Solutions

Chapter 5

Problem 1

Part a

Charge is

$$
q=i t=2.00 \times 4.00 \times 60=480 \mathrm{C}
$$

Part b
Number of electrons is

$$
n=\frac{q}{1.60 \times 10^{-19}}=3.00 \times 10^{21}
$$

Problem 2

Current is

$$
i=J A=J \pi(d / 2)^{2}
$$

where d is the diameter of the wire. So

$$
d=2 \sqrt{\frac{i}{\pi J}}=2 \sqrt{\frac{2.00}{500 \pi}}=7.14 \times 10^{-2} \mathrm{~cm}
$$

Problem 3

$$
R=\frac{\rho L}{A}=\frac{3.00 \times 10^{-7} \times 200}{50.0 \times 10^{-4}}=1.20 \times 10^{-2} \Omega
$$

Problem 4

Part a

$$
i=\frac{V}{R}=\frac{25}{41.8 \times 10^{-3}}=598 \mathrm{~A}
$$

Part b

$$
J=\frac{i}{A}=\frac{598}{\pi\left(2 \times 10^{-3}\right)^{2}}=4.76 \times 10^{7} \mathrm{~A} / \mathrm{m}^{2}
$$

Part c

$$
\rho=\frac{R A}{L}=5.25 \times 10^{-8} \Omega \mathrm{~m}
$$

Hence, the material is tungsten.

Problem 5

Let the initial length of the wire be L and its initial cross-sectional area be A. Then the initial resistance is

$$
R=\frac{\rho L}{A}
$$

If the final length is L^{\prime} and the final cross-sectional area is A^{\prime}, then the final resistance is

$$
R^{\prime}=\frac{\rho L^{\prime}}{A^{\prime}}
$$

As the density does not change, the volume does not change. So

$$
L A=L^{\prime} A^{\prime}
$$

and hence,

$$
A^{\prime}=\frac{L A}{L^{\prime}}
$$

But $L^{\prime}=2 L$. So

$$
A^{\prime}=\frac{L A}{2 L}=\frac{A}{2}
$$

This gives

$$
R^{\prime}=\frac{\rho L^{\prime}}{A^{\prime}}=\frac{\rho \times 2 L}{A / 2}=4 \frac{\rho L}{A}=4 R
$$

Problem 6

The current is

$$
i=\frac{P}{V}
$$

The charge is

$$
q=i t=\frac{P t}{V}=\frac{0.50 \times 12 \times 60 \times 60}{9}=2400 \mathrm{C}
$$

Problem 7

Part a

Energy used in the month of June (in Watt.hour=Wh)

$$
U=P t=100 \times 30 \times 24 \mathrm{~Wh}=72000 \mathrm{~Wh}=72 \mathrm{kWh}
$$

Hence,

$$
\text { Cost }=72 \times \$ 0.10=\$ 7.20
$$

Part b

As $i=P / V$,

$$
R=\frac{V}{i}=\frac{V^{2}}{P}=\frac{120^{2}}{100}=144 \Omega
$$

Part c

$$
i=\frac{P}{V}=\frac{100}{120}=0.83 \mathrm{~A}
$$

