Solutions

Chapter 2

Problem 2

First consider $\overrightarrow{\mathbf{E}}$ and $\overrightarrow{\mathbf{B}}$ to be parallel. Hence, we can choose them both to be in the x direction:

$$
E_{x}=E_{0} f(z-c t), \quad B_{x}=B_{0} f(z-c t)
$$

Then the integral on the right side of the third Maxwell equation is,

$$
\int \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=\int\left(B_{x} \hat{\mathbf{i}}\right) \cdot(d A \hat{\mathbf{j}})=0
$$

as $\hat{\mathbf{i}} \cdot \hat{\mathbf{j}}=0$. Then, applying the third Maxwell equation as done in the text, will give,

$$
E_{0}=0
$$

A similar argument for the fourth Maxwell equation will give,

$$
B_{0}=0
$$

Hence, there will be no wave.
Next, let the electric and magnetic field directions remain perpendicular, but choose the direction of wave propagation to be the x direction. Then,

$$
E_{x}=E_{0} f(x-c t), \quad B_{y}=B_{0} f(x-c t)
$$

And, following the method in the text, we get the loop integral,

$$
\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}=\left(E_{x}(z+d z)-E_{x}(z)\right) d x=\frac{\partial E_{x}}{\partial z} d z d x=0
$$

This is because E_{x} does not depend on z in this case. Inserting this into the third Maxwell equation gives,

$$
B_{0}=0
$$

Similarly, using the fourth Maxwell equation will give,

$$
E_{0}=0
$$

Hence, there will be no wave.

Problem 4

$$
\begin{aligned}
\sum_{\mu=1}^{4} x_{\mu}^{\prime 2} & =\left(x_{1} \cos \theta-x_{2} \sin \theta\right)^{2}+\left(x_{1} \sin \theta+x_{2} \cos \theta\right)^{2}+x_{3}^{2}+x_{4}^{2} \\
& =x_{1}^{2} \cos ^{2} \theta+x_{2}^{2} \sin ^{2} \theta-2 x_{1} x_{2} \cos \theta \sin \theta+x_{1}^{2} \sin ^{2} \theta+x_{2}^{2} \cos ^{2} \theta+2 x_{1} x_{2} \cos \theta \sin \theta+x_{3}^{2}+x_{4}^{2} \\
& =+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=\sum_{\mu=1}^{4} x_{\mu}^{2}
\end{aligned}
$$

Problem 5

$$
\begin{aligned}
\sum_{\mu=1}^{4} x_{\mu}^{\prime 2} & =\left(x_{1} \cos \phi-x_{4} \sin \phi\right)^{2}+x_{2}^{2}+x_{3}^{2}+\left(x_{1} \sin \phi+x_{4} \cos \phi\right)^{2} \\
& =x_{1}^{2} \cos ^{2} \phi+x_{4}^{2} \sin ^{2} \phi-2 x_{1} x_{4} \cos \phi \sin \phi+x_{2}^{2}+x_{3}^{2}+x_{1}^{2} \sin ^{2} \phi+x_{4}^{2} \cos ^{2} \phi+2 x_{1} x_{4} \cos \phi \sin \phi \\
& =+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=\sum_{\mu=1}^{4} x_{\mu}^{2}
\end{aligned}
$$

Problem 8

Rotation about the z axis by an angle θ is

$$
R(\hat{\mathbf{k}}, \theta)=\left(\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

For a velocity v along the x axis, the equivalent rotation by an imaginary angle is given by ϕ where

$$
v=i c \tan \phi
$$

Then the corresponding transformation matrix is

$$
B(\hat{\mathbf{i}}, \phi)=\left(\begin{array}{cccc}
\cos \phi & 0 & 0 & -\sin \phi \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sin \phi & 0 & 0 & \cos \phi
\end{array}\right)
$$

So, a rotation about the z axis followed by a Lorentz transformation due to a velocity in the x direction is

$$
\begin{aligned}
& L=B(\hat{\mathbf{i}}, \phi) R(\hat{\mathbf{k}}, \theta) \\
& =\left(\begin{array}{cccc}
\cos \phi & 0 & 0 & -\sin \phi \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sin \phi & 0 & 0 & \cos \phi
\end{array}\right)\left(\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\cos \theta \cos \phi & -\sin \theta \cos \phi & 0 & -\sin \phi \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
\cos \theta \sin \phi & -\sin \theta \sin \phi & 0 & \cos \phi
\end{array}\right)
\end{aligned}
$$

Problem 9

Lorentz transformation due to a velocity v in the y direction is $(v=i c \tan \phi)$

$$
B(\hat{\mathbf{j}}, \phi)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \phi & 0 & -\sin \phi \\
0 & 0 & 1 & 0 \\
0 & \sin \phi & 0 & \cos \phi
\end{array}\right)
$$

Problem 10

The Lorentz transformation due to a velocity v_{1} along the x axis is ($v_{1}=i c \tan \phi_{1}$)

$$
B\left(\hat{\mathbf{i}}, \phi_{1}\right)=\left(\begin{array}{cccc}
\cos \phi_{1} & 0 & 0 & -\sin \phi_{1} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sin \phi_{1} & 0 & 0 & \cos \phi_{1}
\end{array}\right)
$$

The Lorentz transformation due to a velocity v_{2} along the y axis is $\left(v_{2}=i c \tan \phi_{2}\right)$

$$
B\left(\hat{\mathbf{j}}, \phi_{2}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \phi_{2} & 0 & -\sin \phi_{2} \\
0 & 0 & 1 & 0 \\
0 & \sin \phi_{2} & 0 & \cos \phi_{2}
\end{array}\right)
$$

So, a Lorentz transformation representing $B\left(\hat{\mathbf{i}}, \phi_{1}\right)$ followed by $B\left(\hat{\mathbf{j}}, \phi_{2}\right)$ is given by

$$
\begin{aligned}
L & =B\left(\hat{\mathbf{j}}, \phi_{2}\right) B\left(\hat{\mathbf{i}}, \phi_{1}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 \\
0 & \cos \phi_{2} & 0 \\
0 & 0 & -\sin \phi_{2} \\
0 & \sin \phi_{2} & 0 \\
\cos \phi_{2}
\end{array}\right)\left(\begin{array}{cccc}
\cos \phi_{1} & 0 & 0 & -\sin \phi_{1} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sin \phi_{1} & 0 & 0 & \cos \phi_{1}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\cos \phi_{1} & 0 & 0 & -\sin \phi_{1} \\
-\sin \phi_{1} \sin \phi_{2} & \cos \phi_{2} & 0 & -\cos \phi_{1} \sin \phi_{2} \\
0 & 0 & 1 & 0 \\
\sin \phi_{1} \cos \phi_{2} & \sin \phi_{2} & 0 & \cos \phi_{1} \cos \phi_{2}
\end{array}\right)
\end{aligned}
$$

Problem 14

For the case of positive v_{1} and v_{2}, let $\beta_{1}=v_{1} / c$ and $\beta_{2}=v_{2} / c$. Then, using the hint,

$$
0<\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)=1-\beta_{1}-\beta_{2}+\beta_{1} \beta_{2}
$$

Hence,

$$
\beta_{1}+\beta_{2}<1+\beta_{1} \beta_{2}
$$

Dividing throughout by $\left(1+\beta_{1} \beta_{2}\right)$ gives

$$
\frac{\beta_{1}+\beta_{2}}{1+\beta_{1} \beta_{2}}<1
$$

Multiplying throughout by c gives

$$
\frac{v_{1}+v_{2}}{1+v_{1} v_{2} / c^{2}}<c
$$

Problem 15

The fractional contraction is

$$
f=\frac{L_{0}-L}{L_{0}}=1-\sqrt{1-v^{2} / c^{2}}
$$

Using the binomial expansion

$$
(1+x)^{n}=1+n x+n(n+1) x^{2} / 2+\cdots
$$

upto the first order term (as v / c is very small)

$$
f=1-\left(1-v^{2} / c^{2}\right)^{1 / 2} \simeq 1-\left(1-(1 / 2) v^{2} / c^{2}\right)=(1 / 2) v^{2} / c^{2}=4.7 \times 10^{-15}
$$

Problem 16

The amount by which it is longer is

$$
\Delta T=T-T_{0}=(\gamma-1) T_{0}=\left(\left(1-v^{2} / c^{2}\right)^{-1 / 2}-1\right) T_{0} \simeq\left(1+(1 / 2) v^{2} / c^{2}-1\right) T_{0}=4.7 \times 10^{-15} \mathrm{hr} .
$$ as T_{0} is 1 hour.

Problem 22

$$
T^{\prime}=\gamma\left(T-v X / c^{2}\right) \geq \gamma\left(T-v T c / c^{2}\right)
$$

as $X \leq T c$. Then,

$$
T^{\prime} \geq \gamma T(1-v / c) \geq 0
$$

Problem 23

As $(\Delta s)^{2}$ is an invariant, its sign is preserved in a Lorentz transformation. Then, "likenesses" must also be preserved under a Lorentz transformation as the sign of $(\Delta s)^{2}$ completely determines the "likeness" negative for time-like, zero for light-like and positive for space-like.

Problem 24

When measured from the side (transverse Doppler), considering the two successive shifts gives

$$
\nu=\nu_{0} \sqrt{1-v^{2} / c^{2}} \sqrt{1-v^{2} / c^{2}}=\nu_{0}\left(1-v^{2} / c^{2}\right)
$$

So the decrease in frequency is

$$
\nu_{0}-\nu=\nu_{0} v^{2} / c^{2}=5.6 \times 10^{-4} \mathrm{sec}^{-1}
$$

When measured from behind (longitudinal Doppler), considering the two successive shifts gives

$$
\nu=\nu_{0} \sqrt{\frac{1-v / c}{1+v / c}} \sqrt{\frac{1-v / c}{1+v / c}}=\nu_{0} \frac{1-v / c}{1+v / c} \simeq \nu_{0}(1-v / c)(1-v / c) \simeq \nu_{0}(1-2 v / c)
$$

So the decrease in frequency is

$$
\nu_{0}-\nu=2 \nu_{0} v / c=6.7 \times 10^{3} \sec ^{-1}
$$

Problem 29

Let the magnitude of the electron and proton charge be e, the electron mass be m, the electron speed be v and the orbit radius be r. Then, as the electrostatic force on the electron is also its centripetal force:

$$
\frac{m v^{2}}{r}=\frac{e^{2}}{4 \pi \epsilon_{0} r^{2}}
$$

Hence, the kinetic energy is

$$
K=m v^{2} / 2=\frac{e^{2}}{8 \pi \epsilon_{0} r}
$$

The potential energy is

$$
U=-\frac{e^{2}}{4 \pi \epsilon_{0} r}
$$

Hence, the total energy is

$$
E=K+U=-\frac{e^{2}}{8 \pi \epsilon_{0} r}
$$

Here, $e=1.6 \times 10^{-19} \mathrm{C}, \epsilon_{0}=8.9 \times 10^{-12} \mathrm{~F} / \mathrm{m}$ and $r=5.3 \times 10^{-11} \mathrm{~m}$. So,

$$
E=-2.2 \times 10^{-18} \mathrm{~J}
$$

The mass equivalent of this is

$$
\Delta m=E / c^{2}=2.4 \times 10^{-35} \mathrm{~kg}
$$

As the electron mass is negligible compared to the proton mass m_{p}, the fractional difference of the hydrogen atom mass and the mass of its constituents is

$$
\frac{\Delta m}{m_{p}}=1.4 \times 10^{-8}
$$

Problem 30

The mass-shell condition is,

$$
\sum_{\mu=1}^{4} p_{\mu}^{2}=p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+p_{4}^{2}=-m_{0}^{2} c^{2}
$$

As $p_{4}=i m c=i E / c$, this gives,

$$
p_{1}^{2}+p_{2}^{2}+p_{3}^{2}-E^{2} / c^{2}=-m_{0}^{2} c^{2}
$$

As $p^{2}=p_{1}^{2}+p_{2}^{2}+p_{3}^{2}$ by definition,

$$
p^{2}-E^{2} / c^{2}=-m_{0}^{2} c^{2}
$$

Multiplying by c^{2} and rearranging terms will give,

$$
E^{2}-p^{2} c^{2}=m_{0}^{2} c^{4}
$$

Problem 31

As the rest-mass of a photon is zero, the mass-shell condition reduces to,

$$
E^{2}-p^{2} c^{2}=0
$$

Hence,

$$
p=E / c
$$

Also, for a photon,

$$
E=h \nu
$$

Hence,

$$
p=h \nu / c=h / \lambda
$$

noting that, for any wave, frequency ν, wavelength λ and speed c are related by,

$$
c=\nu \lambda
$$

Problem 32

The collision being along one direction, momentum conservation gives only one equation:

$$
\begin{equation*}
h / \lambda=-h / \lambda^{\prime}+m_{0} \gamma v \tag{1}
\end{equation*}
$$

where λ^{\prime} is the wavelength of the photon after collision, m_{0} the rest mass of the electron and v its speed after collision. The energy conservation equation gives

$$
\begin{equation*}
h c / \lambda+m_{0} c^{2}=h c / \lambda^{\prime}+m_{0} \gamma c^{2} \tag{2}
\end{equation*}
$$

The above two equations can be rewritten as

$$
\begin{align*}
h / \lambda+h / \lambda^{\prime} & =m_{0} \gamma v \tag{3}\\
h / \lambda-h / \lambda^{\prime}+m_{0} c & =m_{0} \gamma c \tag{4}
\end{align*}
$$

Squaring both sides of equations 3 and 4 and subtracting gives

$$
\begin{equation*}
\left(h / \lambda-h / \lambda^{\prime}+m_{0} c\right)^{2}-\left(h / \lambda+h / \lambda^{\prime}\right)^{2}=m_{0}^{2} \gamma^{2}\left(c^{2}-v^{2}\right) \tag{5}
\end{equation*}
$$

Further simplifying this gives

$$
\begin{equation*}
m_{0}^{2} c^{2}+2 m_{0} \operatorname{ch} \frac{\lambda^{\prime}-\lambda}{\lambda^{\prime} \lambda}-4 \frac{h^{2}}{\lambda^{\prime} \lambda}=m_{0}^{2} c^{2} \tag{6}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
\lambda^{\prime}=\lambda+\frac{2 h}{m_{0} c} \tag{7}
\end{equation*}
$$

To find v one may solve for γ from equation 4.

$$
\begin{equation*}
\gamma=\frac{h\left(\lambda^{\prime}-\lambda\right)}{m_{0} c \lambda^{\prime} \lambda}+1 \tag{8}
\end{equation*}
$$

Using equation 7 this becomes

$$
\begin{equation*}
\gamma=\frac{2 h^{2}}{m_{0} c \lambda\left(m_{0} c \lambda+2 h\right)}+1 \tag{9}
\end{equation*}
$$

and using the definition of γ we know

$$
\begin{equation*}
v=c \sqrt{1-1 / \gamma^{2}} \tag{10}
\end{equation*}
$$

