Solutions

Chapter 14

Problem 1

Part a

$$
s=30.0-(5.00+10.0)=15.0 \mathrm{~cm} .
$$

Part b

As the image due to the objective is just inside the eyepiece lens focal point, the image distance due to the objective is $i=f_{o}+s$. Then, using the imaging formula for the objective lens:

$$
\frac{1}{p}+\frac{1}{f_{o}+s}=\frac{1}{f_{o}}
$$

This gives

$$
p=6.67 \mathrm{~cm}
$$

Part c

$$
m=\frac{-i}{p}=\frac{-(5.00+15.0)}{6.67}=-3.00
$$

Part d

$$
m_{\theta}=25.0 / f_{e}=25.0 / 10.0=2.50
$$

Part e

$$
M=m m_{\theta}=-7.50
$$

Problem 2

Magnification is given by

$$
m=f_{o} / f_{e}
$$

Hence,

$$
f_{o}=m f_{e}=500 \mathrm{~cm} .
$$

