
Solutions
Chapter 2

Problem 2

First consider ~E and ~B to be parallel. Hence, we can choose them both to be in the x direction:

Ex = E0f(z − ct), Bx = B0f(z − ct).

Then the integral on the right side of the third Maxwell equation is,∫
~B · d~A =

∫
(Bxî) · (dAĵ) = 0,

as î · ĵ = 0. Then, applying the third Maxwell equation as done in the text, will give,

E0 = 0.

A similar argument for the fourth Maxwell equation will give,

B0 = 0.

Hence, there will be no wave.

Next, let the electric and magnetic field directions remain perpendicular, but choose the direction of
wave propagation to be the x direction. Then,

Ex = E0f(x− ct), By = B0f(x− ct).

And, following the method in the text, we get the loop integral,∮
~E · d~s = (Ex(z + dz)− Ex(z))dx =

∂Ex
∂z

dz dx = 0.

This is because Ex does not depend on z in this case. Inserting this into the third Maxwell equation gives,

B0 = 0.

Similarly, using the fourth Maxwell equation will give,

E0 = 0.

Hence, there will be no wave.

Problem 4

4∑
µ=1

x′2µ = (x1 cos θ − x2 sin θ)2 + (x1 sin θ + x2 cos θ)2 + x23 + x24

= x21 cos2 θ + x22 sin2 θ − 2x1x2 cos θ sin θ + x21 sin2 θ + x22 cos2 θ + 2x1x2 cos θ sin θ + x23 + x24

= +x21 + x22 + x23 + x24 =
4∑

µ=1

x2µ

1



Problem 5

4∑
µ=1

x′2µ = (x1 cosφ− x4 sinφ)2 + x22 + x23 + (x1 sinφ+ x4 cosφ)2

= x21 cos2 φ+ x24 sin2 φ− 2x1x4 cosφ sinφ+ x22 + x23 + x21 sin2 φ+ x24 cos2 φ+ 2x1x4 cosφ sinφ

= +x21 + x22 + x23 + x24 =
4∑

µ=1

x2µ

Problem 8

Rotation about the z axis by an angle θ is

R(k̂, θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1



For a velocity v along the x axis, the equivalent rotation by an imaginary angle is given by φ where

v = ic tanφ

Then the corresponding transformation matrix is

B(̂i, φ) =


cosφ 0 0 − sinφ

0 1 0 0
0 0 1 0

sinφ 0 0 cosφ



So, a rotation about the z axis followed by a Lorentz transformation due to a velocity in the x direction
is

L = B(̂i, φ)R(k̂, θ)

=


cosφ 0 0 − sinφ

0 1 0 0
0 0 1 0

sinφ 0 0 cosφ




cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1



=


cos θ cosφ − sin θ cosφ 0 − sinφ

sin θ cos θ 0 0
0 0 1 0

cos θ sinφ − sin θ sinφ 0 cosφ
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Problem 9

Lorentz transformation due to a velocity v in the y direction is (v = ic tanφ)

B(̂j, φ) =


1 0 0 0
0 cosφ 0 − sinφ
0 0 1 0
0 sinφ 0 cosφ



Problem 10

The Lorentz transformation due to a velocity v1 along the x axis is (v1 = ic tanφ1)

B(̂i, φ1) =


cosφ1 0 0 − sinφ1

0 1 0 0
0 0 1 0

sinφ1 0 0 cosφ1


The Lorentz transformation due to a velocity v2 along the y axis is (v2 = ic tanφ2)

B(̂j, φ2) =


1 0 0 0
0 cosφ2 0 − sinφ2
0 0 1 0
0 sinφ2 0 cosφ2



So, a Lorentz transformation representing B(̂i, φ1) followed by B(̂j, φ2) is given by

L = B(̂j, φ2)B(̂i, φ1)

=


1 0 0 0
0 cosφ2 0 − sinφ2
0 0 1 0
0 sinφ2 0 cosφ2




cosφ1 0 0 − sinφ1
0 1 0 0
0 0 1 0

sinφ1 0 0 cosφ1



=


cosφ1 0 0 − sinφ1

− sinφ1 sinφ2 cosφ2 0 − cosφ1 sinφ2
0 0 1 0

sinφ1 cosφ2 sinφ2 0 cosφ1 cosφ2



Problem 14

For the case of positive v1 and v2, let β1 = v1/c and β2 = v2/c. Then, using the hint,

0 < (1− β1)(1− β2) = 1− β1 − β2 + β1β2
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Hence,
β1 + β2 < 1 + β1β2

Dividing throughout by (1 + β1β2) gives

β1 + β2
1 + β1β2

< 1

Multiplying throughout by c gives
v1 + v2

1 + v1v2/c2
< c

Problem 15

The fractional contraction is
f =

L0 − L
L0

= 1−
√

1− v2/c2

Using the binomial expansion

(1 + x)n = 1 + nx+ n(n+ 1)x2/2 + · · ·

upto the first order term (as v/c is very small)

f = 1− (1− v2/c2)1/2 ' 1− (1− (1/2)v2/c2) = (1/2)v2/c2 = 4.7× 10−15

Problem 16

The amount by which it is longer is

∆T = T − T0 = (γ − 1)T0 = ((1− v2/c2)−1/2 − 1)T0 ' (1 + (1/2)v2/c2 − 1)T0 = 4.7× 10−15 hr.

as T0 is 1 hour.

Problem 22

T ′ = γ(T − vX/c2) ≥ γ(T − vTc/c2)

as X ≤ Tc. Then,
T ′ ≥ γT (1− v/c) ≥ 0.
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Problem 23

As (∆s)2 is an invariant, its sign is preserved in a Lorentz transformation. Then, “likenesses” must also
be preserved under a Lorentz transformation as the sign of (∆s)2 completely determines the “likeness” –
negative for time-like, zero for light-like and positive for space-like.

Problem 24

When measured from the side (transverse Doppler), considering the two successive shifts gives

ν = ν0

√
1− v2/c2

√
1− v2/c2 = ν0(1− v2/c2)

So the decrease in frequency is

ν0 − ν = ν0v
2/c2 = 5.6× 10−4 sec−1

When measured from behind (longitudinal Doppler), considering the two successive shifts gives

ν = ν0

√
1− v/c
1 + v/c

√
1− v/c
1 + v/c

= ν0
1− v/c
1 + v/c

' ν0(1− v/c)(1− v/c) ' ν0(1− 2v/c)

So the decrease in frequency is

ν0 − ν = 2ν0v/c = 6.7× 103 sec−1

Problem 29

Let the magnitude of the electron and proton charge be e, the electron mass be m, the electron speed be v
and the orbit radius be r. Then, as the electrostatic force on the electron is also its centripetal force:

mv2

r
=

e2

4πε0r2

Hence, the kinetic energy is

K = mv2/2 =
e2

8πε0r

The potential energy is

U = − e2

4πε0r

Hence, the total energy is

E = K + U = − e2

8πε0r
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Here, e = 1.6× 10−19 C, ε0 = 8.9× 10−12 F/m and r = 5.3× 10−11 m. So,

E = −2.2× 10−18 J

The mass equivalent of this is
∆m = E/c2 = 2.4× 10−35 kg

As the electron mass is negligible compared to the proton massmp, the fractional difference of the hydrogen
atom mass and the mass of its constituents is

∆m

mp
= 1.4× 10−8

Problem 30

The mass-shell condition is,
4∑

µ=1

p2µ = p21 + p22 + p23 + p24 = −m2
0c

2.

As p4 = imc = iE/c, this gives,

p21 + p22 + p23 − E2/c2 = −m2
0c

2.

As p2 = p21 + p22 + p23 by definition,
p2 − E2/c2 = −m2

0c
2.

Multiplying by c2 and rearranging terms will give,

E2 − p2c2 = m2
0c

4.

Problem 31

As the rest-mass of a photon is zero, the mass-shell condition reduces to,

E2 − p2c2 = 0.

Hence,
p = E/c.

Also, for a photon,
E = hν.

Hence,
p = hν/c = h/λ,

noting that, for any wave, frequency ν, wavelength λ and speed c are related by,

c = νλ.
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Problem 32

The collision being along one direction, momentum conservation gives only one equation:

h/λ = −h/λ′ +m0γv (1)

where λ′ is the wavelength of the photon after collision, m0 the rest mass of the electron and v its speed
after collision. The energy conservation equation gives

hc/λ+m0c
2 = hc/λ′ +m0γc

2 (2)

The above two equations can be rewritten as

h/λ+ h/λ′ = m0γv (3)

h/λ− h/λ′ +m0c = m0γc (4)

Squaring both sides of equations 3 and 4 and subtracting gives

(h/λ− h/λ′ +m0c)
2 − (h/λ+ h/λ′)2 = m2

0γ
2(c2 − v2) (5)

Further simplifying this gives

m2
0c

2 + 2m0ch
λ′ − λ
λ′λ

− 4
h2

λ′λ
= m2

0c
2 (6)

This leads to
λ′ = λ+

2h

m0c
(7)

To find v one may solve for γ from equation 4.

γ =
h(λ′ − λ)

m0cλ′λ
+ 1 (8)

Using equation 7 this becomes

γ =
2h2

m0cλ(m0cλ+ 2h)
+ 1 (9)

and using the definition of γ we know

v = c
√

1− 1/γ2 (10)

7


