
Solutions
Chapter 4

Problem 2

ĤΨ+(x, t) = ĤΨE(x, t) + ĤΨE′(x, t) = EΨE(x, t) + E′ΨE′(x, t).

If E 6= E′ then the above result is not proportional to Ψ+(x, t). Hence, Ψ+(x, t) is not an eigenfunction of
energy. However,

EΨE(x, t) + E′ΨE′(x, t) = ÊΨE(x, t) + ÊΨE′(x, t) = Ê(ΨE(x, t) + ΨE′(x, t)) = ÊΨ+(x, t).

Hence,
ĤΨ+(x, t) = ÊΨ+(x, t)

which is the time dependent Schrödinger equation. Hence Ψ+(x, t) satisfies the time dependent Schrödinger
equation.

Problem 3

For ψE = 0, we need
sin(nπx/L) = 0.

Hence,
x = mL/n, m = 0, 1, 2, . . .

As long as 0 ≤ m ≤ n, x is within the box. Hence, m can take n+ 1 possible values (including boundary
points).

Problem 4

∫ L

0
ψE(x)ψE′(x)dx = (2/L)

∫ L

0
sin(nπx/L) sin(n′πx/L)dx

= L−1
∫ L

0
[cos((n− n′)πx/L)− cos((n+ n′)πx/L)]dx.

The integrals of both terms vanish if n 6= n′ (E 6= E′). However, if n = n′ (E = E′) only the second term
has a zero integral. The first term is cos(0) = 1. Hence, the result for E = E′.
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Problem 5

At the boundary point x = L,

ψE(x) =
√

2/L sin(π/2) =
√

2/L 6= 0.

This does not satisfy the boundary condition.

Problem 6

∆E =
π2h̄2(n′2 − n2)

2mL2

For n = 1 and n′ = 2,

∆E =
3π2h̄2

2mL2
=

3h2

8mL2
= 1.8× 10−37 J

Problem 7

∫ ∞
−∞

ψ0(x)ψ1(x)dx =
√

2/π
mω0

h̄

∫ ∞
−∞

xemω0x2/h̄dx

The above integrand is an odd function of x and the integration limits are symmetric. Such an integral is
always zero.

Problem 9

As V0 →∞, κ→∞. Hence,

T =

[
1 +

V 2
0 sinh2(κL)

4E(V0 − E)

]−1

'
[
1 +

V0 sinh2(κL)

4E

]−1

The quantity in the square brackets tends to infinity as V0 tends to infinity (Note that for large positive x,
sinhx = ex/2.). Hence, T tends to zero.

Problem 11

The Schrödinger equation for x < 0 is

d2ψE(x)

dx2
+

2mE

h̄2 ψE(x) = 0
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Hence, its solution is of the form
ψE(x) = Aeikx +Be−ikx

where

k =

√
2mE

h̄2

The Schrödinger equation for x > 0 is

d2ψE(x)

dx2
+

2m(E − V0)

h̄2 ψE(x) = 0

Hence, its solution is of the form
ψE(x) = CeiKx +De−iKx

where

K =

√
2m(E − V0)

h̄2

As the beam is incident from the left, the right side cannot have a wave going left. Hence, D = 0. Now, as
the wavefunction must be continuous at x = 0,

A+B = C

Also, as the derivative of the wavefunction must be continuous at x = 0,

kA− kB = KC

The above two boundary condition equations can be written as follows.

1 + b = c

1− b = Kc/k

where b = B/A and c = C/A. Solving these gives

b =
1−K/k
1 +K/k

c =
2

1 +K/k

The reflection coefficient is

R = |b|2 =

[
1−K/k
1 +K/k

]2

Problem 12

For E < V0, K is imaginary. Hence, the solution for x > 0 is

ψE(x) = Ce−κx +Deκx
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where

κ =

√
2m(V0 − E)

h̄2

This is not a travelling wave solution. So the argument that the left going wave must be absent does not
hold. However, the wavefunction cannot become infinite at positive infinity. Hence, D = 0. Now, the
boundary condition equations are the same as the last problem except for the the fact that K is replaced by
iκ. So,

b =
1− iκ/k
1 + iκ/k

c =
2

1 + iκ/k

For this case, the magnitude square of b is not just its square because b is not real. Hence,

R = |b|2 = b∗b =

(
1 + iκ/k

1− iκ/k

)(
1− iκ/k
1 + iκ/k

)
= 1

Problem 13

For example, the following three states have the same energy (degenerate states).

(nx = 2, ny = 1, nz = 1), (nx = 1, ny = 2, nz = 1) (nx = 1, ny = 1, nz = 2)

For Lx = Ly = Lz = L,

E =
π2h̄2

2mL2
(n2
x + n2

y + n2
z)

The lowest energy is for nx = ny = nz = 1. this energy is

E1 =
3π2h̄2

2mL2
= 1.8× 10−37 J

The next lowest energy is for the degenerate states mentioned above. The energy is

E2 =
6π2h̄2

2mL2
= 3.6× 10−37 J
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