Solutions

Chapter 5

Problem 1

Series limit for the Lyman series is

$$
\nu_{\infty}=c R_{H}\left(\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right)=c R_{H}=3.3 \times 10^{15} \mathrm{~Hz}
$$

Series limit for the Balmer series is

$$
\nu_{\infty}=c R_{H}\left(\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right)=c R_{H} / 4=8.2 \times 10^{14} \mathrm{~Hz}
$$

Problem 2

Lowest frequency for the Lyman seris is

$$
\nu_{l}=c R_{H}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)=c R_{H}(3 / 4)=2.4 \times 10^{15} \mathrm{~Hz}
$$

Lowest frequency for the Balmer series is

$$
\nu_{l}=c R_{H}\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=c R_{H}(5 / 36)=4.6 \times 10^{14} \mathrm{~Hz}
$$

Problem 3

The difference between the hydrogen atom and the singly ionized helium atom is in nucleus - there are two protons instead of just one. Hence, the product of charges in the potential energy function is $2 e^{2}$ instead of e^{2}. So, in the final formula for the hydrogen Rydberg constant R_{H}, e^{2} must be replaced by $2 e^{2}$ to obtain the helium Rydberg constant $R_{H e}$.

$$
R_{H e}=\frac{m\left(2 e^{2}\right)^{2}}{4 \pi c\left(4 \pi \epsilon_{0}\right)^{2} \hbar^{3}}=4 R_{H}=4.387 \times 10^{7} \mathrm{~m}^{-1}
$$

Problem 4

The equivalent of the Balmer series for the singly ionized helium atom has the following frequencies.

$$
\nu=c R_{H e}\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right), \quad n=1,2,3, \ldots
$$

So its series limit is

$$
\nu_{\infty}=c R_{H e}\left(\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right)=c R_{H e} / 4=c R_{H}=3.3 \times 10^{15} \mathrm{~Hz}
$$

The lowest frequency is

$$
\nu_{l}=c R_{H e}\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=c R_{H e}(5 / 36)=c R_{H}(5 / 9)=1.8 \times 10^{15} \mathrm{~Hz}
$$

Problem 5

The difference between such an atom and the hydrogen atom is the number of protons in the nucleus $Z e$ instead of e. So the product of charges in the potential energy formula is $Z e^{2}$. Hence, in the formula for hydrogen Rydberg constant $\left(R_{H}\right), e^{2}$ must be substituted by $Z e^{2}$ to obtain the constant for atoms with atomic number Z. This gives

$$
R_{Z}=\frac{m\left(Z e^{2}\right)^{2}}{4 \pi c\left(4 \pi \epsilon_{0}\right)^{2} \hbar^{3}}=Z^{2} R_{H}=Z^{2}\left(1.09678 \times 10^{7}\right) \mathrm{m}^{-1}
$$

Problem 6

l	m_{l}
4	$-4,-3,-2,-1,0,1,2,3,4$.
3	$-3,-2,-1,0,1,2,3$.
2	$-2,-1,0,1,2$.
1	$-1,0,1$.
0	0.

Problem 7

The degree of degeneracy for each value of l is $2 l+1$. Hence, the degree of degeneracy for a specific value of n is (using the formula for the sum of an arithmetic series)

$$
d=\sum_{l=0}^{n-1}(2 l+1)=2 \sum_{l=0}^{n-1} l+\sum_{l=0}^{n-1} 1=2 \frac{(n-1) n}{2}+n=n^{2}
$$

Problem 8

$$
\left(n=1, l=0, m_{l}=0, m_{s}=+1 / 2\right), \quad\left(n=1, l=0, m_{l}=0, m_{s}=-1 / 2\right)
$$

$$
\begin{array}{cl}
\left(n=2, l=0, m_{l}=0, m_{s}=+1 / 2\right), & \left(n=2, l=0, m_{l}=0, m_{s}=-1 / 2\right), \\
\left(n=2, l=1, m_{l}=+1, m_{s}=+1 / 2\right), & \left(n=2, l=1, m_{l}=+1, m_{s}=-1 / 2\right), \\
\left(n=2, l=1, m_{l}=0, m_{s}=+1 / 2\right), & \left(n=2, l=1, m_{l}=0, m_{s}=-1 / 2\right), \\
\left(n=2, l=1, m_{l}=-1, m_{s}=+1 / 2\right), & \left(n=2, l=1, m_{l}=-1, m_{s}=-1 / 2\right), \\
\left(n=3, l=0, m_{l}=0, m_{s}= \pm 1 / 2\right) . &
\end{array}
$$

