Solutions

Chapter 1

Problem 2

Choose the x coordinate in the initial directions of motion of the two particles. Choose the y direction perpendicular to the x direction. Then the momentum conservation equations give,

$$
\begin{align*}
m v+(m / 2)(v / 2) & =m v_{1}^{\prime}+(m / 2) v_{2}^{\prime} \cos \phi, \tag{1}\\
0 & =(m / 2) v_{2}^{\prime} \sin \phi, \tag{2}
\end{align*}
$$

where ϕ is the angle of deflection of the second particle. The second of the above equations shows that $\phi=0$. Hence the first equation gives,

$$
\begin{equation*}
5 v / 4=v_{1}^{\prime}+v_{2}^{\prime} / 2 . \tag{3}
\end{equation*}
$$

The energy conservation equation gives,

$$
\begin{equation*}
(1 / 2) m v^{2}+(1 / 2)(m / 2)(v / 2)^{2}=(1 / 2) m v_{1}^{\prime 2}+(1 / 2)(m / 2) v_{2}^{\prime 2} . \tag{4}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
9 v^{2} / 8=v_{1}^{\prime 2}+v_{2}^{\prime 2} / 2 . \tag{5}
\end{equation*}
$$

Solving for v_{1}^{\prime} from equation 3 and squaring it gives.

$$
\begin{equation*}
v_{1}^{\prime 2}=25 v^{2} / 16+v_{2}^{\prime 2} / 4-5 v v_{2}^{\prime} / 4 . \tag{6}
\end{equation*}
$$

Replacing this in equation 5 gives,

$$
\begin{equation*}
9 v^{2} / 8=25 v^{2} / 16+v_{2}^{\prime 2} / 4-5 v v_{2}^{\prime} / 4+v_{2}^{\prime 2} / 2 . \tag{7}
\end{equation*}
$$

This produces the following quadratic equation.

$$
\begin{equation*}
12 v_{2}^{\prime 2}-20 v v_{2}^{\prime}+7 v^{2}=0 \tag{8}
\end{equation*}
$$

The two solutions for this equation are $v_{2}^{\prime}=7 v / 6$ and $v_{2}^{\prime}=v / 2$. The second solution describes the case of no collision as the final velocity of the second particle is the same as its initial velocity. Hence, for a real collision, using

$$
\begin{equation*}
v_{2}^{\prime}=7 v / 6 \tag{9}
\end{equation*}
$$

in equation 3 gives,

$$
\begin{equation*}
v_{1}^{\prime}=2 v / 3 . \tag{10}
\end{equation*}
$$

Problem 3

Choose x coordinate along the initial momentum of the first particle. Choose the $x-y$ plane such that the initial momentum and the final momentum are both in it. Momentum conservation equations in the $x-y$ plane gives

$$
\begin{align*}
m v & =m v_{1}^{\prime} \cos 30^{\circ}+m v_{2}^{\prime} \cos \phi \tag{11}\\
0 & =m v_{1}^{\prime} \sin 30^{\circ}+m v_{2}^{\prime} \sin \phi \tag{12}
\end{align*}
$$

where ϕ is the angle of deflection of the second particle after collision. Energy conservation gives

$$
\begin{equation*}
m v^{2} / 2=m v_{1}^{\prime 2} / 2+m v_{2}^{\prime 2} / 2 \tag{13}
\end{equation*}
$$

As m is common to all terms, the three equations above become:

$$
\begin{align*}
v & =v_{1}^{\prime} \cos 30^{\circ}+v_{2}^{\prime} \cos \phi \tag{14}\\
0 & =v_{1}^{\prime} \sin 30^{\circ}+v_{2}^{\prime} \sin \phi \tag{15}\\
v^{2} & =v_{1}^{\prime 2}+v_{2}^{\prime 2} \tag{16}
\end{align*}
$$

These are three equations in the three unknowns $v_{1}^{\prime}, v_{2}^{\prime}$ and ϕ. First we eliminate ϕ from the first two equations by writing them as follows

$$
\begin{align*}
v_{2}^{\prime} \cos \phi & =v-v_{1}^{\prime} \cos 30^{\circ} \tag{17}\\
v_{2}^{\prime} \sin \phi & =-v_{1}^{\prime} \sin 30^{\circ} \tag{18}
\end{align*}
$$

and then squaring both sides of each equation and adding the two. This gives

$$
\begin{equation*}
v_{2}^{\prime 2}=v^{2}+v_{1}^{\prime 2}-2 v v_{1}^{\prime} \cos 30^{\circ} \tag{20}
\end{equation*}
$$

Using equation 16 to eliminate $v_{2}^{\prime 2}$ from the above equation gives

$$
\begin{equation*}
v_{1}^{\prime}=v \cos 30^{\circ} \tag{21}
\end{equation*}
$$

Replacing this in equation 16 gives

$$
\begin{equation*}
v_{2}^{\prime}=v \sin 30^{\circ} \tag{22}
\end{equation*}
$$

Replacing the above values of v_{1}^{\prime} and v_{2}^{\prime} in equations 14 and 15 gives

$$
\begin{equation*}
\cos \phi=\sin 30^{\circ}, \quad \sin \phi=-\cos 30^{\circ} \tag{23}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\phi=-60^{\circ} . \tag{24}
\end{equation*}
$$

Problem 4

Let the final velocities of the two particles be written as follows.

$$
\begin{equation*}
\overrightarrow{\mathbf{v}}_{1}^{\prime}=v_{1}^{\prime}(\cos \theta \hat{\mathbf{i}}+\sin \theta \hat{\mathbf{j}}), \quad \overrightarrow{\mathbf{v}}_{2}^{\prime}=v_{2}^{\prime}(\cos \phi \hat{\mathbf{i}}+\sin \phi \hat{\mathbf{j}}), \tag{25}
\end{equation*}
$$

where v_{1}^{\prime} and v_{2}^{\prime} are their respective magnitudes. θ is the final angle of deflection of the first particle and $\phi=60^{\circ}$ is the angle of deflection of the second particle.

As the masses are equal, the momentum conservation equations give,

$$
\begin{equation*}
2 v / \sqrt{2}=v_{1}^{\prime} \cos \theta+v_{2}^{\prime} \cos \phi, \quad 0=v_{1}^{\prime} \sin \theta+v_{2}^{\prime} \sin \phi . \tag{26}
\end{equation*}
$$

The magnitudes of the initial velocities are,

$$
\begin{equation*}
v_{1}=\sqrt{(v / \sqrt{2})^{2}+(v / \sqrt{2})^{2}}=v, \quad v_{2}=\sqrt{(v / \sqrt{2})^{2}+(v / \sqrt{2})^{2}}=v \tag{27}
\end{equation*}
$$

Hence, the energy conservation equation gives,

$$
\begin{equation*}
2 v^{2}=v_{1}^{\prime 2}+v_{2}^{\prime 2} . \tag{28}
\end{equation*}
$$

This gives three equations for the three unknowns $v_{1}^{\prime}, v_{2}^{\prime}$ and θ. To eliminate θ from the momentum conservation equations we rewrite them as follows.

$$
\begin{equation*}
v_{1}^{\prime} \cos \theta=2 v / \sqrt{2}-v_{2}^{\prime} \cos \phi, \quad v_{1}^{\prime} \sin \theta=-v_{2}^{\prime} \sin \phi . \tag{29}
\end{equation*}
$$

Then, squaring both sides of both equations and adding them gives,

$$
\begin{equation*}
v_{1}^{\prime 2}=2 v^{2}+v_{2}^{\prime 2}-2 \sqrt{2} v v_{2}^{\prime} \cos \phi . \tag{30}
\end{equation*}
$$

Solving for $v_{1}^{\prime 2}$ from the energy conservation equation and substituting in the above equation gives,

$$
\begin{equation*}
2 v^{2}-v_{2}^{\prime 2}=2 v^{2}+v_{2}^{\prime 2}-2 \sqrt{2} v v_{2}^{\prime} \cos \phi \tag{31}
\end{equation*}
$$

That is,

$$
\begin{equation*}
v_{2}^{\prime 2}-\sqrt{2} v v_{2}^{\prime} \cos \phi=0 \tag{32}
\end{equation*}
$$

This, being a quadratic equation, has two solutions for v_{2}^{\prime}. One of them is $v_{2}^{\prime}=0$. This means the second particle comes to a stop after collision and hence, could not be moving at an angle of 60°. So, this solution is invalid. The other solution gives

$$
\begin{equation*}
v_{2}^{\prime}=\sqrt{2} v \cos \left(60^{\circ}\right)=v / \sqrt{2} . \tag{33}
\end{equation*}
$$

Using this in the energy conservation equation gives,

$$
\begin{equation*}
v_{1}^{\prime}=\sqrt{2 v^{2}-v_{2}^{\prime 2}}=\sqrt{3 / 2} v \tag{34}
\end{equation*}
$$

Using this in the momentum conservation equations gives $\left(\phi=60^{\circ}\right)$,

$$
\begin{equation*}
\sin \theta=-v_{2}^{\prime} \sin \phi / v_{1}^{\prime}=-1 / 2, \quad \cos \theta=\frac{\sqrt{2} v-(v / \sqrt{2}) \cos \phi}{\sqrt{3 / 2} v}=\sqrt{3} / 2 \tag{35}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\theta=-30^{\circ} . \tag{36}
\end{equation*}
$$

Problem 5

If the density of nitrogen at a height h is half that at height zero, then at that height $N(E)=N(0) / 2$ for any fixed volume of gas. Using this in the Boltzmann distribution equation gives

$$
0.5=e^{-\beta E}=e^{-\beta m g h}
$$

Hence,

$$
h=-\frac{k T}{m g} \ln (0.5)=6300 \mathrm{~m}
$$

where we have used the fact that the mass of a nitrogen molecule is its molecular weight (28) times the mass of a proton $\left(1.67 \times 10^{-27} \mathrm{~kg}\right)$

Problem 6

Let,

$$
u=\overrightarrow{\mathbf{k}} \cdot \overrightarrow{\mathbf{r}}-\omega t=k_{x} x+k_{y} y+k_{z} z-\omega t .
$$

Then,

$$
\frac{\partial u}{\partial x}=k_{x}, \quad \frac{\partial u}{\partial y}=k_{y}, \quad \frac{\partial u}{\partial z}=k_{z}, \quad \frac{\partial u}{\partial t}=-\omega .
$$

So, using the chain-rule for derivatives,

$$
\frac{\partial \phi}{\partial x}=\frac{d \phi}{d u} \frac{\partial u}{\partial x}=k_{x} \frac{d \phi}{d u},
$$

and,

$$
\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{\partial}{\partial x} \frac{\partial \phi}{\partial x}=\frac{\partial}{\partial x}\left(k_{x} \frac{d \phi}{d u}\right)=k_{x} \frac{\partial}{\partial x} \frac{d \phi}{d u}=k_{x} \frac{d^{2} \phi}{d u^{2}} \frac{\partial u}{\partial x}=k_{x}^{2} \frac{d^{2} \phi}{d u^{2}} .
$$

Similarly,

$$
\frac{\partial^{2} \phi}{\partial y^{2}}=k_{y}^{2} \frac{d^{2} \phi}{d u^{2}}, \quad \frac{\partial^{2} \phi}{\partial z^{2}}=k_{z}^{2} \frac{d^{2} \phi}{d u^{2}}, \quad \frac{\partial^{2} \phi}{\partial t^{2}}=\omega^{2} \frac{d^{2} \phi}{d u^{2}} .
$$

Substituting these in the wave equation gives,

$$
\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2} \frac{d^{2} \phi}{d u^{2}}-\frac{\omega^{2}}{v^{2}} \frac{d^{2} \phi}{d u^{2}}=0 .\right.
$$

If $\frac{d^{2} \phi}{d u^{2}} \neq 0$, then,

$$
k_{x}^{2}+k_{y}^{2}+k_{z}^{2}-\frac{\omega^{2}}{v^{2}}=0 .
$$

Then,

$$
v=\frac{\omega}{k},
$$

where,

$$
k=\sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}},
$$

is the magnitude of the vector $\overrightarrow{\mathbf{k}}$.

Problem 9

Part a

$$
y=m L \lambda / d=3 \times 2.0 \times 590 \times 10^{-9} /\left(0.1 \times 10^{-3}\right)=0.035 \mathrm{~m}
$$

Part b

$$
y=m L \lambda / d=3 \times 2.0 \times 780 \times 10^{-9} /\left(0.1 \times 10^{-3}\right)=0.047 \mathrm{~m}
$$

Part c

$$
y=(m+1 / 2) L \lambda / d=2.5 \times 2.0 \times 590 \times 10^{-9} /\left(0.1 \times 10^{-3}\right)=0.030 \mathrm{~m}
$$

Part d

$$
y=(m+1 / 2) L \lambda / d=2.5 \times 2.0 \times 780 \times 10^{-9} /\left(0.1 \times 10^{-3}\right)=0.039 \mathrm{~m}
$$

Problem 10

Part a

$$
\sin \theta=m \lambda / d=2 \times 590 \times 10^{-9} /\left(5 \times 10^{-6}\right)=0.236
$$

Hence,

$$
\theta=13.7^{\circ}
$$

Part b

$$
\sin \theta=m \lambda / d=2 \times 780 \times 10^{-9} /\left(5 \times 10^{-6}\right)=0.312
$$

Hence,

$$
\theta=18.2^{\circ}
$$

Problem 11

$$
\lambda=2 d \sin \theta / m=2 \times 2.09 \times 10^{-10} \times \sin 30^{\circ} / 1=2.09 \times 10^{-10} \mathrm{~m}
$$

Problem 15

$$
R_{x}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)
$$

Problem 16

$$
R_{y}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right)
$$

Problem 17

$$
\begin{gathered}
R=R_{y}\left(\theta_{y}\right) R_{x}\left(\theta_{x}\right)=\left(\begin{array}{ccc}
\cos \theta_{y} & 0 & \sin \theta_{y} \\
0 & 1 & 0 \\
-\sin \theta_{y} & 0 & \cos \theta_{y}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{x} & -\sin \theta_{x} \\
0 & \sin \theta_{x} & \cos \theta_{x}
\end{array}\right) \\
=\left(\begin{array}{ccc}
\cos \theta_{y} & \sin \theta_{y} \sin \theta_{x} & \sin \theta_{y} \cos \theta_{x} \\
0 & \cos \theta_{x} & -\sin \theta_{x} \\
-\sin \theta_{y} & \cos \theta_{y} \sin \theta_{x} & \cos \theta_{y} \cos \theta_{x}
\end{array}\right)
\end{gathered}
$$

Problem 18

Inserting $\theta_{x}=180^{\circ}$ and $\theta_{y}=180^{\circ}$ in the result of the last problem gives

$$
R=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\cos 180^{\circ} & -\sin 180^{\circ} & 0 \\
\sin 180^{\circ} & \cos 180^{\circ} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

