Solutions

Chapter 4

Problem 2

$$
\hat{H} \Psi_{+}(x, t)=\hat{H} \Psi_{E}(x, t)+\hat{H} \Psi_{E^{\prime}}(x, t)=E \Psi_{E}(x, t)+E^{\prime} \Psi_{E^{\prime}}(x, t) .
$$

If $E \neq E^{\prime}$ then the above result is not proportional to $\Psi_{+}(x, t)$. Hence, $\Psi_{+}(x, t)$ is not an eigenfunction of energy. However,

$$
E \Psi_{E}(x, t)+E^{\prime} \Psi_{E^{\prime}}(x, t)=\hat{E} \Psi_{E}(x, t)+\hat{E} \Psi_{E^{\prime}}(x, t)=\hat{E}\left(\Psi_{E}(x, t)+\Psi_{E^{\prime}}(x, t)\right)=\hat{E} \Psi_{+}(x, t)
$$

Hence,

$$
\hat{H} \Psi_{+}(x, t)=\hat{E} \Psi_{+}(x, t)
$$

which is the time dependent Schrödinger equation. Hence $\Psi_{+}(x, t)$ satisfies the time dependent Schrödinger equation.

Problem 3

For $\psi_{E}=0$, we need

$$
\sin (n \pi x / L)=0
$$

Hence,

$$
x=m L / n, \quad m=0,1,2, \ldots
$$

As long as $0 \leq m \leq n, x$ is within the box. Hence, m can take $n+1$ possible values (including boundary points).

Problem 4

$$
\begin{aligned}
\int_{0}^{L} \psi_{E}(x) \psi_{E^{\prime}}(x) d x & =(2 / L) \int_{0}^{L} \sin (n \pi x / L) \sin \left(n^{\prime} \pi x / L\right) d x \\
& =L^{-1} \int_{0}^{L}\left[\cos \left(\left(n-n^{\prime}\right) \pi x / L\right)-\cos \left(\left(n+n^{\prime}\right) \pi x / L\right)\right] d x .
\end{aligned}
$$

The integrals of both terms vanish if $n \neq n^{\prime}\left(E \neq E^{\prime}\right)$. However, if $n=n^{\prime}\left(E=E^{\prime}\right)$ only the second term has a zero integral. The first term is $\cos (0)=1$. Hence, the result for $E=E^{\prime}$.

Problem 5

At the boundary point $x=L$,

$$
\psi_{E}(x)=\sqrt{2 / L} \sin (\pi / 2)=\sqrt{2 / L} \neq 0
$$

This does not satisfy the boundary condition.

Problem 6

$$
\Delta E=\frac{\pi^{2} \hbar^{2}\left(n^{\prime 2}-n^{2}\right)}{2 m L^{2}}
$$

For $n=1$ and $n^{\prime}=2$,

$$
\Delta E=\frac{3 \pi^{2} \hbar^{2}}{2 m L^{2}}=\frac{3 h^{2}}{8 m L^{2}}=1.8 \times 10^{-37} \mathrm{~J}
$$

Problem 7

$$
\int_{-\infty}^{\infty} \psi_{0}(x) \psi_{1}(x) d x=\sqrt{2 / \pi} \frac{m \omega_{0}}{\hbar} \int_{-\infty}^{\infty} x e^{m \omega_{0} x^{2} / \hbar} d x
$$

The above integrand is an odd function of x and the integration limits are symmetric. Such an integral is always zero.

Problem 9

As $V_{0} \rightarrow \infty, \kappa \rightarrow \infty$. Hence,

$$
T=\left[1+\frac{V_{0}^{2} \sinh ^{2}(\kappa L)}{4 E\left(V_{0}-E\right)}\right]^{-1} \simeq\left[1+\frac{V_{0} \sinh ^{2}(\kappa L)}{4 E}\right]^{-1}
$$

The quantity in the square brackets tends to infinity as V_{0} tends to infinity (Note that for large positive x, $\sinh x=e^{x} / 2$.). Hence, T tends to zero.

Problem 11

The Schrödinger equation for $x<0$ is

$$
\frac{d^{2} \psi_{E}(x)}{d x^{2}}+\frac{2 m E}{\hbar^{2}} \psi_{E}(x)=0
$$

Hence, its solution is of the form

$$
\psi_{E}(x)=A e^{i k x}+B e^{-i k x}
$$

where

$$
k=\sqrt{\frac{2 m E}{\hbar^{2}}}
$$

The Schrödinger equation for $x>0$ is

$$
\frac{d^{2} \psi_{E}(x)}{d x^{2}}+\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}} \psi_{E}(x)=0
$$

Hence, its solution is of the form

$$
\psi_{E}(x)=C e^{i K x}+D e^{-i K x}
$$

where

$$
K=\sqrt{\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}}
$$

As the beam is incident from the left, the right side cannot have a wave going left. Hence, $D=0$. Now, as the wavefunction must be continuous at $x=0$,

$$
A+B=C
$$

Also, as the derivative of the wavefunction must be continuous at $x=0$,

$$
k A-k B=K C
$$

The above two boundary condition equations can be written as follows.

$$
\begin{aligned}
1+b & =c \\
1-b & =K c / k
\end{aligned}
$$

where $b=B / A$ and $c=C / A$. Solving these gives

$$
\begin{aligned}
b & =\frac{1-K / k}{1+K / k} \\
c & =\frac{2}{1+K / k}
\end{aligned}
$$

The reflection coefficient is

$$
R=|b|^{2}=\left[\frac{1-K / k}{1+K / k}\right]^{2}
$$

Problem 12

For $E<V_{0}, K$ is imaginary. Hence, the solution for $x>0$ is

$$
\psi_{E}(x)=C e^{-\kappa x}+D e^{\kappa x}
$$

where

$$
\kappa=\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}}
$$

This is not a travelling wave solution. So the argument that the left going wave must be absent does not hold. However, the wavefunction cannot become infinite at positive infinity. Hence, $D=0$. Now, the boundary condition equations are the same as the last problem except for the the fact that K is replaced by $і к$. So,

$$
\begin{aligned}
b & =\frac{1-i \kappa / k}{1+i \kappa / k} \\
c & =\frac{2}{1+i \kappa / k}
\end{aligned}
$$

For this case, the magnitude square of b is not just its square because b is not real. Hence,

$$
R=|b|^{2}=b^{*} b=\left(\frac{1+i \kappa / k}{1-i \kappa / k}\right)\left(\frac{1-i \kappa / k}{1+i \kappa / k}\right)=1
$$

Problem 13

For example, the following three states have the same energy (degenerate states).

$$
\left(n_{x}=2, n_{y}=1, n_{z}=1\right), \quad\left(n_{x}=1, n_{y}=2, n_{z}=1\right) \quad\left(n_{x}=1, n_{y}=1, n_{z}=2\right)
$$

For $L_{x}=L_{y}=L_{z}=L$,

$$
E=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)
$$

The lowest energy is for $n_{x}=n_{y}=n_{z}=1$. this energy is

$$
E_{1}=\frac{3 \pi^{2} \hbar^{2}}{2 m L^{2}}=1.8 \times 10^{-37} \mathrm{~J}
$$

The next lowest energy is for the degenerate states mentioned above. The energy is

$$
E_{2}=\frac{6 \pi^{2} \hbar^{2}}{2 m L^{2}}=3.6 \times 10^{-37} \mathrm{~J}
$$

