 one obtains

S(p0;p) = ±3(p0 ¡ p) + ¹h¡1
Z
hp0; t1jV (t1)G+(t1; t)jp; tidt1; (11.45)
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where the three dimensional form of equation 3.24 is used to get

hp0jpi = ±3(p0 ¡ p) ´ ±(p0x ¡ px)±(p0y ¡ py)±(p0z ¡ pz);

which is the product of three delta functions in the three momentum directions. As the
potential goes to zero for t1 < t, one may replace the following in equation 11.45.

G+(t1; t)jp; ti = ¡ijs; t1i; (11.46)

where js; t1i denotes the state of the system at the time t1. Then we have

S(p0;p) = ±3(p0 ¡ p)¡ i¹h¡1
Z
hp0; t1jV (t1)js; t1idt1: (11.47)

In particular, if the scattering potential is time independent, then one may write

V (t) = V g(t); (11.48)

where V depends on position alone and

g(t) =

(
1 for ¡T=2 < t < T=2
0 otherwise

(11.49)

and T !1. For practical purposes an actual measurement of scattering is made in a direc-
tion away from the incident beam direction2 and hence the scattered particle momentum
p0 is di®erent from p. Hence, scattering amplitude computations require only the following
part of S(p0;p).

Ss(p
0;p) = ¡i¹h¡1

Z
hp0; t1jV (t1)js; t1idt1: (11.50)

The corresponding probability is proportional to jSs(p0;p)j2. As the eigenstates jp0i are
continuous, the transition is expected to occur to a group of states in the in¯nitesimal
neighborhood of p0. If the number of states in this neighborhood is dM , then the probability
of transition is proportional to jSs(p0;p)j2dM . Similarly, the probability of scattering in
any speci¯c direction (including the direction of the incident beam) can be seen to be
jS(p0;p)j2dM and hence, the total probability of scattering is

R jS(p0;p)j2dM . Then, the
fractional probability of scattering, in the direction p0, relative to the total probabilty of
scattering is

W =

R
E jSs(p0;p)j2dMR jS(p0;p)j2dM ; (11.51)

2Most of the incident beam goes through unscattered. So the o®-axis scattering is small and requires
high sensitivity particle detectors for its measurement. Such detectors would get overloaded (and probably
destroyed) if the strong unscattered beam were to hit them. Besides, the unscattered beam has no interesting
information anyway.
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where
R
E denotes an integral over only those states jp0i that are in the same scattering

direction but have di®erent energies E. As V is usually small, equation 11.47 allows us to
approximate S(p0;p) by ±3(p0 ¡ p). Thus we have

W =

R
E jSs(p0;p)j2dMR j±3(p0;p)j2dM : (11.52)

We now need to write dM in terms of a d3p0, the in¯nitesimal volume element in the p0

space. To do this we realize that for a discrete set of eigenstates jii, labelled by an integer
i, the number of states ¢M between i =M and i =M +¢M can be written as

¢M =
M+¢MX
i=M

hijIjii; (11.53)

where I is the identity operator. This can be generalized for the continuous states jp0i to
get

dM = hp0jIjp0id3p0: (11.54)

For the continuous eigenstates jpi, the identity may be written as

I =

Z
jpihpjd3p: (11.55)

Hence,

dM =

∙Z
hp0jpihpjp0id3p

¸
d3p0: (11.56)

From normalization it is seen that hp0jpi = ±3(p0 ¡ p). This gives

dM = ±3(p0 ¡ p0)d3p0: (11.57)

The ±3(p0 ¡ p0) in the above expression is in¯nite. However, we shall leave it as such
expecting later cancellation3. Now the integral in the denominator of equation 11.52 can
be evaluated to give the following.

W =

R
E jSs(p0;p)j2d3p0
±3(p¡ p) : (11.58)

Physically, it can be seen that W depends on T , the duration for which the scattering
potential is turned on. Hence, it would be convenient to de¯ne the transition rate per unit
time as

w =W=T: (11.59)

3If one feels uncomfortable carrying around such in¯nities, it is possible to use one of the limiting forms
of the delta function (see for example equation 1.78) without taking the limit right away. The limit can be
taken at the end of all computations at which point no in¯nities will remain!
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In equation 5.16 the probability current was de¯ned. Using that de¯nition we can see the
probability current of the incident beam is

S = (p=m)jhrjpij2; (11.60)

where jri is the position eigenstate and hrjpi is the position representation of the momentum
eigenstate. From this one may compute the fractional probability current, by dividing by
the total probability of the incident beam which isZ

jhrjpij2d3r = hpjpi = ±3(p¡ p): (11.61)

Hence, the fractional probability current of the incident beam is

s =
pjhrjpij2
m±3(p¡ p) : (11.62)

A three dimensional generalization of equation 3.20 gives

hrjpi = (2¼¹h)¡3=2 exp(ir ¢ p=¹h): (11.63)

Hence,

s =
p

(2¼¹h)3m±3(p¡ p) : (11.64)

Using fractional probabilities in equation 5.21 would give the scattering cross section ¾ as
follows.

¾d! = w=jsj: (11.65)

Using equations 11.58, 11.59 and 11.64 one then obtains

¾d! =
(2¼¹h)3m

pT

Z
E
jSs(p0;p)j2d3p0; (11.66)

where p = jpj. As the ¯nal energy of the scattered particle is given by E 0 = p02=(2m), it
can be seen that in the spherical polar coordinates in p0 space

d3p0 = p02dµdÁdp0 = mp0dE 0dµdÁ = mp0dE 0d!: (11.67)

Equations 11.66 and 11.67 would then lead to the following.

¾ =
(2¼¹h)3m2

pT

Z
p0jSs(p0;p)j2dE0; (11.68)

where the subscript E on the integral is dropped as the range of integration is now clear
from the di®erential dE0.
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11.3 The stationary case

The computation of ¾ from equation 11.68 is quite formidable in general. However, a useful
special case (stationary case) can be handled with relative ease. This is the situation where
the potential is time independent as given by equation 11.48, and the energy of a state is
conserved during its propagation in time i.e. the state js; t1i de¯ned in equation 11.46 can
be written as

js; t1i = exp(¡iEt1=¹h)jsi; (11.69)

where E = p2=(2m) is the energy of the incident particle and jsi is time independent. Then,
from equations 11.42, 11.48 and 11.50 one obtains

S(p0;p) = ¡i¹h¡1hp0jV jsi
Z
g(t1) exp[i(E

0 ¡ E)t1=¹h]dt1: (11.70)

Inserting this in equation 11.68 gives

¾ =
(2¼)3¹hm2

pT

Z
p0jhp0jV jsij2

¯̄̄̄Z
g(t1) exp[i(E

0 ¡ E)t1=¹h]dt1
¯̄̄̄2
dE 0: (11.71)

The integral over t1 can be seen to tend to a delta function as T !1. This delta function
peaks at E = E 0. Hence, the term p0jhp0jV jsij2 can be replaced by its value at E = E0 and
then taken out of the dE0 integral. This gives jp0j = p0 = p and hence

¾ =
(2¼)3¹hm2

T
jhp0jV jsij2

Z ¯̄̄̄Z
g(t1) exp[i(E

0 ¡ E)t1=¹h]dt1
¯̄̄̄2
dE 0: (11.72)

The integral in equation 11.72 can be written asZ ¯̄̄̄Z
g(t1) exp[i(E

0 ¡E)t1=¹h]dt1
¯̄̄̄2
dE0

=

Z Z Z
g(t)g¤(t0) exp[i(E0 ¡ E)(t¡ t0)=¹h]dtdt0dE0

= 2¼¹h

Z Z
g(t)g¤(t0)±(t¡ t0)dtdt0

= 2¼¹h

Z
jg(t)j2dt = 2¼¹hT: (11.73)

In the last step above, the de¯nition of g(t) from equation 11.49 is used. Now equation 11.72
reduces to

¾ = (2¼)4¹h2m2jhp0jV jsij2: (11.74)

This happens to be a special case of Fermi's golden rule. The state jsi can be computed to
a desired order of accuracy using the Green's function and then inserted in equation 11.74.
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11.4 The Born approximation

For the lowest order computation of ¾, one writes equation 11.39 as

js; t0i = iG+0 (t0; t)jp; ti = jp; t0i = exp(¡iEt0=¹h)jpi: (11.75)

Hence, in the lowest order approximation (called the Born approxomation), jsi is the initial
momentum eigenstate jpi. Then equation 11.74 gives

¾ = (2¼)4¹h2m2jhp0jV jpij2: (11.76)

As the potential is usually given as a function of position the following computation is best
done in the position representation.

hp0jV jpi =

Z Z
hp0jr0ihr0jV jrihrjpid3r0d3r

=

Z Z
hp0jr0iV (r)±3(r0 ¡ r)hrjpid3r0d3r

=

Z
hp0jriV (r)hrjpid3r

= (2¼¹h)¡3
Z
V (r) exp[ir ¢ (p¡ p0)=¹h]d3r; (11.77)

where equation 11.63 is used as the position representation of the momentum eigenstate.
If

q = (p0 ¡ p)=¹h; (11.78)

then equations 11.76 and 11.77 give

¾ =
m2

4¼2¹h4

¯̄̄̄Z
V (r) exp[¡iq ¢ r]d3r

¯̄̄̄2
: (11.79)

For a spherically symmetric potential, the angular part of the integration in equation 11.79
is quite straightforward. The result is

¾ =
4m2

¹h4q2

¯̄̄̄Z
rV (r) sin(qr)dr

¯̄̄̄2
; (11.80)

where r = jrj is the radial coordinate and q = jqj. For the stationary case, being discussed
here, jp0j = jpj = p. The angle µ between the directions of p0 and p is then given by

cos µ = p0 ¢ p=p2: (11.81)

Also
q = ¹h¡1jp0 ¡ pj = (p=¹h)[2¡ 2 cos µ]1=2 = (2p=¹h) sin(µ=2): (11.82)
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As an example, we shall consider the case of electrons scattering from a neutral atom of
atomic number Z. The potential for such a scatterer was given in chapter 9:

V (r) = ¡ Ze
2

4¼²0

exp(¡r=B)
r

: (11.83)

The resulting scattering cross section can be computed to be

¾ =
m2Z2e4

(2¼²0¹h
2)2(q2 +B¡2)2

: (11.84)

The angle dependence of ¾ is due to q. The total cross section can be computed by
integrating over all angles. As there is no Á dependence, this leads to

¾t = 2¼

Z ¼

0
¾ sin µdµ =

2¼¹h2

p2

Z 2p=¹h

0
¾qdq

=
m2Z2e4B4

¼(²0¹h)2(4p2B2 + ¹h
2)
: (11.85)

Problems

1. Using the de¯nitions in equations 11.8 and 11.11 show the following.

G+(t0; t) = iG+(t0; t1)G+(t1; t) if t0 > t1 > t:

G¡(t0; t) = ¡iG¡(t0; t1)G¡(t1; t) if t0 < t1 < t:

2. Show that the adjoint of G¡(t0; t) is G+(t; t0) i.e.

[G¡(t0; t)]y = G+(t; t0):

3. Prove equation 11.12 from the de¯nition of the delta function given in chapter 1.

4. Prove equation 11.18.

5. Verify the relation in equation 11.26.

6. Find the scattering cross section in the Born approximation for the following spheri-
cally symmetric potential.

V (r) =

(
V0 for r < a
0 for r > a

:

where V0 is a constant.



Chapter 12

Spin and Atomic Spectra

A comparison of the classical and quantum postulates of chapter 2 brings out an interesting
distinction. The classical descriptor, the trajectory, is postulated to be directly observable.
But the quantum descriptor, the state vector, is observed only indirectly through the prob-
abilities of measurements. Also, the state vector is de¯ned only through its properties and
not as any speci¯c mathematical object. This allows the theoretical freedom of choosing
di®erent types of mathematical objects as state vectors. In¯nite dimensional wavefunctions
(as de¯ned in chapter 3) as well as ¯nite dimensional vectors can represent state vectors
in di®erent situations. Until now we have not discussed the observational consequences of
having a ¯nite dimensional vector as the state vector. In fact, it is not self evident that
there exist any physical systems described by such state vectors. A study of atomic spectra
shows that they do.

The emission spectra of atoms show a \¯ne structure" of lines that cannot be explained
by the usual representation of state vectors viz. single valued wavefunctions [10]. This is
not a weakness of the principles of quantum mechanics but a result of a system dependent
assumption made earlier (chapter 3). In fact, in chapter 3, we had made two signi¯cant
system dependent assumptions.

Assumption 1 All positions on a rectangular coordinate system are measurable (i.e. they
are eigenvalues of the position operator).

Assumption 2 Position eigenstates are nondegenerate.

The ¯rst of these two assumptions is seen to be observationally correct for most systems
that need a quantum description. A counterexample would be the postulated structure of
the universe in relativistic cosmology. In such a model (Friedmann), space is curved like
the three dimensional surface of a sphere embedded in four dimensions. If a rectangular

149
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coordinate system were to be set up in such a space, the positive coordinate direction
would loop around and return to the origin! Thus, no coordinate would represent observed
positions beyond a certain distance. Similar e®ects of curved space may also be observed
near massive stars. Since most quantum observations are made in a scale signi¯cantly
smaller than the universe (putting it mildly!) and far enough from massive stars, the
approximation of a rectangular coordinate system existing, is a very good one. Hence, we
shall not discuss this matter any further in this text.

A counterexample of the second assumption is the subject of discussion in this chapter.
Once the position eigenstates are no longer assumed to be nondegenerate, the wavefunctions
will not remain single valued. A systematic study of such systems can be seen to explain the
\¯ne structure" in atomic spectra and other phenomena that have no classical analog. Such
systems can also be seen to have observable angular momenta that are not due to spatial
rotation [10]! The extra degrees of freedom from the degenerate position eigenstates are
called the SPIN degrees of freedom due to the angular momentum they generate, although
there is no accompanying spatial rotation. Spin angular momentum can have the half
integer quantum numbers that were seen to be possible, in general, in chapter 7.

12.1 Degenerate position eigenstates

Due to existing experimental evidence, we shall assume the degree of degeneracy d, of
position eigenstates, to be ¯nite. It is also assumed that d is a constant for a given particle
at all positions. For example, the electron is known to have d = 2. For a given position
eigenvalue r, the possible (orthonormal) position eigenstates will now be labelled as ji; ri,
i = 1; 2; : : : ; d. Then the position representation of any state jsi is de¯ned as

hi; rjsi = Ãsi(r); for i = 1; : : : ; d: (12.1)

The di®erent functions Ãsi(r) for each value of i are called the spinor components. The
operation of a rotation operator UR, on jsi has the position representation hi; rjURjsi that
may be written as

hi; rjURjsi =
dX
j=1

(US)ijÃsj(a
¡1r); (12.2)

where a is the rotation matrix de¯ned in chapter 7. The US matrix operator is yet to be
de¯ned. It is to be kept in mind that UR, a, and US depend on three parameters given by
the direction n̂ and magnitude µ of the rotation i.e. the functional forms of these operators
can be written as UR(n̂; µ), a(n̂; µ) and US(n̂; µ). US is introduced to include the possibility
that a rotation might transform a single spinor component to a linear combination of spinor
components. It can be seen to be unitary as UR is unitary:

dX
j=1

(US)
¤
ji(US)jk = ±ik or U ySUS = I: (12.3)
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We notice that to maintain the physical e®ect of a rotation, the US operators for di®erent
physical rotations must mimic the algebra of the corresponding UR operators. That is if

UR(n̂1; µ1)UR(n̂2; µ2) = UR(n̂3; µ3); (12.4)

then
US(n̂1; µ1)US(n̂2; µ2) = US(n̂3; µ3): (12.5)

Hence, the set of US operators for all possible rotations must be a ¯nite dimensional unitary
representation of the rotation group SO(3). In chapter 7 we have already seen such ¯nite
dimensional representations, but have not identi¯ed them as such.

It can be seen that the generators of rotation (angular momentum components), on
operating on the angular momentum eigenstates jl;mi, produce a linear combination of
angular momentum eigenstates that have the same value of l. Hence, a subspace

Vl =
8<:

lX
m=¡l

cmjl;mi; cm 2 C
9=; ; (12.6)

of linear combinations of angular momentum states with ¯xed l is closed under the operation
of the angular momentum operators. For example, the operation of Lx on the state jl;mi
can be written as

Lxjl;mi =
lX

m0=¡l
(Llx)mm0 jl;m0i; (12.7)

where Llx is a ¯nite dimensional matrix of dimensionality 2l + 1. This matrix must be a
representation of Lx within the subspace Vl. Lly and Llz would similarly represent Ly and
Lz. Exponentiating these angular momentum representations as in equation 7.34, gives
URl, the representation of the rotation group in the subspace Vl.

URl(n̂; µ) = exp(¡iLl ¢ n̂µ=¹h); (12.8)

which can be seen to be a representation of SO(3) from the fact that if

UR(n̂1; µ1)UR(n̂2; µ2) = UR(n̂3; µ3); (12.9)

then
URl(n̂1; µ1)URl(n̂2; µ2) = URl(n̂3; µ3): (12.10)

This ¯nite dimensional representation is said to be \carried" by the subspace Vl. Two such
representations, URl and URl0 placed in a block diagonal form in a matrix of dimensionality
2(l + l0) + 2, can also be seen to be a representation of SO(3). In fact, any matrix of the
following block diagonal form, with two or more blocks, can be seen to be a representation
of SO(3).

URB(n̂; µ) =

0BBBB@
URl(n̂; µ)

URl0(n̂; µ)
URl00(n̂; µ)

. . .

1CCCCA : (12.11)
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where l, l0, and l00 are the corresponding total angular momentum quantum numbers. URB
is a reducible representation of SO(3). A general de¯nition of reducible and irreducible
representations is as follows.

De¯nition 39 Any representation UA, of a group, that can be reduced to a block diagonal
form UB of more than one block (for all elements), by some unitary transformation given by
a constant unitary operator U as follows, is called a REDUCIBLE REPRESENTATION.

UB = UUAU
y:

De¯nition 40 Any representation that is not a reducible representation is called an IR-
REDUCIBLE REPRESENTATION (IRR for short).

We shall now state two theorems without proof [11, 12].

Theorem 12.1 The ¯nite dimensional representations URl for each l are IRRs.

Theorem 12.2 Every unitary IRR of the rotation group can be transformed, by a unitary
transformation, to a URl for some l.

A constant unitary transformation of operators as in de¯nition 39 accompanied by the
transformation

jsi ! U jsi; (12.12)

of all states jsi, can be seen to be equivalent to a ¯xed coordinate transformation and
hence, does not change any physical relationships. So, group representations that are
unitarily related, as in de¯nition 39, will be considered identical.

Returning to equation 12.5, it is now evident that US must be a ¯nite dimensional
matrix of the form URB. The simplest form of US would be the following d dimensional
matrix which has the form of URB with l = l

0 = l00 = : : : = 0.

US =

0BBBB@
UR0

UR0
UR0

. . .

1CCCCA : (12.13)

UR0(n̂; µ) is seen to be one dimensional and for all n̂ and µ (see problem 2)

UR0(n̂; µ) = 1: (12.14)
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Hence, US is an identity matrix and does not mix spinor components in a rotation oper-
ation as given by equation 12.2. Physically this is equivalent to each spinor component
representing a di®erent scalar particle1. Correspondingly, the UR0 representation is called
the scalar representation as it does not change the components of the wavefunction. It is
sometimes also called the trivial representation.

Similarly, any spin system that carries a reducible representation US , can be split
into independent systems each of which would carry an IRR of SO(3) that is included in
the original US . Hence, one needs to study only those spin systems that carry IRR's of
SO(3). Accordingly, a spin system is named after the l value (angular momentum quantum
number) of the IRR that it carries. For example, the l = 0 IRR is carried by systems with
one spinor component (i.e. the kind we have been studying before this chapter) and they
are called the spin-zero particles. The spin-half particles carry the l = 1=2 IRR and hence
have d = (2l + 1) = 2. Similarly, spin-one particles have d = 3, and are sometimes called
vector particles as usual three dimensional vectors also carry the l = 1 IRR.

12.2 Spin-half particles

The simplest nontrivial example of spin is spin-half, which has d = 2 and US as the l = 1=2
IRR of SO(3):

US = UR 1=2: (12.15)

Some examples of spin-half particles are the electron, the proton and the neutron. The
l = 1=2 representation must have 2 dimensional (i.e. 2l + 1) matrices for its generators
(viz. Llx, Lly, Llz). For the present case, these generators will be named Sx, Sy and Sz
respectively and they will be considered to be the components of the vector operator S.
This is known as the spin operator. Using the standard de¯nition of the angular momentum
eigenstates jl;mi, it can be seen that (see problem 1)

Sx =
¹h

2

Ã
0 1
1 0

!
; Sy =

¹h

2

Ã
0 ¡i
i 0

!
; Sz =

¹h

2

Ã
1 0
0 ¡1

!
: (12.16)

Here, to conform with standard notation for spin operators, the spin-up state (m = +1=2)
is chosen to have the matrix index 1 and the spin-down state (m = ¡1=2) is chosen to have
the matrix index 22. The matrix parts of the above operators are called the Pauli spin
matrices and they are written as ¾x, ¾y, and ¾z which are the components of the vector
operator ¾. Hence,

S =
¹h

2
¾: (12.17)

1These are particles that have nondegenerate position eigenstates.
2Mathematically, the more natural choice would have been the smaller m value for the smaller index.
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where

¾x =

Ã
0 1
1 0

!
; ¾y =

Ã
0 ¡i
i 0

!
; ¾z =

Ã
1 0
0 ¡1

!
: (12.18)

The exponential form in equation 12.8, for l = 1=2, will now give US for the present case.

US(n̂; µ) = exp(¡iS ¢ n̂µ=¹h): (12.19)

As an example, a rotation of µ about the x axis is seen to be given by (see problem 3)

US (̂i; µ) = exp(¡iSxµ=¹h)

=

Ã
cos µ=2 ¡i sin µ=2

¡i sin µ=2 cos µ=2

!
= cos µ=2¡ i¾x sin µ=2; (12.20)

where a multiplication by the 2 £ 2 identity matrix is implicit for the term that does not
appear to be a matrix. The two spinor components of the wavefunction, as de¯ned in
equation 12.1, can be written as a column vector as follows.

hrjsi = Ãs(r) =
Ã
Ãs1(r)
Ãs2(r)

!
: (12.21)

These two-component column vectors are the spinors for the spin-half system. Then, from
equation 12.2, the rotation operation on Ãs(r) can be written as the following matrix
product.

hrjURjsi = USha¡1rjsi = USÃs(a¡1r) = US
Ã
Ãs1(a

¡1r)
Ãs2(a

¡1r)

!
: (12.22)

From the derivation of the rotation operation on a single component wavefunction (sec-
tion 7.4), it can be seen that

Ãsi(a
¡1r) = exp(¡iL ¢ n̂µ=¹h)Ãsi(r); (12.23)

where L = R £ P, is the usual spatial angular momentum operator. Hence, from equa-
tions 12.19, 12.22 and 12.23 we obtain the rotation operation on a spinor to be given by

hrjURjsi = exp[¡i(L+ S) ¢ n̂µ=¹h]hrjsi: (12.24)

Thus the rotation operator for such systems can be written as

UR(n̂; µ) = exp[¡iJ ¢ n̂µ=¹h]; (12.25)

where
J = L+ S: (12.26)

The components of the vector operator J, are clearly seen to be the generators of rotation
for spinors. Consequently, from corollary 7.1, one concludes that the components of J are
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conserved in spherically symmetric systems. From a physical point of view this means that,
in the absence of external torques, it is J, and not L, that is conserved. Hence, it is J, and
not L, that must be the observable angular momentum. L, which is sometimes called the
orbital angular momentum, has a classical analogue that is due to the rotational motion
of the particle. S, which is sometimes called the spin angular momentum, has no classical
analogue and is not related to spatial rotation[10]! Nonetheless, S is physically signi¯cant.
A spin-half particle, with no orbital angular momentum, will give S as its observed angular
momentum. For example, a stationary electron will still have an angular momentum. This
spin angular momentum, in fact, can never vanish because the only possible eigenvalue of
S2 (= S ¢ S) is 3¹h2=4. Similarly, the measured values of Sx, Sy and Sz can only be their
eigenvalues which are ¹h=2 and ¡¹h=2.

Let us now consider a free spin-half particle (e.g. an electron). The hamiltonian

H =
P 2

2m
; (12.27)

and all other spin independent operators are implicitly assumed to be multiplied by 2£ 2
identity matrices to de¯ne their oparation on spinors. Thus we expect simultaneous eigen-
states of the mutually commuting operator set fH;S2; Sz; Px; Py; Pzg. Using the represen-
tation in the equations 12.16 for spin matrices, one ¯nds the position representation of
these simultaneous eigenstates to be as follows.

Ã+(r) = (2¼¹h)¡3=2
Ã
exp(ip ¢ r=¹h)

0

!
; (12.28)

Ã¡(r) = (2¼¹h)¡3=2
Ã

0
exp(ip ¢ r=¹h)

!
; (12.29)

where the components of p are the eigenvalues of the corresponding components of P,
the eigenvalue of H is p2=(2m) and the eigenvalue of S2 is 3¹h2=4. The eigenvalue of Sz
corresponding to Ã+ is ¹h=2 and corresponding to Ã¡ is ¡¹h=2.

12.3 Spin magnetic moment (Stern-Gerlach experiment)

A direct experimental veri¯cation of the electron spin is seen with a rather simple setup
(the well-known Stern-Gerlach experiment[13]). As shown in ¯g. 12.1, a beam of electrons
(silver atoms were used in the original experiment) passing through a nonuniform magnetic
¯eld in the z direction, is seen to split according to the z component of spin of the electrons.
Such a setup can also be used to demonstrate some of the peculiar properties of quantum
systems[14], for example, the collapse of a state (postulate 5). This is done by ¯rst splitting
an electron beam according to its two possible z-components of spin. If the +1/2 spin beam
is selected out (by blocking the other beam), the electrons in this beam will be in a +1/2
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Figure 12.1: A Stern-Gerlach setup { an electron beam in the y direction is split in two
along the z direction by a z direction magnetic ¯eld that has a strong uniform part and
a weak nonuniform part. The nonuniformity is produced by shaping the pole pieces as
shown.

spin collapsed state. Hence, a second Stern-Gerlach setup for the z-component of spin will
not split this beam any further. However, if the second setup is for the x-component of spin
(magnet rotated in the x direction), the beam would split in two once again corresponding
to the two possible x-components of spin (see problem 7). Each of these beams can now
be split into both a +1=2 and a ¡1=2 spin component in the z direction by using another
z-component Stern-Gerlach setup!

In this section, the spin magnetic moment will be discussed and a theoretical basis
for the Stern-Gerlach experiment will be presented.

A classical particle of mass m, charge q and angular momentum L, has a magenetic
dipole moment

ML =
q

2m
L: (12.30)

For the equivalent quantum system the same relation must be true in an operator sense if
L is an orbital angular momentum. For spin angular momenta such a relation cannot be
expected to be true as spin has no classical analogue and is not due to a spatial rotation.
However, a magenetic dipole momentMs, related to the spin S, is experimentally observed.
The relation is seen to be

Ms =
gq

2m
S; (12.31)

where g is a dimensionless constant that is found to be di®erent for di®erent particles.
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For an electron g = 2. The relativistic quantum theory of the electron (Dirac[1]) agrees
with this experimental value for g (see chapter 13). The Dirac theory cannot explain the
experimental values of the magnetic dipole moments of the proton or the neutron if they are
assumed to be structureless particles. This was one of the original reasons for suspecting
that the proton and the neutron have a substructure. Now it is known that this substructure
is that of quarks. Quarks are spin-half particles and they have been found to have g = 2
within experimental error as expected from Dirac's theory.

From electrodynamics it is known that a magnetic dipole, of moment M, placed in a
magnetic ¯eld B, has the energy

Hm = ¡M ¢B: (12.32)

This energy term was seen for the orbital angular momentum in our discussion of the
Zeeman e®ect (equation 10.49). The electron in an atom has bothML andMs and hence,
its magnetic dipole energy is

Hm = ¡(ML +Ms) ¢B: (12.33)

If the charge of the electron is given by ¡e, then from equations 12.30, 12.31, 12.33 and
the fact that g = 2 for the electron, one obtains

Hm =
e

2m
(L+ 2S) ¢B: (12.34)

Thus we see that the Zeeman e®ect computation of chapter 10 is not complete. We shall do
the complete computation later. At present, we notice that equation 12.34 can be applied
to the Stern-Gerlach setup.

An electron in°uenced by no force other than a magenetic ¯eld, in a suitable coordinate
system, has L = 0. Hence, from equation 12.34, in a magnetic ¯eld B, it has the magnetic
energy

Hm =
e

m
S ¢B: (12.35)

If B is a uniform magnetic ¯eld in the z direction with a magnitude B, then

Hm = (eB=m)Sz: (12.36)

If this is added to the free particle hamiltonian of equation 12.27 it can be seen that Ã+
and Ã¡ are still the energy eigenstates but with di®erent eigenvalues. The corresponding
eigenvalues are

E+ =
p2 + eB¹h

2m
; E¡ =

p2 ¡ eB¹h
2m

: (12.37)

This separates the two spin states by energy, but the splitting of the beam as required
by the Stern-Gerlach setup is still not achieved. To spatially separate the two spin states,
one can typically have the electron beam in the y direction and include a small nonuniform
magnetic ¯eld in the z direction. The nonuniform part of the ¯eld is kept small compared to
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the uniform part to keep the x and y components of the magnetic ¯eld small and ignorable3.
The x and y components must be kept small to make sure that their contribution to Hm
is small enough to consider Ã+ and Ã¡ to be the approximate eigenstates. Now, electrons
of the two spin states can be seen to develop a z component of momentum in opposite
directions. From equation 4.19 the time rate of change of the expectation value of Pz is
seen to be

d

dt
hPzis = h[Pz; H]is

i¹h
: (12.38)

The subscript s for the expectation value denotes the state jsi of the system. Each electron
in the beam is a system in itself and could be in either the state Ã+ or the state Ã¡4. If the
expectation values in these states are represented as hi§, then equations 12.36 and 12.38
give

d

dt
hPzi§ = ¨ e¹h

2m

dB

dz
: (12.39)

Hence, the two eigenstates develop small z components of momenta in opposite directions
thus splitting the beam. It is interesting to observe that, although a nonuniform ¯eld must
exist in the x or the y direction (in addition to the one in the z direction as r ¢ B = 0),
there is no beam splitting in those direction. This is because the strong uniform ¯eld in the
z direction forces the energy eigenstates to be eigenstates of Sz (the small nonuniform ¯eld
will perturb this eigenstate only negligibly). If an electron trajectory were to bend in the x
direction, it would have to be in an eigenstate of Sx which would not be an energy eigenstate
and as energy is being measured inadvertently, this would not be possible (postulate 5).

12.4 Spin-orbit coupling

The inclusion of electron spin will change the hamiltonian for the hydrogen atom as dis-
cussed in chapter 8. In the hydrogen atom, from the point of view of the electron, it is the
proton that orbits around it. If the velocity of the electron is v then it \sees" the proton
to be moving with respect to itself at a velocity ¡v. From electrodynamics, it is seen that
such a moving charge produces a magnetic ¯eld of

B = E£ v=c2; (12.40)

where c is the speed of light and E is the electric ¯eld due to the charge:

E =
kee

r3
r: (12.41)

3A nonuniform z component of the ¯eld will always produce x or y components due to the Maxwell
equation { r ¢B = 0.

4This statement needs a subtle explanation. Although Ã§ are the energy eigenstates (ignoring the
small e®ects of the nonuniform ¯eld), the system is not expected to be in these states unless an energy
measurement is made. Hence, it is important to realize that an \inadvertent" energy measurement occurs
in this experiment { One can deduce the energy from the direction of bending of the beam! So, from
postulate 5 the system must collapse to an energy eigenstate.
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Here the eigenvalue r is used instead of the operator R as the position representation is
the most convenient for these computations. Thus

B =
kee

c2r3
r£ v = kee

c2mr3
L: (12.42)

Using this relation in equation 12.35 gives the magnetic energy of the spin dipole for the
hydrogen atom:

H 0
so =

kee
2

c2m2r3
L ¢ S: (12.43)

However, this energy term is not complete. Due to a relativistic e®ect called Thomas
precession, the correct energy of the spin dipole is H 0

so=2. This result will be derived in
chapter 13. For now, we shall use the following addition to the hydrogen atom hamiltonian.

Hso = f(r)L ¢ S; (12.44)

where

f(r) =
kee

2

2c2m2r3
: (12.45)

This additional term changes the energy spectrum of the hydrogen atom only slightly.
Hence, the term ¯ne structure is used for the spectral lines shifted as a result of this extra
term. Hso is sometimes called the spin-orbit coupling term due to its dependence on both
the spin and the orbital angular momenta. This treatment of spin-orbit coupling can be
generalized for other kinds of atoms { in particular alkali metal atoms. An alkali metal atom
has one outer shell electron that is loosely bound to the rest of the atom and hence the rest
of the atom can be approximated as a rigid spherical object with some charge distribution.
This charge distribution produces an electric ¯eld that a®ects the outer electron in a fashion
similar to the proton of the hydrogen atom. The actual electric ¯eld is, of course, di®erent.
But this is remedied by choosing a suitable function f(r) for each alkali metal.

Now, for hydrogen and alkali metals the hamiltonian can be written as

H = H0 +Hso; (12.46)

where

H0 =
P 2

2m
+ V (r): (12.47)

As the e®ects of spin-orbit coupling are known to be small, one can use the degenerate
perturbation method to ¯nd the corrections to the energy eigenvalues due to Hso. To avoid
complicated determinant computations it is desirable (if possible) to rewrite the degenerate
eigenstates of H0 as some linear combinations such that they are also eigenstates of Hso.
This is seen to be possible by noticing that

L ¢ S = (J2 ¡ L2 ¡ S2)=2: (12.48)
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Hence, J2, L2 and S2 commute with H0 and Hso. So we write the angular part of the
eigenstates of H0 as the eigenstates jl; j;mi of the operators fL2; S2; J2; Jzg. This is a
special case of the addition of angular momenta as discussed in chapter 7. Here the two
angular momenta being added are L and S and their sum is J. The quantum number
corresponding to S2 is omitted among the labels of the eigenstate because it is always 1/2.
The eigenvalue equations for each of the operators de¯ne the standard meanings of the
labels as follows.

L2jl; j;mi = l(l + 1)¹h2jl; j;mi; (12.49)

S2jl; j;mi = (3¹h2=4)jl; j;mi; (12.50)

J2jl; j;mi = j(j + 1)¹h2jl; j;mi; (12.51)

Jzjl; j;mi = m¹hjl; j;mi: (12.52)

Using the Clebsch-Gordan coe±cients the states jl; j;mi can be written as linear combina-
tions of the states jl;ml;+i and jl;ml;¡i that are eigenstates of the operators fL2; S2; Lz; Szg.
The label for S2 is once again omitted and the rest of the labels are de¯ned by the following
eigenvalue equations.

L2jl;ml;§i = l(l + 1)¹h2jl;ml;§i; (12.53)

S2jl;ml;§i = (3¹h2=4)jl;ml;§i; (12.54)

Lzjl;ml;§i = ml¹hjl;ml;§i; (12.55)

Szjl;ml;§i = §(¹h=2)jl;ml;§i: (12.56)

Hence, it is seen that j = l § 1=2. Using the angular momentum eigenstates jl; j;mi,
for a degenerate perturbation computation using Hso as the perturbation, one obtains the
correction terms in energy to be

¢Enlj = Fnl[j(j + 1)¡ l(l + 1)¡ 3=4]¹h2=2; (12.57)

where

Fnl =

Z 1

0
jRnl(r)j2f(r)r2dr; (12.58)

and Rnl are the radial parts of the corresponding energy eigenfunctions of H0.

12.5 Zeeman e®ect revisited

In chapter 10 we had discussed the Zeeman e®ect for spinless electrons. Such electrons
are, of course, not realistic. To achieve agreement with experiment one needs to use equa-
tion 12.34 for the perturbing hamiltonian due to a uniform external magnetic ¯eld B:

Hm =
e

2m
(L+ 2S) ¢B: (12.59)
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Thus an alkali atom outer electron can be described by the complete hamiltonian

H = H0 +Hso +Hm: (12.60)

Now neither of the angular states jl; j;mi or jl;ml;§i are eigenstates of both Hso and Hm.
Hence, perturbation computations would require the diagonalization of matrices. However,
for a weak external magnetic ¯eld Hso À Hm and the jl; j;mi states are an appropriate
choice. Similarly, for strong magnetic ¯elds Hso ¿ Hm and the jl;ml;§i are the better
choice for computations. The Clebsch-Gordan coe±cients are used in either case to ¯nd
the e®ect of an operator on a state which is not its eigenstate. The detailed computations
will not be shown here (see problem 6).

Problems

1. From the de¯nition in equation 12.7, ¯nd the matrices Llx, Lly, and Llz for l =
0; 1=2; and 1.

2. From the de¯nition in equation 12.8 and the results of problem 1, ¯nd URl(n̂; µ) for
rotations about the x axis (i.e. n̂ = î) for l = 0; 1=2; and 1.

3. Prove equation 12.20.

4. Prove the following identities:

(a) ¾2x = ¾
2
y = ¾

2
z = 1;

(b) ¾x¾y = ¡¾y¾x = i¾z;
(c) ¾y¾z = ¡¾z¾y = i¾x;
(d) ¾z¾x = ¡¾x¾z = i¾y:

5. Find the spin-orbit interaction energies for the ¯rst excited states (n = 2) of the
hydrogen atom.

6. Find the weak ¯eld Zeeman e®ect corrections for the ¯rst excited state (n = 2) with
j = 3=2 of the hydrogen atom.

7. A beam of electrons in the +1=2 state for the z-component of spin is travelling along
the y direction. If a Stern-Gerlach setup for the x-component of spin is placed in its
path, what fraction of the electrons will be seen to have +1=2 spin in the x direction?



Chapter 13

Relativistic Quantum Mechanics

At the end of the nineteenth century there were two major unexplained issues { the black-
body radiation distribution and electromagnetic theory in the context of Galilean relativity.
The explanation of the ¯rst led to quantum mechanics and that of the second led to special
relativity. The independent development of the two subjects was quite satisfactory. How-
ever, when a meeting of the two subjects became necessary (for the description of particles
that travelled at speeds close to that of light), there were serious problems.

One of the problems arose primarily due to the postulate of collapse of quantum states
(postulate 5). Such a collapse presumably occurs instantaneously. But relativity does not
allow any instantaneous movement. The speed of light is a speed limit. This contradiction
is illustrated by the well known Einstein-Padolsky-Rosen (EPR) paradox. Originally this
was proposed as a paradoxical gedanken experiment. But more recently, such experiments
have actually been done[15]. The resolution of the paradox comes from the understanding
that the special relativistic speed limit is restricted to the movement of information (or
energy).

The second problem is more serious. The description of interaction of several rela-
tivistic particles is very tricky even in a classical (non-quantum) setup. In fact, at one time
a theorem (no interaction theorem[16]) was proved which claimed that no interaction is
possible between two relativistic particles unless they occupied the same space-time point!
It was later shown that the conditions used for this proof were too stringent and physical
reality did not require them. However, it still illustrates the di±culty of introducing inter-
actions at a distance between relativistic particles. The source of this theoretical dilemma
is the four-dimensional nature of relativistic position. For a relativistic description each
particle position must include its individual time coordinate. For a physical measurement
one knows that the time coordinate of all particles must be the same for a given system.
So, constraints are required for the coordinates of a system of particles. These constraints
themselves must be relativistically covariant to maintain general covariance. The choice of

162
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such constraints is the sticking point.

A solution to the problem of interaction at a distance is to avoid all interactions at a
distance. This is done in quantum ¯eld theory (QFT). In QFT every interaction between
particles is considered to be mediated by other particles. For example, electromagnetic
interactions between electrons are mediated by photons (light particles). An electron pro-
duces a photon (at its own space-time point) and transfers energy and momentum to it.
The photon travels like a particle to another electron, deposits its energy and momentum
to it and then disappears. QFT's have been proposed for every kind of quantum interaction
{ electromagnetic, weak, and strong. However, only the electromagnetic case has had the
most experimental success. This is called quantum electrodynamics (QED).

A discussion of QED is beyond the scope of this book[18, 19]. Instead we shall
discuss the simple case of the quantum mechanics of a single relativistic particle in a ¯xed
background potential. This case does not have the problem of interaction at a distance as
there is only one particle involved. The relativistic hydrogen atom can be approximated to
be such a system as the proton can be approximated to be almost stationary in the frame
of reference of the atom due to its signi¯cantly larger mass compared to the electron. The
stationary proton produces the ¯xed background potential for the orbiting electron.

13.1 The Klein-Gordon equation

The intuitive approach to a relativistic quantum theory of a single particle would be to
write a relativistic form the SchrÄodinger equation. The form of the SchrÄodinger equation
presented in postulate 1 is general enough to include relativity. Just the hamiltonian H
needs to be appropriately chosen. For the free particle, H could be chosen to be energy
and formally related to momentum as in special relativity:

H = §
p
P 2c2 +m2c4; (13.1)

where m is the rest mass of the particle and c the speed of light. The immediate problem
of this choice is the sign ambiguity. A rather cavalier decision to drop the possibility of the
negative square root can be made. However, that causes serious mathematical problems
for the completeness of the eigenstates of the hamiltonian. The other choice is to operate
the SchrÄodinger equation (equation 2.1) by H and then use itself a second time to give a
sign unambiguous equation:

¡¹h2 @
2

@t2
jsi = H2jsi: (13.2)

Using equations 13.1 and 13.2, one obtains the so-called Klein-Gordon equation for a free
particle:

¡¹h2 @
2

@t2
jsi = (P 2c2 +m2c4)jsi: (13.3)
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Using the position representation, this equation takes the following form.Ã
r2 ¡ 1

c2
@2

@t2

!
ªs =

m2c2

¹h2
ªs: (13.4)

For m = 0, this is exactly the linear wave equation for a wave that travels at the speed of
light c.

For the case of light, ªs is the relativistic four component vector potential A
¹ (¹ =

0; 1; 2; 3) for electromagnetic ¯elds. The zeroth component A0 = ©=c where © is the
standard scalar potential and the other three are the three components of the magnetic
vector potential A. The correspondence is sometimes written as A¹ = (©=c;A). The
notation here is obvious and can also be used to depict the four component forms of other
vectors. For example, the position four-vector is x¹ = (ct; r) where t is time and r is
the usual position vector. A lower index form of these vectors is sometimes de¯ned for
convenience by changing the sign of the zeroth component1. For example, for position
x¹ = (¡ct; r). Besides brevity, the four-vector notation has another bene¯t. It makes it
easier to keep track of relativistic consistency of equations { and all physical equations must
be consistent with relativity. Such consistency is sometimes called covariance. A covariant
equation, written in the four-vector form, does not change in form in di®erent frames of
reference. For example, equation 13.4 can be written as

@2

@x¹@x¹
ªs =

m2c2

¹h2
ªs; (13.5)

where it is implicitly assumed that the left hand side is summed over all four values of ¹.
This assumption will be made whenever a contravariant index and a covariant index are
the same and appear in a product of components as in the above equation. This is called
the Einstein summation convention and is used extensively to avoid repeated use of the
summation sign. For the case of light the corresponding equation is2

@2

@x¹@x¹
Aº = 0: (13.6)

These are four equations for the four components of Aº . It is interesting to note that,
unlike the usual wavefunctions, the Aº for light are actually measurable3!

It is also to be noted that Aº has four components { somewhat like the two-component
nature of spinors. This provides a hint about the spin of the light particle { the photon. It

1The upper index vector is called a contravariant vector and the lower index vector is called a covariant
vector. Di®erent conventions for the de¯nitions of such vectors may be found in other texts. A more general
approach to such vectors is used in the general theory of relativity.

2The Lorentz gauge is chosen here[17].
3Of course, there is some ambiguity due to gauge choice and the true measurable quantities are the

electric and magnetic ¯eld vectors.
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can be shown that the photon is a spin-one particle[18]. It can also be shown that a particle
with a scalar (relativistic) wavefunction has zero spin[18]. In fact, it is possible to write
down Klein-Gordon equations for particles of any spin. However, it is seldom necessary
to go beyond spin-one as all known fundamental particles have spins of one or less4. For
spin-half particles, the wavefunction is a four component object, but it is not a four-vector.
It is called a Dirac spinor. To understand the component structure of wavefunctions for
di®erent spins, one could look back at the two-component spinors (Pauli spinors) discussed
in chapter 12. The Pauli spinors were seen to carry the two-dimensional IRR of the SO(3)
group. In fact, it was seen that for every IRR of the SO(3) group, there exists a possible spin.
An extension of the SO(3) group is the group of all possible special relativistic coordinate
transformations (not considering translations). This is the so-called Lorentz group. Every
IRR of the Lorentz group corresponds to a possible relativistic spin. The spin-zero IRR is
one dimensional (the scalar wavefunction), the spin-half IRR is four-dimensional (the Dirac
spinor) and the spin-one IRR is also four dimensional (relativistic four-vector). The Dirac
equation (not the Klein-Gordon equation) happens to be the natural choice for spin-half
particles and it will be discussed in the next section.

For the free Klein-Gordon particle, the hamiltonian commutes with the momentum
operator and hence, as expected, momentum is conserved. The momentum eigenstates jpi
are also energy eigenstates and the energy-momentum relationship is found as follows.

Ejpi = Hjpi = §
p
P 2c2 +m2c4jpi = §

q
p2c2 +m2c4jpi; (13.7)

where, as before, p is the eigenvalue of the momentum operator P. Hence,

E = §
q
p2c2 +m2c4: (13.8)

It is seen that the energy could be either positive or negative. It has a minimum positive
value of mc2 and a maximum negative value of ¡mc2. For free particles, negative energy
is physically meaningless. However, the negative energy eigenvalues cannot be mathemati-
cally ignored as they are needed for the completeness of the energy eigenstates. A similar
dilemma for the Dirac equation had prompted Dirac to postulate what are now known
as antiparticles. For every particle of energy E there exists an antiparticle with identical
properties with energy ¡E. An antiparticle travels backward in time and hence, from the
physical point of view of time translation (equation 7.23), it would appear to be a particle
of positive energy travelling forward in time. This resolves the physical problem of nega-
tive energy, but introduces the need to experimentally detect the postulated antiparticles.
Since the original postulate by Dirac, antiparticles have been amply detected (for example
antiprotons, antineutrons, antielectrons (or positrons) etc.).

The energy-momentum relationship of equation 13.8, can also be written in a covariant
four-vector form. The zeroth component of the momentum four-vector is related to energy.

4Gravitons, if they exist, must have spin-two. Sometimes some tightly bound composites like mesons,
baryons or even atomic nucleii might be approximated to be single particles with higher spin values.
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The four-vector momentum is p¹ = (E=c;p). Then the covariant form of equation 13.8 is

p¹p¹ +m
2c2 = 0: (13.9)

It is possible to ¯nd energy eigenvalues for Klein-Gordon particles in the presence of
static background potentials. However, we shall not do it here as such problems are of
little practical value. The hydrogen atom problem is that of an electron in a background
potential. But the electron has a spin of half and hence, obeys the Dirac and not the
Klein-Gordon equation. It is possible to have a pi meson (pion) orbit around a proton to
simulate the Klein-Gordon situation. But this situation is further complicated by other
possible interactions of a pion that can be dealt with only by a quantum ¯eld theory. The
photon interacting with a static charge may be considered to be an interacting Klein-Gordon
particle. But such a problem is nothing more than the case of electromagnetic ¯elds in the
presence of charge sources which is adequately dealt with in all electromagnetic theory
texts.

13.2 The Dirac equation

The square root of an operator as shown in equation 13.1, is a mathematical complica-
tion that was avoided by the Klein-Gordon equation by squaring the operator. Dirac[1]
avoided the problem by choosing a hamiltonian that is linear in the momentum P. This
choice turned out to be the correct one for spin-half particles like the electron. The Dirac
hamiltonian for a free particle is as follows.

H = c® ¢P+ ¯mc2; (13.10)

where ® and ¯ are constants yet to be determined. This is the simplest linear relationship
possible as mc2 must be the rest energy of the free particle. Using H from equation 13.10 in
equation 2.1 gives the so-called Dirac equation. Once again, H and P are seen to commute
and hence, they have simulataneous eigenstates that can be labelled by the momentum
eigenvalues p and written as jpi. Then the energy eigenvalue equation will give:

(E ¡ c® ¢ p¡ ¯mc2)jpi = 0: (13.11)

This provides an energy-momentum relationship that does not resemble equation 13.8 in
any way. But equation 13.8 is a relativistic kinematic equation for all free particles and
hence, must be true in this case as well. The situation is saved by considering ¯ and the
components of ® to be matrices of dimensionality greater than one and the state vectors
to have a column vector nature of the same dimensionality. With this assumption, if we
multiply equation 13.11 from the left by (E + c® ¢ p+ ¯mc2), we get:

[E2 ¡ c2(®21p21 + ®22p22 + ®23p23 + (®1®2 + ®2®1)p1p2
+ (®2®3 + ®3®2)p2p3 + (®3®1 + ®1®3)p3p1)¡m2c4¯2

¡mc3((®1¯ + ¯®1)p1 + (®2¯ + ¯®2)p2 + (®3¯ + ¯®3)p3)]jpi = 0; (13.12)
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where ®i, (i = 1; 2; 3) are the three components ®x, ®y and ®z of ®. Now, if equation 13.8
were to be satis¯ed the following relations must be true.

®2i = ¯
2 = 1; for i = 1; 2; 3; (13.13)

®i®j + ®j®i = 0; for i6= j and i; j = 1; 2; 3; (13.14)

®i¯ + ¯®i = 0; for i = 1; 2; 3: (13.15)

As the hamiltonian must be hermitian, the four matrices ®i and ¯ must be hermitian.
Then, from the above equations, it can be shown that these matrices must be traceless and
their only possible eigenvalues are §1 (see problem 1). Hence, their dimensionality must
be even. For the simplest possible theory, one chooses the lowest possible dimensionality.
However, a dimensionality of 2 does not work. This is because two-dimensional hermitian
traceless matrices can have only three independent parameters:

® =

Ã
c a¡ ib

a+ ib ¡c

!
; (13.16)

where a, b and c are real and ® is an arbitrary two-dimensional hermitian traceless matrix.
So, ® can be written as a linear combination of the Pauli spin matrices de¯ned in chapter 12:

® = a¾x + b¾y + c¾z: (13.17)

Then, it can be shown that four such matrices (®i and ¯) cannot be found such that
they satisfy the conditions of equations 13.14 and 13.15 (see problem 2). Hence, we pick
the next simplest choice for the dimensionality { namely 4. For four-dimensional matrices,
there are an in¯nite number of possibilities that will satisfy the conditions of equations 13.14
and 13.15. However, all such possibilities can be seen to produce the same physical results
(namely, the eigenvalues of observables). Hence, we shall choose one convenient form of
these matrices:

®1 =

Ã
0 ¾x
¾x 0

!
; ®2 =

Ã
0 ¾y
¾y 0

!
; ®3 =

Ã
0 ¾z
¾z 0

!
; ¯ =

Ã
1 0
0 ¡1

!
; (13.18)

where each entry in the matrices is a 2£2 matrix { 0 represents the zero matrix, 1 represents
the identity matrix and the others are the standard Pauli spin matrices (equation 12.18).
A more compact form is given by the following vector notation:

® =

Ã
0 ¾
¾ 0

!
; ¯ =

Ã
1 0
0 ¡1

!
(13.19)

Now that the hamiltonian operator has a 4£ 4 matrix aspect to it, the state vector
must be a corresponding 4-component object. Such a state vector is called a Dirac spinor.
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Accordingly, jpi must be a 4-component column vector. As this is still a momentum
eigenstate, its position representation can be written as:

hrjpi =

0BBB@
u1
u2
u3
u4

1CCCA exp(ip ¢ r=¹h): (13.20)

Inserting this in the energy eigenvalue equation (equation 13.11) and using equation 13.18,
one obtains the following matrix equation for the ui.0BBB@

(E ¡mc2) 0 ¡cp3 ¡c(p1 ¡ ip2)
0 (E ¡mc2) ¡c(p1 + ip2) cp3

¡cp3 ¡c(p1 ¡ ip2) (E +mc2) 0
¡c(p1 + ip2) cp3 0 (E +mc2)

1CCCA
0BBB@
u1
u2
u3
u4

1CCCA = 0: (13.21)

These are a set of homogeneous equations in the ui and hence, for a non-zero solution to
exist, the determinant of the matrix must vanish. This condition leads to the following
solutions for the energy eigenvalue:

E+ = +
q
c2p2 +m2c4; E¡ = ¡

q
c2p2 +m2c4: (13.22)

Equation 13.21 also gives two possible eigenstates for each of these eigenvalues. Each
eigenstate can be written as the column vector formed by the four components ui. For E+
the eigenstates are:

u++ =

0BBBB@
1
0
cp3

E++mc2

c(p1+ip2)
E++mc2

1CCCCA ; u+¡ =

0BBBB@
0
1

c(p1¡ip2)
E++mc2¡cp3
E++mc2

1CCCCA : (13.23)

For E¡ the eigenstates are:

u¡+ =

0BBBB@
cp3

E¡¡mc2
c(p1+ip2)
E¡¡mc2
1
0

1CCCCA ; u¡¡ =

0BBBB@
c(p1¡ip2)
E¡¡mc2¡cp3
E¡¡mc2
0
1

1CCCCA : (13.24)

The ¯rst subscript for the eigenstate gives the sign of the energy and the second gives
the sign of the z-component of its spin. The relation between particle spin and the Dirac
spinor will be discussed later. For now, we notice that the negative energy states cannot
be avoided even by a hamiltonian linear in momentum. So, once again, they are to be
explained as antiparticles as discussed in the case of Klein-Gordon particles.

It is to be noted that the relativistic covariance of the Dirac equation is imposed
through the conditions in equations 13.13, 13.14 and 13.15. A more manifestly covariant
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form of presenting all relevant equations is possible. For example, equation 13.11 could be
multiplied from the left by ¡¯=c to obtain

(°¹p
¹ +mc)jpi = 0; (13.25)

where
°¹ = (¡¯; ¯®); (13.26)

and, as before, p¹ = (E=c;p). However, in this text, we shall not use this notation. It is too
compact for an introductory discussion. Once the student becomes reasonably comfortable
with manipulations of the standard Dirac matrices ® and ¯, he/she can use the more
compact and manifestly covariant formulation.

13.3 Spin and the Dirac particle

If a Dirac particle is placed in a spherically symmetric potential V , its angular momentum
must be conserved (see chapter 7). The relevant hamiltonian would be

H = c® ¢P+ ¯mc2 + V: (13.27)

To be conserved, the angular momentum operator must commute with the hamiltonian.
The orbital angular momentum L = R £ P, by itself, does not commute with H. This
is seen by ¯rst noticing that [L; V ] = 0 (see problem 3) and then computing [L; H]. For
example, for the x component

[Lx; H] = [Lx; c® ¢P] = i¹hc(®yPz ¡ ®zPy): (13.28)

So, in general, for all three components:

[L; H] = i¹hc®£P: (13.29)

Hence, quite clearly, L is not the complete angular momentum of the particle, although it
must be part of it. The remaining part of the total angular momentum can be seen to be

S =
¹h

2
¾0; (13.30)

where

¾0 =
Ã
¾ 0
0 ¾

!
: (13.31)

Now, if the total angular momentum is de¯ned as

J = L+ S; (13.32)
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it is straightforward to show that (see problem 4)

[J;H] = 0; (13.33)

and hence, J must be the conserved total angular momentum. S is the spin angular
momentum. The block diagonal form of S shows that the ¯rst two and the last two
components of the Dirac spinor see the e®ect of S in pairs exactly the same way as the
Pauli spinors see the e®ect of the two-dimensional spin operator (see chapter 12). Thus it is
very satisfying to see spin angular momentum naturally built into the Dirac hamiltonian. In
the following, it will be seen that the Dirac hamiltonian also includes the correct spin-orbit
coupling term and the correct magnetic moment of the electron.

13.4 Spin-orbit coupling in the Dirac hamiltonian

As discussed in chapter 12, a nonrelativistic analysis misses a factor of half in spin-orbit
coupling. We shall now see that this extra factor, due to Thomas precession, is built into the
Dirac hamiltonian. To recognize the spin orbit term, as seen in chapter 12, we need to see
a nonrelativistic approximation of the Dirac energy eigenvalue problem with a spherically
symmetric potential. The eigenvalue equation is

EjEi = (c® ¢P+ ¯mc2 + V )jEi; (13.34)

where the hamiltonian from equation 13.27 is used with the standard notation jEi for
the energy eigenstate. Unlike in the free particle case, jEi is not the same as jpi. In a
nonrelativistic limit, the ¯rst two and the last two components of the Dirac spinor jEi will
be seen to decouple. So, for convenience, we shall write

jEi =
Ã
v1
v2

!
; (13.35)

where v1 and v2 are two-component Pauli spinors. First, let us assume jEi to be a particle
state (not antiparticle). Then E must be positive. In a nonrelativistic limit, the rest mass
energy would constitute most of the energy. The quantity that was considered as energy
in our earlier nonrelativistic work did not include the rest mass energy. That quantity will
now be called E0:

E 0 = E ¡mc2: (13.36)

So, E0 ¿ mc2. Now, equation 13.34 can be written as a pair of Pauli spinor equations
using equations 13.35 and 13.36:

(E 0 ¡ V )v1 ¡ c¾ ¢Pv2 = 0; (13.37)

(E 0 + 2mc2 ¡ V )v2 ¡ c¾ ¢Pv1 = 0: (13.38)
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The second of this pair of equations shows that, in the nonrelativistic limit, v2 is smaller
than v1 by a factor of the order of v=c where v is the speed of the particle

5. For antiparticles,
it is the reverse (see problem 7). So, for particles, v2 is eliminated from equation 13.37 by
using equation 13.38. The result is

E0v1 =
1

2m
(¾ ¢P)

µ
1 +

E0 ¡ V
2mc2

¶¡1
(¾ ¢P)v1 + V v1: (13.39)

The actual approximation is given by the following:µ
1 +

E0 ¡ V
2mc2

¶¡1
' 1¡ E

0 ¡ V
2mc2

: (13.40)

The approximation condition is (E0¡V )¿ 2mc2. To reduce equation 13.39 to a form simi-
lar to the standard nonrelativistic equation, the following identities are used (see problems 5
and 6).

PV = VP¡ i¹hrV; (13.41)

(¾ ¢rV )(¾ ¢P) = (rV ) ¢P+ i¾ ¢ [(rV )£P]: (13.42)

Now, using equations 13.40, 13.41 and 13.42 in equation 13.39, we obtain:

E 0v1 =
"µ
1¡ E

0 ¡ V
2mc2

¶
P 2

2m
+ V

#
v1¡ i¹h

4m2c2
(rV ) ¢Pv1+ ¹h

4m2c2
¾ ¢ [(rV )£P]v1: (13.43)

As P 2=(4m2c2) is already small of the order of v2=c2, the (E 0¡ V ) can be further approxi-
mated to be P 2=(2m). Also, for a spherically symmetric potential

rV = 1

R

dV

dR
R; (13.44)

where R =
p
R ¢R. So now, equation 13.43 can be written as

E0v1 =
Ã
P 2

2m
¡ P 4

8m3c2
+ V ¡ i¹h

4m2c2
(rV ) ¢P+ 1

2m2c2
1

R

dV

dR
S ¢ L

!
v1; (13.45)

where S = ¹h¾=2 is the Pauli spinor form of the spin operator and L = R£P is the orbital
angular momentum operator. The last term in equation 13.45 is seen to be the correct
spin-orbit coupling term as discussed in chapter 12. The ¯rst and third terms are the
standard nonrelativistic hamiltonian terms and the remaining two terms have no simple
nonrelativistic interpretation.

5Consider the P operator to produce a factor of the order of mv where v is the velocity.
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13.5 The Dirac hydrogen atom

The nonrelativistic approximation of the last section is useful to have for general spherically
symmetric potentials. Such potentials are good approximations for alkali atoms where the
single outer shell electron can be treated as a single particle in the spherically symmetric
background potential of the nucleus and the other ¯lled shells of electrons. However, for
the speci¯c case of the hydrogen atom, the potential is simple and the energy eigenvalue
problem can be solved exactly[8].

In doing this, we shall ¯rst separate the angular and the radial parts of the Dirac
hamiltonian as given in equation 13.27. The radial component of momentum in classical
physics is written as p ¢ r̂, where r̂ is the unit vector in the radial direction. For the quantum
analog, it might be tempting to just replace p and r by their corresponding operators.
However, such a representation of the radial momentum can be seen to be nonhermitian
due to the noncommuting nature of position and momentum (see problem 8). In general,
to obtain a quantum analog of a product of classical observables, one picks the hermitian
part. For example, for two hermitian operators A and B, the hermitian part of AB is
(AB + BA)=2 and the antihermitian part is (AB ¡ BA)=2 (see problem 9). So the radial
momentum would be

Pr =
1

2

µ
P ¢ R

R
+
R

R
¢P
¶
; (13.46)

where R =
p
R ¢R. This can be simpli¯ed as (see problem 10)

Pr =
1

R
(R ¢P¡ i¹h): (13.47)

The radial component of ® has a simpler form as it commutes with R:

®r = ® ¢R=R: (13.48)

For a spherically symmetric potential the angular part of the Dirac hamiltonian must be
contained in the c® ¢P term. To isolate this angular part, we subtract out the radial part
c®rPr. So, the angular part of the hamiltonian is

Ha = c(® ¢P¡ ®rPr): (13.49)

To ¯nd the relationship of Ha and Pr, we notice that ®
2
r = 1 and hence,

®rHa = c(R
¡1® ¢R® ¢P¡ Pr): (13.50)

The ¯rst term on the right hand side can be simpli¯ed by using the following identity (see
problem 11):

® ¢A® ¢B = A ¢B+ i¾0 ¢ (A£B); (13.51)

where A and B are two arbitrary vectors with no matrix nature relating to ®. Hence,
equation 13.50 reduces to

®rHa = cR
¡1i(¾0 ¢ L+ ¹h): (13.52)
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where L = R£P. Multiplying both sides by ®r gives

Ha = cR
¡1i®r(¾0 ¢ L+ ¹h): (13.53)

The angular part of this is in the expression within the parenthesis. Let us call it ¹hK 0:

¹hK 0 = ¾0 ¢ L+ ¹h: (13.54)

If K0 were to commute with H, we could ¯nd their simultaneous eigenstates and replace
K 0 by its eigenvalue in equation 13.53. This will be seen to make the energy eigenvalue
problem a di®erential equation in the radial coordinate alone. However, to form such a
conserved quantity K 0 must be multiplied by ¯. Hence, we de¯ne the conserved quantity
K (see problem 12):

K = ¯K0 = ¯(¾0 ¢ L=¹h+ 1): (13.55)

As ¯2 = 1, we can now write
Ha = cR

¡1i¹h®r¯K: (13.56)

Now, using equations 13.27 13.49, and 13.56, we obtain

H = c®rPr + cR
¡1i¹h®r¯K + ¯mc2 + V: (13.57)

Then, the energy eigenvalue problem can be written as

EjEi = (c®rPr + cR¡1i¹h®r¯k + ¯mc2 + V )jEi; (13.58)

where k is the eigenvalue of K, and jEi represents simultaneous eigenstates of H and K.
To reduce the equation to a di®erential equation we use the position representation and
the spherical polar coordinates. The position representation of Pr in polar coordinates can
be found to be (see problem 13):

Pr = ¡i¹h
µ
@

@r
+
1

r

¶
: (13.59)

The only remaining matrix behavior is from ®r and ¯. These two matrices commute with
everything other than each other. The necessary relationships of ®r and ¯ are:

®r¯ + ¯®r = 0; ®2r = ¯
2 = 1: (13.60)

As seen in section 13.2, these are the only relations that are necessary to maintain the
physical correctness of the Dirac equation. The actual form of the matrices can be picked
for computational convenience. In the present case such a form would be:

¯ =

Ã
1 0
0 ¡1

!
; ®r =

Ã
0 ¡i
i 0

!
; (13.61)
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where each element is implicitly multiplied by a 2£ 2 identity matrix. With a similar un-
derstanding, the position representation of the Dirac spinor can be written as the following
object:

hrjEi =
Ã
F=r
G=r

!
; (13.62)

where F and G are functions of the radial coordinate r alone. The 1=r term is separated
out to make the di®erential equations a little more compact. Using equations 13.59, 13.61
and 13.62, the energy eigenvalue problem of equation 13.58 can be written in the position
representation to be:

(E ¡mc2 ¡ V )F + ¹hcdG
dr
+
¹hck

r
G = 0; (13.63)

(E +mc2 ¡ V )G¡ ¹hcdF
dr
+
¹hck

r
F = 0: (13.64)

These are a pair of coupled ¯rst order ordinary di®erential equations. To ¯nd solutions, it
is, once again, convenient to de¯ne a dimensionless independent variable:

½ = ± r: (13.65)

Inserting this in equations 13.63 and 13.64, and requiring ½ to be dimensionless in the
simplest possible way, gives

± = +
p
±1±2; ±1 =

mc2 + E

¹hc
; ±2 =

mc2 ¡ E
¹hc

: (13.66)

Now, the equations 13.63 and 13.64 can be written asµ
d

d½
+
k

½

¶
G¡

µ
±2
±
+
V

¹hc±

¶
F = 0; (13.67)µ

d

d½
¡ k
½

¶
F ¡

µ
±1
±
¡ V

¹hc±

¶
G = 0: (13.68)

For the speci¯c case of the hydrogen atom the spherically symmetric potential is V =
¡kee2=r, where ¡e is the electron charge and ke = 1=(4¼²0) in the usual SI units. Now, a
convenient dimensionless parameter can be de¯ned as:

® =
kee

2

¹hc
: (13.69)

This is the so-called ¯ne structure constant that appears in the ¯ne structure splitting terms
of atomic spectra. It is roughly equal to 1=137. The smallness of this number is critical to
many power series approximation methods used in quantum physics (in particular quantum
electrodynamics). For the nonrelativistic hydrogen atom (and the harmonic oscillator) a
standard method was used to separate the large distance behavior of the eigenfunctions.
The same method can be used here as well to separate the two functions F and G as:

F (½) = f(½) exp(¡½); G(½) = g(½) exp(¡½): (13.70)
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Using equations 13.69 and 13.70 in the two eqautions 13.67 and 13.68, we obtain:

dg

d½
¡ g + kg

½
¡
µ
±2
±
¡ ®
½

¶
f = 0; (13.71)

df

d½
¡ f ¡ kf

½
¡
µ
±1
±
+
®

½

¶
g = 0: (13.72)

A standard power series solution may be assumed for f and g:

f = ½s
1X
i=0

ai½
i; g = ½s

1X
i=0

bi½
i; (13.73)

where b06= 0 and a06= 0. Inserting this into the two di®erential equations for f and g and
collecting terms of the same powers of ½ gives the recursion relations:

(s+ i+ k)bi ¡ bi¡1 + ®ai ¡ ±2
±
ai¡1 = 0; (13.74)

(s+ i¡ k)ai ¡ ai¡1 ¡ ®bi ¡ ±1
±
bi¡1 = 0; (13.75)

for i > 0. The lowest power terms give the following equations.

(s+ k)b0 + ®a0 = 0; (13.76)

(s¡ k)a0 ¡ ®b0 = 0: (13.77)

A non-zero solution for a0 and b0 can exist only if

s = §
p
k2 ¡ ®2: (13.78)

It will soon be seen that k2 ¸ 1. Hence, to keep f and g from going to in¯nity at the origin,
we must choose the positive value for s. With this choice, a relationship of a0 and b0 can
be found. For the other coe±cients, one can ¯nd from equations 13.74 and 13.75 that

bi[±(s+ i+ k) + ±2®] = ai[±2(s+ i¡ k)¡ ±®]: (13.79)

Using this back in the the same two equations, gives a decoupled pair of recursion relations.
What we need to see from such equations is the behavior of ai and bi for large i:

ai ' 2

i
ai¡1; bi ' 2

i
bi¡1: (13.80)

This shows that both series behave as exp(2½) for large ½. Hence, to keep the eigenfunctions
from going to in¯nity at large distances, the series must terminate. Fortuitously, this is
seen to happen to both series with just one condition. If both series were to terminate at
i = n0 such that an0+1 = bn0+1 = 0, then it is seen that all subsequent terms in the series
also vanish. For di®erent values of n0 we obtain di®erent eigenvalues and eigenfunctions.
By using either of the equations 13.74 and 13.75 for n0 = i¡ 1 we get

±2an0 = ¡±bn0 ; n0 = 0; 1; 2; : : : : (13.81)
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Using equation 13.79 for i = n0 along with this gives

2±(s+ n0) = ®(±1 ¡ ±2): (13.82)

Writing ±, ±1 and ±2 in terms of the energy E (equation 13.66), and solving for E shows
that it is positive and given by

E = mc2
"
1 +

®2

(s+ n0)2

#¡1=2
: (13.83)

That E is positive shows that positrons (electron antiparticles) cannot form bound states
with a proton potential6.

In equation 13.83, s depends on k. So, we need to ¯nd the possible values of k.
From equation 13.55, it is seen that K2 is related to the magnitude of the total angular
momentum as follows.

K2 = ¹h¡2[(¾0 ¢ L)2 + 2¹h¾0 ¢ L+ ¹h2]
= ¹h¡2[(L2 + 2S ¢ L+ ¹h2]
= ¹h¡2[(L+ S)2 + ¹h2=4]
= ¹h¡2[J2 + ¹h2=4]; (13.84)

where the result of problem 6 is used with the knowledge that L £ L = i¹hL. As the
eigenvalues of J2 are j(j + 1) (j = 1=2; 1; 3=2; 2; : : :), the eigenvalues K2 are seen to be

k = §1;§2;§3; : : : : (13.85)

Although we have found only the values of k2, both positive and negative roots for k are
considered eigenvalues. This is because the form of the operator K shows that both signs
are equally likely for its eigenvalues.

Equation 13.83 agrees very well with experiment including the ¯ne structure splitting
of energy levels. To see its connection with nonrelativistic results one may expand it in
powers of ®2 (remember the ®2 dependence of s). Keeping terms of upto order ®4, this
gives

E = mc2
"
1¡ ®2

2n2
¡ ®4

2n4

µ
n

jkj ¡
3

4

¶#
; (13.86)

where n = n0 + jkj. The second term gives the usual nonrelativistic energy levels and the
third term gives the ¯ne structure splitting.

6Note that E includes the rest mass energy and hence cannot be negative for electrons, although E < mc2.
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13.6 The Dirac particle in a magnetic ¯eld

The e®ect of a magnetic ¯eld is introduced in the Dirac hamiltonian in a manner similar
to classical mechanics. The momentum P is replaced by P ¡ qA where q is the particle
charge and A is the magnetic vector potential. So, the hamiltonian becomes

H = c® ¢ (P¡ qA) + ¯mc2: (13.87)

To isolate and recognize the spin magnetic moment term, we need to ¯nd the nonrelativistic
limit. This is done by squaring the hamiltonian to get

H2 = c2[® ¢ (P¡ qA)]2 +m2c4; (13.88)

where the identities in equations 13.13 and 13.15 have been used. Equation 13.51 gives

[® ¢ (P¡ qA)]2 = (P¡ qA)2 + i¾0 ¢ [(P¡ qA)£ (P¡ qA)]: (13.89)

Using the result of problem 5 it is seen that

(P¡ qA)£ (P¡ qA) = ¡q(A£P+P£A) = i¹hqr£A = i¹hqB; (13.90)

where B is the magnetic ¯eld. Using equations 13.89 and 13.90 in equation 13.88 gives

H2 = c2(P¡ qA)2 ¡ ¹hqc2¾0 ¢B+m2c4: (13.91)

Hence, the energy eigenvalue equation is

E2jEi = [c2(P¡ qA)2 ¡ ¹hqc2¾0 ¢B+m2c4]jEi: (13.92)

For positive particle energies, we can once again write E = E0+mc2, where E 0 is the energy
as de¯ned in the nonrelativistic limit. As E 0 ¿ mc2 in the nonrelativistic limit, one may
approximate equation 13.92 to be

m2c4
µ
1 +

2E0

mc2

¶
jEi = [c2(P¡ qA)2 ¡ ¹hqc2¾0 ¢B+m2c4]jEi: (13.93)

This leads to

E0jEi =
∙
1

2m
(P¡ qA)2 ¡ ¹hq

m
S ¢B

¸
jEi: (13.94)

where S is the spin operator. The interaction term of spin and magnetic ¯eld gives the
experimentally correct expression for the magnetic dipole moment of an electron (see chap-
ter 12).
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Problems

1. Show that, in order to satisfy equations 13.13, 13.14 and 13.15, the matrices ®i
and ¯ must be traceless and their only possible eigenvalues must be §1. [Hint:
Show, for example, ¯ = ®1®1¯ = ¡®1¯®1 and use the cyclic property of the trace:
Tr(®¯°) = Tr(°®¯).]

2. Show that the matrices ®i and ¯ cannot satisfy the equations 13.14 and 13.15 if they
are two-dimensional. [Hint: Use the general form given by equation 13.17.]

3. A spherically symmetric scalar potential V is a function of R ¢R alone. Show that
all components of the angular momentum L commute with V , that is

[L; V ] = 0:

[Hint: Assume V to be a power series in R ¢R. A Taylor series expansion about a
suitable origin is used to avoid negative powers.]

4. Prove that the total angular momentum J of the Dirac particle is conserved for a
spherically symmetric potential.

5. If V is a function of position alone, show that

[P; V ] = ¡i¹hrV:
[Hint: Assume V to be a power series in each of the three position coordinates. A
Taylor series expansion about a suitable origin is used to avoid negative powers.]

6. If A and B are two vectors with no matrix nature related to spin matrices, then show
that

(¾ ¢A)(¾ ¢B) = A ¢B+ i¾ ¢ (A£B):
[Hint: Use the results of problem 4 of chapter 12.]

7. Find the nonrelativistic limit of equation 13.34 for antiparticle states.

8. Show that the following operator analog of the radial momentum is nonhermitian.

P ¢ Rp
R ¢R

9. Show that (AB +BA)=2 is hermitian and (AB ¡BA)=2 is antihermitian if A and B
are hermitian operators. [De¯nition: An operator C is antihermitian if C = ¡Cy.]

10. Using equation 13.46, show that

Pr =
1

R
(R ¢P¡ i¹h):

[Hint: Operate on an arbitrary state in the position representation.]
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11. Prove the identity in equation 13.51.

12. Prove the following relations:

(a) [®r;K] = 0;

(b) [¯;K] = 0;

(c) [Pr;K] = 0;

(d) [®r; Pr] = 0:

13. Prove that in spherical polar coordinates the position representation of Pr is

Pr = ¡i¹h
µ
@

@r
+
1

r

¶
:



Appendix A

`C' Programs for Assorted
Problems

The following `C' programs are not particularly \user-friendly" or \robust". They are
presented in this form so that students can easily identify the essential components of the
numerical methods involved. The code is meant to be used in conjunction with the material
in the text. De¯nitions of parameters must be understood before using the programs.
Comments are provided to help do this.

A.1 Program for the solution of energy eigenvalues for the
rectangular potential well

#include <stdio.h>

#include <math.h>

void main()

{

float mid, lhs, rhs, inter, acc, gam, xi;

int n;

printf("\n Enter potential parameter gammma\n\n");

scanf("%f",&gam);

printf("\n enter accuracy \n\n");

scanf("%f",&acc);

180
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n=0;

xi =0;

inter=PI/2;

while (xi <= gam)

{

while (inter > acc)

{

inter /= 2;

mid = xi + inter;

if (mid < gam)

{

lhs = mid*tan(mid);

rhs = sqrt(gam*gam - mid*mid);

if (lhs < rhs) xi = mid;

}

}

printf("\n The %d th root for xi is %f\n", n, xi);

n++;

xi = n*PI;

inter = PI/2;

}

}

A.2 General Program for one dimensional scattering o® ar-

bitrary barrier

#include <stdio.h>

#include <math.h>

double ul,u,uu,vl,v,vu;

void main()

{

double e,vt,del,ki,kt;

double din,ud,vd,ref,tran;

extern void scatter();

/* scatter() defines the specific potential to be used. See next

listing for the case of rectangular barrier. */



APPENDIX A. `C' PROGRAMS FOR ASSORTED PROBLEMS 182

printf("enter data\n\n e,vt,del\n\n");

/* Choose units such that sqrt(2m)/hbar = 1. */

/* `e' is energy of incoming particle in above units. */

/* `vt' is potential energy in scattered region in above units. */

/* `del' is interval in computation of dimensionless variable y of text. */

scanf("%lf %lf %lf",&e,&vt,&del);

ki = sqrt(e);

kt = sqrt(e-vt);

ul = 1; u = 1;

vl = 0; v = -del*kt/ki;

scatter(e,del);

/* scatter() defines the specific potential to be used. See next

listing for the case of rectangular barrier.*/

ud = (ul-u)/del; vd = (vl-v)/del;

din = (u+vd)*(u+vd) + (ud-v)*(ud-v);

printf("\n %lf %lf %lf %lf %lf %lf %lf %lf\n",ul,u,uu,ud,vl,v,vu,vd);

ref = ((u-vd)*(u-vd) + (ud+v)*(ud+v))/din;

tran = 4*kt/(ki*din);

printf ("\n\n reflection coeff. = %lf \n\n

transmission coeff. = %lf \n",ref,tran);

}

A.3 Function for rectangular barrier potential

#include <stdio.h>

#include <math.h>

extern double ul,u,uu,vl,v,vu;
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void scatter(e,del)

double e,del;

{

double r,pot,rf;

printf("\n enter barrier height and width (dimensionless) \n");

/* Units are discussed in calling program */

scanf("%lf %lf",&pot,&rf);

for (r = -del; r > -rf; r -= del)

{

uu = ((pot/e - 1)*del*del + 2)*u - ul;

vu = ((pot/e - 1)*del*del + 2)*v - vl;

ul = u; u = uu;

vl = v; v = vu;

}

}

A.4 General energy eigenvalue search program

#include <stdio.h>

#include <math.h>

void main()

{

double de,dem,be,del,e,e1,f2n1,f2n;

int ne,k,j;

extern double diff();

/* diff() defines the specific potential to be used. See next two

listings for examples. */

double zeroin();

FILE *fopen(), *fp;

printf("enter data\n\n de,dem,be,ne,k,del\n");
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/* Data parameters are defined for equations written with a dimensionless

position variable `r' (different symbols used for different problems

in text). `de' is the energy interval for rough linear search.

`dem' is the tolerable error for energy eigenvalues. `be' is the lower

starting point for energy search. `ne' is the number of

eigenvalues to be computed. `k' is used with different meanings

for different potentials. */

scanf("%lf %lf %lf %d %lf %d %lf %lf",

&de,&dem,&be,&ne,&k,&del);

if((fp=fopen("outdat","r+")) == NULL)

if((fp=fopen("outdat","w")) == NULL)

printf("\n error opening outdat\n");

if(fseek(fp,0,2))

clrerr(fp);

fprintf(fp,"\n parameters de,dem,be,ne,k,del are \n");

fprintf(fp," %f %f %f %d %f %d %f %f",de,dem,be,ne,k,del);

e=be; f2n1=0;

for(j=0;j<ne;j++)

{

f2n=diff(e,k,del);

/* diff() defines the specific potential to be used. See next two

listings for examples. */

if(f2n1*f2n<0)

{

e1=zeroin(e,de,dem,f2n,k,del);

printf("\n %f %f %f \n",e1,f2n1,f2n);

fprintf(fp,"\n %f %f %f \n",e1,f2n1,f2n);

}

f2n1=f2n; e=e+de;

}

fclose(fp);

}

double

zeroin(e,de,dem,f2n,k,del)

double e,de,dem,f2n,del;
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int k;

{

double de1,del1,em,ff;

extern double diff();

de1=de;

del1=del;

while(de1>dem)

{

de1=de1/2; em=e-de1;

del1=del1/2;

ff=diff(em,k,del1);

if(ff*f2n>=0.0)

{

e=em;

em=em-de1;

ff=diff(em,k,del1);

if(ff*f2n>=0.0) e=em;

}

else

{

ff=diff(em,k,del1);

if(ff*f2n<0.0) e=e+de1;

}

}

return(e);

}

A.5 Function for the harmonic oscillator potential

#include <stdio.h>

#include <math.h>

double

diff(e,k,del)

/* `k' is zero for even wavefunctions and non-zero for odd wavefunctions.

The odd wavefunction is handled somewhat differently from the text

for better accuracy. It is taken as an even function multiplied by `r'

and the even function is then computed numerically. Energy search
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can be started at zero (the value for `be'). */

double e,del;

int k;

{

double vl,vu,v,r;

vl = 1;

v = 1;

r = del;

if (k == 0)

while(abs(v)<10)

{

vu = v*((r*r-e)*del*del + 2) - vl;

r=r+del;

vl = v; v = vu;

}

else

while(abs(v)<10)

{

vu = v*((r*r-e)*del*del + 2) + vl*(del/r-1);

vu = vu/(1+del/r);

r = r+del;

vl = v; v = vu;

}

return(v);

}

A.6 Function for the hydrogen atom potential

#include <stdio.h>

#include <math.h>

#define TRUE 1

#define FALSE 0

double

diff(e,k,del)
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/* `k' is the total angular momentum quantum number `l'. Here `e' is not

quite energy. But it is related to energy. It is the parameter defined

in the text as the greek letter `beta'. One may use `be' as zero for

this case too. Although, energy eigenvalues are negative and the

ground state cannot be easily estimated, `beta' can still be found

to have a lower bound of zero. */

double e, del;

int k;

{

int tail=FALSE;

register double vl,v,r,vu,ab;

double dif;

register double small,large;

double verysmall;

small = del/10;

verysmall = small/10;

vl = 1;

v = 1 - e*del/(2*k+2);

r = del;

large = 5*vl;

ab = abs(v);

while(ab<large && !tail)

{

do

{

vu = ((2+(0.25-e/r)*del*del)*v + ((k+1)*del/r-1)*vl)/(1+(k+1)*del/r);

r += del;

vl = v; v = vu;

ab = abs(v);

}

while (ab>small && ab<large);

dif = abs(v-vl);

if (dif<verysmall) { large = del; tail = TRUE; }

}

if (tail)

while(abs(v)<large)

{

vu = ((2+(0.25-e/r)*del*del)*v + ((k+1)*del/r-1)*vl)/(1+(k+1)*del/r);

r += del;
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vl = v; v = vu;

}

return(v);

}



Appendix B

Uncertainties and wavepackets

In chapter 4, it was seen that both position and momentum cannot be measured precisely
at the same time. It can also be seen that this would be true for any two noncommuting
observables. A more precise statement of this fact will be made now in the form of the
well-known Heisenberg uncertainty principle. First, we need to de¯ne the uncertainty in
the measurement of an observable. The root-mean-squared error is a good measure of
uncertainty. For the position operator X, this would be

¢x =
q
h(X ¡ hXis)2is; (B.1)

where the expectation values are for some given state jsi as de¯ned in equation 4.18. For
simplicity, a Kronecker delta normalization is assumed for this state: hsjsi = 1. Similarly,
for the momentum operator P , the measure of uncertainty would be

¢p =
q
h(P ¡ hP is)2is: (B.2)

Now it can be shown that the product of these uncertainties has a minimum possible value.
In doing so, we consider the square of the uncertainty product:

(¢x)2(¢p)2 = hsjA2jsihsjB2jsi; (B.3)

where
A = X ¡ hXis; B = P ¡ hP is: (B.4)

As A is hermitian
(Ajsi)y = hsjAy = hsjA: (B.5)

A similar relation is true for B as well. Hence, one may de¯ne

jui = Ajsi; jvi = Bjsi; (B.6)
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such that equation B.3 can be written as

(¢x)2(¢p)2 = hujuihvjvi ¸ jhujvij2: (B.7)

The above inequality can be proved as follows.

0 ∙
¯̄̄̄
jui ¡ hvjuihvjvi jvi

¯̄̄̄2
= hujui ¡ jhujvij

2

hvjvi : (B.8)

Hence the result. Now, using the de¯nition of the commutator bracket, equations B.6
and B.7 give

(¢x)2(¢p)2 ¸
¯̄̄̄
hsj
∙
1

2
[A;B] +

1

2
(AB +BA)

¸
jsi
¯̄̄̄2

=
1

4
jhsj[A;B]jsij2 + 1

4
jhsj(AB +BA)jsij2: (B.9)

As the commutator [X;P ] = i¹h, it is seen that

[A;B] = i¹h: (B.10)

Hence, from equation B.9, we get

(¢x)2(¢p)2 ¸ ¹h2=4; (B.11)

where the term involving (AB +BA) is dropped as it is seen to be non-negative and does
not change the inequality. This gives the celebrated Heisenberg uncertainty relation to be

(¢x)(¢p) ¸ ¹h=2: (B.12)

This result has been derived for a position operator and the corresponding momen-
tum operator. But it must be true for any two operators with the same commutator. It
is clearly true for position and momentum in each of the three spatial dimensions. In the
above derivation, the only place where the commutator relation is actually used is equa-
tion B.9. Hence, an uncertainty relation can be found for any pair of arbitrary operators
by inserting the appropriate commutator in equation B.9. If the commutator is zero, the
minimum uncertainty is zero and hence, the corresponding observables can be measured
simultaneously with inde¯nite accuracy.

To get a feel for the minimum uncertainty product, we shall ¯nd a one-dimensional
single particle state which has the minimum possible uncertainty product of position and
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momentum as allowed by equation B.12. To obtain the minimum, we must ¯nd the condi-
tions for the equality options in the inequalities of equations B.7 and B.11. These conditions
are quickly seen to be:

Ajsi = ¸Bjsi; (B.13)

hsj(AB +BA)jsi = 0; (B.14)

where ¸ is a constant yet to be determined. To ¯nd jsi in its position representation, we
write equation B.13 in its position representation (see chapter 3). It reduces to the following
¯rst order di®erential equation (using the de¯nitions in equation B.4).

dÃ

dx
=

∙
i(x¡ x0)
¸¹h

+
ip0
¹h

¸
Ã; (B.15)

where Ã is the position representation of jsi, x0 = hXis and p0 = hP is. This di®erential
equation has the solution:

Ã = N exp

"
i(x¡ x0)2
2¸¹h

+
ip0x

¹h

#
; (B.16)

where N , the integration constant, is the normalization constant. Hence, it can be deter-
mined by the following normalization condition.

1 = hsjsi =
Z
jÃj2dx: (B.17)

To determine ¸, we eliminate A in equation B.14 by using equation B.13 and its conjugate:

hsjA = ¸¤hsjB: (B.18)

This gives
(¸+ ¸¤)hsjB2jsi = 0: (B.19)

As hsjB2jsi = hvjvi is the norm of a nonzero ket, it must be nonzero. Hence, to satisfy
equation B.19, ¸ must be purely imaginary. ¸ must also be negative imaginary to prevent
Ã from going to in¯nity at in¯nity (see equation B.16). We can also relate ¸ and N to the
position uncertainty ¢x by using the following condition on Ã which really is the de¯nition
given in equation B.1 written in the position representation.Z

(x¡ x0)2jÃj2dx = (¢x)2: (B.20)

Now, the conditions in equation B.17 and B.20 will give

Ã = [2¼(¢x)2]¡1=4 exp
"
¡(x¡ x0)

2

4(¢x)2
+
ip0x

¹h

#
: (B.21)
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It can be seen that the ground state of the harmonic oscillator is exactly this state. As
it is an eigenstate of the hamiltonian, it does not change with time. The same minimum
uncertainty state is also possible for the free particle. However, for the free particle, it is
not an eigenstate of the hamiltonian and hence, it does change with time. The change,
with time, of the free particle minimum uncertainty state can be seen to be similar to that
of the position eigenstates as discussed in chapter 4. The wavefunction spreads with time
and does not remain a minimum uncertainty state.

The minimum uncertainty state is sometimes called the minimum uncertainty wave-
packet. The term \wavepacket" is loosely used for any wavefunction that is localized in a
small region of space. The minimum uncertainty wavepacket can be visualized as a gaussian
(bell shaped) wavefunction that has a forward motion in time with momentum p0.
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