Solutions

Chapter 3

Problem 1

$$
\lambda_{m} T=2.898 \times 10^{-3} .
$$

Hence,

$$
\lambda_{m}=2.898 \times 10^{-3} / 300=9.66 \times 10^{-6} \mathrm{~m}
$$

This is significantly higher than the visible range. It is in the far infra-red range.

Problem 2

$$
\lambda_{m} T=2.898 \times 10^{-3} .
$$

Hence,

$$
T=2.898 \times 10^{-3} / 3.55 \times 10^{-6}=816 \mathrm{~K}
$$

Problem 5

For small h the following first order approximation for an exponential can be used.

$$
e^{h \nu / k T} \simeq 1+h \nu / k T
$$

Then the expression for $S(\nu)$ can be written as

$$
S(\nu)=\frac{2 \pi h \nu^{3}}{c^{2}} \frac{1}{1+h \nu / k T-1}=\frac{2 \pi h \nu^{3}}{c^{2}} \frac{1}{h \nu / k T}=\frac{2 \pi \nu^{2} k T}{c^{2}}
$$

This is the Rayleigh-Jeans result.

Problem 6

For long wavelengths, frequency ν is small and hence the first order approximation for an exponential used in the last problem can be used again giving the same result.

Problem 7

The expression for \bar{E} is

$$
\bar{E}=\frac{\sum_{n} E_{n} N\left(E_{n}\right)}{\sum_{n} N\left(E_{n}\right)}
$$

where $E_{n}=n h \nu^{2}$ and hence,

$$
N\left(E_{n}\right)=N(0) e^{-n h \nu^{2} / k T}
$$

Using $x=e^{-h \nu^{2} / k T}$, the sum in the denominator for the \bar{E} expression can be written as

$$
\sum_{n} N\left(E_{n}\right)=N(0) \sum_{n} x^{n}=N(0) \frac{1}{1-x}
$$

The sum in the numerator is

$$
\sum_{n} E_{n} N\left(E_{n}\right)=N(0) h \nu^{2} \sum_{n} n x^{n}=N(0) h \nu^{2} \frac{x}{(1-x)^{2}}
$$

Hence,

$$
\bar{E}=h \nu^{2} \frac{x}{1-x}=h \nu^{2} \frac{1}{e^{h \nu^{2} / k T}-1}
$$

So,

$$
S(\nu)=\frac{2 \pi \nu^{2}}{c^{2}} \bar{E}=\frac{2 \pi h \nu^{4}}{c^{2}} \frac{1}{e^{h \nu^{2} / k T}-1}
$$

Then,

$$
R(\lambda)=\frac{c}{\lambda^{2}} S(c / \lambda)=\frac{2 \pi h c^{3}}{\lambda^{6}} \frac{1}{e^{h c^{2} / \lambda^{2} k T}-1}
$$

Problem 8

$$
R(\lambda)=\frac{2 \pi h c^{2}}{\lambda^{5}} \frac{1}{e^{h c / \lambda k T}-1}
$$

Hence,

$$
e^{h c / \lambda k T}=1+\frac{2 \pi h c^{2}}{\lambda^{5} R(\lambda)}
$$

and

$$
\frac{h c}{\lambda k T}=\ln \left(1+\frac{2 \pi h c^{2}}{\lambda^{5} R(\lambda)}\right)
$$

Then

$$
T=\frac{h c}{\lambda k}\left[\ln \left(1+\frac{2 \pi h c^{2}}{\lambda^{5} R(\lambda)}\right)\right]^{-1}=1100 \mathrm{~K}
$$

Problem 9

$$
\lambda^{\prime}-\lambda=\frac{h}{m_{0} c}(1-\cos \theta)=4.15 \times 10^{-12} \mathrm{~m}
$$

Then

$$
\lambda^{\prime}=\lambda+4.15 \times 10^{-12}=7.41 \times 10^{-11} \mathrm{~m}
$$

Problem 11

$$
\lambda=h / p=\frac{h}{m v}=6.07 \times 10^{-5} \mathrm{~m}
$$

Problem 12

$$
\lambda=h / p=\frac{h}{m v}=1.84 \times 10^{-34} \mathrm{~m}
$$

Problem 14

The momentum of the particle is (using the mass-shell condition)

$$
p=c^{-1} \sqrt{E^{2}-m_{0}^{2} c^{4}}
$$

where the total energy E is the sum of the rest energy $m_{0} c^{2}$ and the kinetic energy K :

$$
E=m_{0} c^{2}+K
$$

As the kinetic energy is provided completely by the electric potential, $K=e V$. Hence,

$$
p=c^{-1} \sqrt{\left(m_{0} c^{2}+e V\right)^{2}-m_{0}^{2} c^{4}}
$$

Then,

$$
\lambda=\frac{h}{p}=\frac{h c}{\sqrt{\left(m_{0} c^{2}+e V\right)^{2}-m_{0}^{2} c^{4}}}
$$

For $e V \ll m_{0} c^{2}$, (using the approximation $(1+x)^{n} \simeq 1+n x$ for $x \ll 1$)

$$
\left(m_{0} c^{2}+e V\right)^{2}=m_{0}^{2} c^{4}\left(1+\frac{e V}{m_{0} c^{2}}\right)^{2} \simeq m_{0}^{2} c^{4}\left(1+\frac{2 e V}{m_{0} c^{2}}\right)=m_{0}^{2} c^{4}+2 e V m_{0} c^{2}
$$

Replacing this in the equation for λ gives

$$
\lambda \simeq \frac{h c}{\sqrt{2 e V m_{0} c^{2}}}=\frac{h}{\sqrt{2 e V m_{0}}}
$$

Problem 15

The momentum of the electron is

$$
p=\frac{h}{\lambda}=9.47 \times 10^{-24} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

The relativistic momentum formula is

$$
p=\frac{m_{0} v}{\sqrt{1-v^{2} / c^{2}}}
$$

Hence,

$$
p^{2}=\frac{m_{0}^{2} v^{2}}{1-v^{2} / c^{2}}
$$

and

$$
p^{2}-p^{2} v^{2} / c^{2}=m_{0}^{2} v^{2}
$$

Then

$$
v=\frac{p}{\sqrt{m_{0}^{2}+p^{2} / c^{2}}}=1.04 \times 10^{7} \mathrm{~m} / \mathrm{s}
$$

The non-relativistic formula for p can be seen to give the same result upto three significant figures.

Problem 16

For minimum possible Δp_{x}

$$
\Delta p_{x} \Delta x=\frac{h}{4 \pi}
$$

Hence,

$$
\Delta p_{x}=\frac{h}{4 \pi \Delta x}=\frac{6.63 \times 10^{-34}}{4 \pi \times 2.0 \times 10^{-2}}=2.64 \times 10^{-33} \mathrm{~kg} . \mathrm{m} / \mathrm{s}
$$

Similarly,

$$
\Delta p_{y}=\frac{h}{4 \pi \Delta y}=\frac{6.63 \times 10^{-34}}{4 \pi \times 2.0 \times 10^{-3}}=2.64 \times 10^{-32} \mathrm{~kg} . \mathrm{m} / \mathrm{s}
$$

