Solutions

Chapter 1

Problem 1

The force is

$$
F=\frac{k\left|q_{1}\right|\left|q_{2}\right|}{r^{2}}
$$

Hence,

$$
r=\sqrt{\frac{k\left|q_{1}\right|\left|q_{2}\right|}{F}}=\sqrt{\frac{8.99 \times 10^{9} \times 25 \times 10^{-6} \times 50 \times 10^{-6}}{8.0}}=1.19 \mathrm{~m}
$$

Problem 2

In the following figure the charges are named as $q_{1}=+2 q, q_{2}=+q, q_{3}=-q$ and $q_{4}=-2 q$. The x axis is chosen as the left to right direction and the y axis as the bottom to top direction.

The force on charge q_{1} due to q_{2} is $\overrightarrow{\mathbf{F}}_{12}$. From Coulomb's law, the magnitude of this force is,

$$
F_{12}=\frac{k\left|q_{1}\right|\left|q_{2}\right|}{r_{12}^{2}}=\frac{2 k q^{2}}{a^{2}}
$$

as a is the distance between the charges. As both charges are positive they repel. So, the force must push q_{1} away from q_{2} making $\overrightarrow{\mathbf{F}}_{12}$ point downward. Hence, this force makes an angle of -90° to the x direction. That means its x and y components are,

$$
F_{12 x}=F_{12} \cos (-90)=0, \text { and } F_{12 y}=F_{12} \sin (-90)=-F_{12}=-\frac{2 k q^{2}}{a^{2}}
$$

Using the notation $\hat{\mathbf{i}}$ for the unit vector in the x direction and $\hat{\mathbf{j}}$ for the unit vector in the y direction, the unit vector form of $\overrightarrow{\mathbf{F}}_{12}$ is,

$$
\overrightarrow{\mathbf{F}}_{12}=F_{12 x} \hat{\mathbf{i}}+F_{12 y} \hat{\mathbf{j}}=-\frac{2 k q^{2}}{a^{2}} \hat{\mathbf{j}} .
$$

The magnitude of the force between q_{1} and q_{3} is,

$$
F_{13}=\frac{k\left|q_{1}\right|\left|q_{3}\right|}{r_{13}^{2}}=\frac{2 k q^{2}}{2 a^{2}}=\frac{k q^{2}}{a^{2}}
$$

as r_{13} is the distance between q_{1} and q_{3} which is the diagonal of the square and, using the Pythagorean theorem, $r_{13}^{2}=a^{2}+a^{2}=2 a^{2}$. As the two charges have opposite sign, they attract. Hence, the force on q_{1} is towards q_{3}. So, $\overrightarrow{\mathbf{F}}_{13}$ is along the diagonal of the square making an angle of 45° to the x axis. This gives,

$$
F_{13 x}=F_{13} \cos (45)=\frac{k q^{2}}{a^{2}} \cos (45) \text { and } F_{13 y}=F_{13} \sin (45)=\frac{k q^{2}}{a^{2}} \sin (45)
$$

Hence, in unit vector notation,

$$
\overrightarrow{\mathbf{F}}_{13}=F_{13 x} \hat{\mathbf{i}}+F_{13 y} \hat{\mathbf{j}}=\frac{k q^{2}}{a^{2}} \cos (45) \hat{\mathbf{i}}+\frac{k q^{2}}{a^{2}} \sin (45) \hat{\mathbf{j}}
$$

The magnitude of the force between q_{1} and q_{4} is,

$$
F_{14}=\frac{k\left|q_{1}\right|\left|q_{4}\right|}{r_{14}^{2}}=\frac{4 k q^{2}}{a^{2}}
$$

as the distance between these charges is $r_{14}=a$. The two charges have opposite sign and hence, they attract. So, charge q_{1} is pulled towards q_{4} making the force point in the positive x direction. This makes the angle of the force from the x axis to be zero degrees. Hence,

$$
F_{14 x}=F_{14} \cos (0)=F_{14}=\frac{4 k q^{2}}{a^{2}} \text { and } F_{14 y}=F_{14} \sin (0)=0
$$

Then,

$$
\overrightarrow{\mathbf{F}}_{14}=F_{14 x} \hat{\mathbf{i}}+F_{14 y} \hat{\mathbf{j}}=\frac{4 k q^{2}}{a^{2}} \hat{\mathbf{i}}
$$

From the superposition principle, the net force on charge q_{1} is,

$$
\begin{gathered}
\overrightarrow{\mathbf{F}}_{1}=\overrightarrow{\mathbf{F}}_{12}+\overrightarrow{\mathbf{F}}_{13}+\overrightarrow{\mathbf{F}}_{14}= \\
=-\frac{2 k q^{2}}{a^{2}} \hat{\mathbf{j}}+\frac{k q^{2}}{a^{2}} \cos (45) \hat{\mathbf{i}}+\frac{k q^{2}}{a^{2}} \sin (45) \hat{\mathbf{j}}+\frac{4 k q^{2}}{a^{2}} \hat{\mathbf{i}}
\end{gathered}
$$

Then, collecting all the $\hat{\mathbf{i}}$ terms and the $\hat{\mathbf{j}}$ terms and substituting the values given for k, q and a,

$$
\overrightarrow{\mathbf{F}}_{1}=\frac{k q^{2}}{a^{2}}(\cos (45)+4) \hat{\mathbf{i}}+\frac{k q^{2}}{a^{2}}(-2+\sin (45)) \hat{\mathbf{j}}=106 \hat{\mathbf{i}}-29 \hat{\mathbf{j}} \mathrm{~N}
$$

Problem 3

As the net force on q_{3} is zero

$$
0=\frac{k\left|q_{1}\right|\left|q_{3}\right|}{(3 d)^{2}}-\frac{k\left|q_{2}\right|\left|q_{3}\right|}{d^{2}}
$$

Hence,

$$
\left|q_{1}\right| / 9=\left|q_{2}\right|
$$

For the forces to be opposite, q_{1} and q_{2} must be of opposite sign. Hence,

$$
q_{1}=-9 q_{2}
$$

Problem 4

The third charge, q_{3}, could not be in between q_{1} and q_{2} as that would cause both forces to be in the same direction and hence they would not cancel to give zero. So q_{3} must be either to the left of q_{1} or to the right of q_{2}. As q_{2} is larger in magnitude, q_{3} must be farther from q_{2} than q_{1} to allow cancellation of the two forces. So, q_{3} must be to the left of q_{1} (see figure). The equilibrium condition is

$$
\frac{k\left|q_{1}\right|\left|q_{3}\right|}{x^{2}}=\frac{k\left|q_{2}\right|\left|q_{3}\right|}{(x+d)^{2}}
$$

Hence,

$$
\frac{\sqrt{\left|q_{1}\right|}}{x}=\frac{\sqrt{\left|q_{2}\right|}}{x+d}
$$

Solving for x gives

$$
x=\frac{\sqrt{\left|q_{1}\right|} d}{\sqrt{\left|q_{2}\right|}-\sqrt{\left|q_{1}\right|}}=4.8 \mathrm{~m}
$$

Problem 5

If e is the charge of a proton, then the electrostatic force magnitude is

$$
F_{e}=\frac{k e^{2}}{d^{2}} .
$$

If m is the mass of a proton, then the gravitational force magnitude is

$$
F_{g}=\frac{G m^{2}}{d^{2}} .
$$

Hence, the ratio of the two forces is

$$
\frac{F_{e}}{F_{g}}=\frac{k e^{2}}{G m^{2}}=1.24 \times 10^{36}
$$

