Unit Vector Notation

1 Definitions

Figure 1 shows the definition of components of a vector $\vec{\mathbf{V}}$. The angles α , β and γ are the angles that the vector makes to the three coordinate axes x, y and z respectively. The dashed lines are perpendiculars drawn from the tip of the vector to the three coordinate axis. The components V_x , V_y and V_z of $\vec{\mathbf{V}}$ are defined to be the segments of the coordinate axes marked out by these perpendiculars as shown. Hence, using the definition of cosine for the three right-angle triangles, we find,

$$V_x = V \cos \alpha$$
, $V_y = V \cos \beta$, $V_z = V \cos \gamma$,

where V (short for $|\vec{\mathbf{V}}|$) is the magnitude of the vector $\vec{\mathbf{V}}$. We also define **unit vectors** (vectors of magnitude one) along each of the three coordinate axes x, y and z to be $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ respectively (figure 2). The following three vectors in the three coordinate directions can now be defined.

$$\vec{\mathbf{V}}_x = V_x \hat{\mathbf{i}}, \quad \vec{\mathbf{V}}_y = V_y \hat{\mathbf{j}}, \quad \vec{\mathbf{V}}_z = V_z \hat{\mathbf{k}}.$$

Using the triangle rule for vector addition twice, this gives,

$$\vec{\mathbf{V}} = \vec{\mathbf{V}}_x + \vec{\mathbf{V}}_y + \vec{\mathbf{V}}_z = V_x \hat{\mathbf{i}} + V_y \hat{\mathbf{j}} + V_z \hat{\mathbf{k}}.$$

This is known as the **unit vector notation** of a vector.

If the vector is restricted to the x-y plane, then $\gamma = 90^{\circ}$. This makes (figure 3),

$$V_z = 0$$
, and $\alpha + \beta = 90^{\circ}$.

Hence,

$$\cos \beta = \cos (90^{\circ} - \alpha) = \sin \alpha.$$

Thus the components V_x and V_y can now be written as,

$$V_x = V \cos \alpha, \quad V_y = V \sin \alpha$$

Figure 1: Components of a vector $\vec{\mathbf{V}}$

Figure 2: Unit vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ along the three coordinate directions.

Figure 3: Components of a vector $\vec{\mathbf{V}}$ restricted to the x-y plane $(\beta = 90^{\circ} - \alpha)$.

2 The Dot (or Scalar) Product

The dot (or the scalar) product of any two vectors $\vec{\bf A}$ and $\vec{\bf B}$ is written as $\vec{\bf A} \cdot \vec{\bf B}$ and defined to be

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = |\vec{\mathbf{A}}| |\vec{\mathbf{B}}| \cos \theta = AB \cos \theta,$$

where θ is the angle between the two vectors and the notation $|\vec{\mathbf{A}}| = A$ is still being is used. The unit vector notation makes the computation of dot products rather easy. The unit vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ are all perpendicular to each other and hence, from the above definition, their mutual dot products must be zero:

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{i}} = 0.$$

Also from the above definition,

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1,$$

as the unit vectors have magnitudes of 1.

Now, if the vectors $\vec{\mathbf{A}}$ and $\vec{\mathbf{B}}$ are given in unit vector notation, they are

$$\vec{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}, \text{ and } \vec{\mathbf{B}} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}.$$

Then their dot product is

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = (A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}) \cdot (B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}})$$

Using the distributive law of products, this gives 9 terms. However, using the dot products of the unit vectors as given above we get

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = A_x B_x + A_y B_y + A_z B_z.$$

3 The Cross Product

Unlike the scalar (or dot) product of two vectors, the cross product is a vector. Hence, its definition must include the direction as well as the magnitude.

ullet The **magnitude** of the cross product of two vectors $\vec{\mathbf{A}}$ and $\vec{\mathbf{B}}$ is given by

$$|\vec{\mathbf{A}} \times \vec{\mathbf{B}}| = AB\sin\theta,\tag{1}$$

where A and B are the magnitudes of \vec{A} and \vec{B} and θ is the angle between them (see figure 4).

• The direction of $\vec{A} \times \vec{B}$ is defined to be perpendicular to both \vec{A} and \vec{B} . This means it is perpendicular to the plane containing the vectors \vec{A} and \vec{B} . Of course, this is ambiguous as two opposite directions are perpendicular to that plane. To resolve the ambiguity, the

Figure 4: Finding the direction of the cross product $\vec{\mathbf{A}} \times \vec{\mathbf{B}}$ using the right-hand-rule. Note that the symbol \odot means out of the page and \otimes means into the page.

definition uses the so-called **right-hand-rule**. If you put the four fingers of the right hand together and curl them along the angle θ going from the first vector of the product ($\vec{\mathbf{A}}$ in this case) towards the second vector of the product ($\vec{\mathbf{B}}$ in this case), the direction in which the thumb will stick out is the direction of the cross product (see figure 4).

To compute cross products of vectors given in a unit vector notation, it is useful to know the cross products of the individual unit vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$. From the above definition, it is straightforward to see the following.

$$\hat{\mathbf{i}} \times \hat{\mathbf{j}} = -\hat{\mathbf{j}} \times \hat{\mathbf{i}} = \hat{\mathbf{k}}, \quad \hat{\mathbf{j}} \times \hat{\mathbf{k}} = -\hat{\mathbf{k}} \times \hat{\mathbf{j}} = \hat{\mathbf{i}}, \quad \hat{\mathbf{k}} \times \hat{\mathbf{i}} = -\hat{\mathbf{i}} \times \hat{\mathbf{k}} = \hat{\mathbf{j}}.$$
 (2)

Also

$$\hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{k}} = 0. \tag{3}$$

Note that the definition of the cross product requires a minimum of three dimensions. So, drawing figures on a two-dimensional page becomes tricky. Hence, we shall often use a convention for representing directions out of the page and into the page. The symbol \odot means out of the page and the symbol \otimes means into the page. To remember these symbols, it is convenient to think of them as the tip (point) and the tail (feathers) of an actual arrow.